
In the preceding chapters we have derived Maxwell’s 
Equations and expressed them in their “integral” and 
“differential” form. In different ways, both forms lend 

themselves to a certain intuitive understanding of the nature of 
electromagnetic fields and waves. In this installment, we will 
express Maxwell’s Equations in their “computational form,” a 
form that allows our computers to do the work. To give you an 
idea where we are going, here are those equations:

                Equation 1

Where: 

E = Electric field in V/m

B = Magnetic flux density, B=µH

H = Magnetic field in Amps/m

V = Voltage

A = The “vector potential” (which we will explain shortly)

ρn = Charge density in Coulombs/m3 of a particular charge 
element, n

rn = Distance from a given charge or current element, n, to the 
location of interest

vn = Volume of a particular charge element, n

ln = Length of a particular current element, n

an = Area of a particular current element, n

Jn = Total current density (both conductive and displacement) 
in amps/m2 of a particular current element, n

ε, µ = Permittivity and permeability respectively
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We have added two elements we have not seen before: the 
gradientyofytheyvoltage (∇V)and the “vectorypotential” (A). 
We will explain these terms in a moment, but for now note the 
following: 

1. If we know the current density (J) at every point within a 
volume of interest, we can calculate the “vector potential” 
(A) by simple summation (Equation 1(d)). By taking 
the curl of the vector potential (A), we can derive the 
magnetic flux density (B), and hence the magnetic field 
(H) (Equation 1 (b)). 

2. If we know the charge density (ρ) at every point within a 
volume of interest, we can calculate the voltage at every 
point (Equation 1(c)). We can calculate the electric field 
(E) by taking the gradient of the voltage and adding the 
time derivative of the vector potential (Equation 1(a)). 

Obviously, to use these equations we will need to understand 
what we mean by the “gradient of the voltage” and the “vector 
potential” (A). To do that, there is a bit of additional math to 
master. 

In Part 3, we introduced two vector operations, the dot and 
cross product. The dot product of two vectors, R and S, 
computes the component of Vector R which is aligned with 
Vector S. The resultant is a scalar, not a vector. It is equal to: 

By contrast, the cross product of two vectors is a vector itself. 
The cross product is equal to: 

As indicated by the symbol ⊥, the direction of the cross 
product Vector T is determined by the right hand rule. The 
fingers of the right hand point from Vector R to Vector S, and 
the direction of the cross product T is indicated by the thumb 
of the right hand. 

To these two operations, we now add a third, the gradient.  
As with the common usage of the term, the gradient is a slope. 
A steep hill has a large gradient, a small one a lesser gradient. 
The gradient of a function is itself a vector, that is at any point 
within an area of interest it has both magnitude and direction. 
Mathematically, the gradient is equal to: 

Where: 

φ = A scalar function of x, y and z 

i, j, k = Unit vectors in the x, y and z directions respectively

Gradients are only applicable to scalar functions. These are 
functions which have a magnitude at every point within an 
area of interest, but no direction. A mountain can be described 
as a scalar function with the height at any point in within an 
area of interest being expressed as: 

Where Ht equals the height of mountain in meters 

If we want to know the slope of the mountain, we can 
mathematically compute it by taking the gradient. 

It is conventional to write the gradient operation using the 
“del” operator. We introduced the del operator in Part 3.  
It is equal to: 

We can multiply the del operator by our scalar height function 
to derive its gradient: 

Known what is meant by the dot product, cross product, 
and gradient, we are now in a position to introduce “vector 
identities.” Vector identities are manipulations of the dot 
product, cross product, and gradient which can greatly speed 
up our mathematical analysis. For example, suppose we first 
take the cross product of two vectors R and S and then take 
the dot product of the resultant and Vector R. Mathematically, 
this would be expressed as: 
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A moment’s reflection, however, will reveal that the result of 
this operation is always equal to zero. The cross product of 
vectors R and S is a vector, T, whose direction is in a plane 
perpendicular to both R and S. Therefore, the dot product of 
R with T must equal zero. So we have the first of our vector 
identities shown in Table 1. For any two vectors R and S: 

There are many more such vector identities that we could 
derive and which we will find useful. For example, both the 
dot product and the cross product are distributive. That is: 

Further, multiplying a cross product of two vectors, R and S 
by -1 produces the same result as taking the cross product of 
R and -S: 

Table 1 lists more vector identities. For the proofs of these, 
see Reference 1. 

As we described in Part 3, we can always substitute the del 
operator for one of the vectors in our identities. We will 
substitute the del operator for Vector R in Table 1 to produce 
Table 2, to which we will add a few more useful identities. 
Once again, for derivations of see Reference 1. 

The first of the expressions making up the “computational” 
form of Maxwell’s Equations, Equation 1(a), is used to derive 
the electric field at any point within a volume of interest. 
The electric field is a function of voltage. Voltage is a scalar 
function, like the height of a mountain. At any point within a 
volume of interest it has magnitude, but no direction. We can 
take its gradient to produce vectors which give us the “slope” 
of the voltage. If the vector potential A in Equation 1(a) is 
unchanging, then: 

This simply means that the electric field is equal to the 
gradient of the voltage when ∂A/∂t=0. In one dimension: 

Where: 

∆V = Voltage between two points, V1 and V2

∆x = Distance in meters between points 1 and 2

Or, equivalently for small ∆x: 

Table 2: Some vector identities using the “del” operator (ᐁ) 
are shown. S and T are vector functions or fields, while φ is 
a scalar function. Note that the gradient of a scalar is itself a 
vector function or field, so ᐁφ can be substituted for S or T 

in any of the above. 

Table 1: Some Vector Identities
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More generally in three dimensions: 

What this says is that if we know the voltage at every point 
within a volume of interest and if A is unchanging, then we 
can derive the electric field. 

To derive the voltage at any point within a volume of interest, 
it turns out that we only need to know where the electric 
charges are. This is illustrated in Figure 1. A number of 
charged spheres are shown suspended in space. Other than for 
these charged spheres, the space is empty. We will calculate 
the voltage at point P due to these charged spheres. 

In the first part in this series, we calculated the work required 
to move a charge q from infinity to some point, such as point 
P in Figure 1. The work required is: 

Where: 

W= Work in joules

q = The charge being moved in Coulombs

Qn = Charge on sphere n in Coulombs

rn = Distance in meters from sphere n to point P in Figure 1

The work per unit charge moved (W/q) is equal to the voltage 
V, and is in units of Joules per Coulomb. The voltage at P is 
therefore: 

We will find it convenient to re-express this equation in terms 
of charge density ρ rather than the total charge on a given 
sphere, Qn. Charge density is simply the total charge on each 
sphere divided by its volume, v. So: 

The vector potential A does not have the kind of readily 
measurable substance that an electric or magnetic field has. 
It is mostly just a mathematical tool. Mathematicians have 
defined the vector potential A as being a hypothetical field 
with the following characteristics: 

In words rather than symbols, the curl of the vector potential 
is, by definition, equal to the magnetic flux density, and the 
divergence of A is everywhere equal to zero. 

Before we move on to explore the usage of the vector 
potential, A, we will need to take yet another math detour. We 
will use some of our vector identities to manipulate Maxwell’s 
Equations. 

We know that the differential form of the first of Maxwell’s 
equations is: Figure 1: Where charges are static, the voltage at  

point P can be computed by summing the contributions of 
surrounding charges. 
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Since D=εE and, from Equation 1(a) E = -ᐁV-∂A/∂t: 

The last line is known as “Poisson’s Equation” and is usually 
written as: 

Where: 

In a region where there is no charge, ρ=0, so: 

which is known as “Laplace’s Equation.” The operator ᐁ2 is 
known as the “Laplacian.” 

From Maxwell’s fourth equation expressed in differential 
form, we can, with some difficulty, state the vector potential 
in terms of currents using our vector identities. 

This derivation may seem daunting, but we have seen the 
form of the last line before. It is in the form of Poisson’s 
Equation. Therefore, we know that the solution is going to 
be – it is in the form of the solution to Poisson’s Equation. 
Poisson’s Equation states: 

And we have already derived this expression for V.

So we can simply substitute the A for V and µJ for ρ/ε and we 
have the solution for the vector potential, A, in terms of the 
total current density, J: 

Where vn = ln an (volume equals length times area). 

We can also break both the vector potential A and the current 
density J into their Cartesian components: 



34    IN Compliance    April 2010 www.incompliancemag.com

FEATURE A Dash of  Maxwel l ’s 

This equation tells us that the vector potential is aligned with 
the currents that produce it. If we sum the currents flowing 
in the x direction as shown in the equation, we will be able 
to calculate the vector potential in the x direction at any 
particular point of interest. The same is true for the vector 
potential in the y and z directions. That means that the vector 
potential A, like the scalar potential V, can be derived by mere 
addition, multiplication and division, things a computer does 
handily. 

The last piece of the puzzle requires relating the vector 
potential A to the electric field E. To do this we will use that 
time-honored tradition in mathematics, propose a solution and 
plug it into our equations to see if it works. The solution that 
we will propose which relates A to E is: 

We will test this solution by plugging it into the third of 
Maxwell’s Equations: 

Having verified the relationship between the vector potential 
A and the electric field E, we can now state Maxwell’s 
Equations in their computational form, which, of course is 
where we started: 

Before moving on, we should note one caveat. These 
equations assume that the effects of changing charges 
and currents are felt throughout the volume of interest 
instantaneously. That is, of course, not true, the effects 
propagate outward at a finite speed. In the next part of 
the series we will adapt these equations to deal with finite 
propagation speeds using the theory of “retarded currents.” 
Then we will act as the computer and calculate by hand the 
near and far field radiation from a short length of wire. That 
short length of wire will, in turn, become our building block 
for the powerful Method of Moments which we will introduce 
in the chapters to come. n
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