TWO LANE PAVEMENT RECONSTRUCTION AND WIDENING STRATEGIES • OAPC, FEBRUARY 1, 2023

TWO LANE PAVEMENT RECONSTRUCTION AND WIDENING STRATEGIES

Patrick Bierl
ODOT Office of Pavement Engineering

WHERE DO YOU START?

Initial Considerations

- Pavement type and width(s)
- Maintenance required
- Current and historical distresses and conditions

Rehab Options

- Edge replacement/repair and overlay salvaged
- FDR (cement and emulsion)
- Rubblize and full replacement

Field Investigation

REHABILITATION OPTIONS

Edge Replacement

- Middle of pavement generally in good shape and mostly solid
- Previous edge widening not sufficient thickness
- No aggregate base or subgrade compaction under edges

REHABILITATION OPTIONS

FDR with Cement

- Suitable AC thickness
- Stripped/deteriorated AC

FDR with Emulsion

- Macadam base
- Coarser mixture
- Layer thickness

REHABILITATION OPTIONS

Rubblize and Roll

- Concrete wide enough
- Can have aggregate base added adjacent to increase width

New Pavement

- Concrete or brick cannot be salvaged
- Existing elevation challenges

FIELD INVESTIGATION

Pavement Coring

- Extract cores representing the edge and middle.
- 0.5 Mile intervals staggered

Aggregate Base Sampling

Use a bucket auger to collect 1 sample/mile/direction, approx.
 200 gram bag sample for gradation

SAMPLE CORE REPORT INFORMATION

core#	1	Pavement Type at Core Location	Flexible
location SLM	26.75	MacAdam base present?	No
Depth of core (in)	15	Paved shoulder width*	2.5
Depth of core hole (in)	15	Distance from center line to core*	6.5
Bottom of core hole	aggergate	Core Condition / Notes	S
Drainage	Good	D(-)	
# of photos	2	Pavement layers (in)	1 15
Lane width*	11.5	3	3
Core Location	Middle		5
* Decimal Feet			
core#	2	Pavement Type at Core Location	Flexible
location SLM	26.75	MacAdam base present?	No
Depth of core (in)	7	Paved shoulder width*	2.5
Depth of core hole (in)	11	Distance from center line to core*	11

SAMPLE CORE REPORT SUMMARY

	Up Summary										
Statistic	Core D	epth (in)	Core Hole	Depth (in)	Drainage	Тор	Bottom				
Statistic	Edge	Middle	Edge	Middle	Dialilage	Layer (in)	Layer (in)				
Average	9.61	11.07	12.79	15.27		5.29	8.00				
Min	4.5	2	5	10.5		2	5.5				
Max	18	18.5	18	18.5		11	10.5				
Mode	5	17	10	15	Good	2	8.5				

	Down											
	CORE	SLM	Pavement	Core l	Depth	Core Ho	le Depth	Drainage	Top Layer	Concrete/Mac		
	CORE	SLIVI	Type	Edge	Middle	Edge	Middle	Drainage	TOP Layer	Thickness (in)		
	1	10.49	Flexible		11		11	Good	6.75			
	2	10.49	Flexible	11.25		11.25		Good	3.5			
	3	9.98	Flexible		16		17	Good	10.5			
	4	9.98	Flexible	16		17		Good	16			
Ī	5	9.47	Flexible		6		6	Good	6	0		
	6	9.47	Flexible	11		11		Good	11			
	7	9	Flexible		6		6	Good	6	0		

SAMPLE AGGREGATE BASE SAMPLE INFORMATION

Most interested in fine material (M and C)

Borehole	Depth	Sample	Lab ID	G (%)	CS (%)	FS (%)	M (%)	C (%)	LL	PL	PI	M (%)	LOI (%)	ODOT CLASS	USCS CLASS
X-001-0-21/ 0.02 Up E	0.5	BS- 1	18161	47	12	14	17	10	21	15	6	14		A-2-4	SC-SN
X-002-0-21/ 0.75 Dn E	0.5	BS- 1	18162	42	18	17	16	7	NP	NP	NP	12		A-1-b	SM
X-003-0-21/ 1.0 Up M	0.5	BS- 1	18163	46	30	9	10	5	NP	NP	NP	14		A-1-b	SM
X-004-0-21/ 1.75 Dn E	0.5	BS- 1	18164	32	18	21	18	11	22	15	7	12		A-2-4	SC-SN
X-005-0-21/ 2.0 Up E	0.5	BS- 1	18165	71	10	8	7	4	23	17	6	13		A-1-a	GP-GC
X-006-0-21/ 2.73 Dn M	0.5	BS- 1	18166	34	12	23	26	5	NP	NP	NP	15		A-2-4	SM
X-007-0-21/ 3.0 Up M	0.5	BS- 1	18167	27	9	19	28	17	24	16	8	20		A-4a	SC

GEOTECHNICAL INVESTIGATION

- CBR for design calculations
- Unsuitable and Unstable soil identification
- Low N60 Values

#	Boring	Sample	Sam Dej	•	Subg De	rade pth		dard ration	НР	Physical Characteristics							sture	Ohio DOT	
"			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{OPT}	Class	GI
1	В	SS-1	1.5	3.0	0.0	1.5	24			24	18	6	16	14	30	14	10	A-2-4	0
	001-0	SS-2	3.0	4.5	1.5	3.0	17			24	17	7	16	9	25	11	10	A-2-4	0
	21	SS-3	4.5	6.0	3.0	4.5	13			18	17	1	20	13	33	9	10	A-2-4	0
		SS-4	6.0	7.5	4.5	6.0	13	13		18	17	1	20	13	33	9	10	A-2-4	0
2	В	SS-1	1.5	3.0	0.0	1.5	10		0.25	26	18	8	52	24	76	19	13	A-4b	8
	002-0	SS-2	3.0	4.5	1.5	3.0	15			25	20	5	22	11	33	15	10	A-2-4	0
	21	SS-3	4.5	6.0	3.0	4.5	15			25	20	5	22	11	33	16	10	A-2-4	0
		SS-4	6.0	7.5	4.5	6.0	8	8		25	20	5	22	11	33	18	10	A-2-4	0

Design CBR

7

% Proposed Subgrade Surface							
Unstable & Unsuitable	13%						
Unstable	12%						
Unsuitable	1%						

CASE STUDY 1 - EDGE REPLACEMENT

HUR 4 Prior Condition

CASE STUDY 1 - EDGE REPLACEMENT

 Typical solid and sufficiently thick middle

 Thinner and deteriorated edge asphalt without base

CASE STUDY 1 - EDGE REPLACEMENT

CASE STUDY 2 - FDR WITH EMULSION

CRA 602 Prior Condition

CASE STUDY 2 - FDR WITH EMULSION

Layer deterioration

Macadam Base

CASE STUDY 2 - FOR WITH EMULSION

CASE STUDY 2 - FDR WITH EMULSION

Construction of FDR layer

GUE/COS/MUS 662 Prior Condition

Deterioration

Aggregate Base gradation

MOE 26

SUMMARIZE

- Each section needs consideration
- Determine what is cost effective
- MOT can drive up costs and practicality
- Investigation helps understand good rehabilitation approach
- Length of time needed for investigations are reasonable to accommodate

QUESTIONS

Patrick Bierl Patrick.Bierl@dot.ohio.gov 614-995-5995

Craig Landefeld Craig.Landefeld@dot.ohio.gov 614-644-6622

Last updated 1/25/2023

