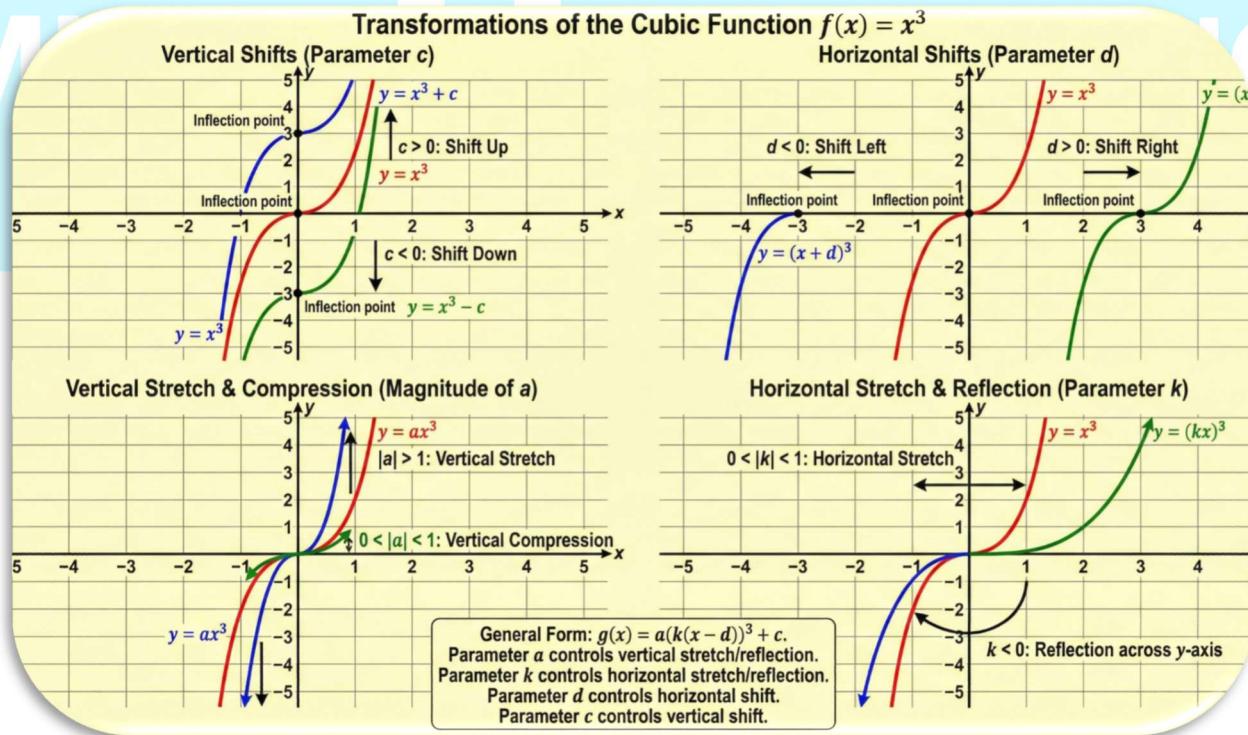


MIND **LEARNING**
EMPOWERING MINDS


The "Big 5" Predicted Exam Questions (MCR3U)

The Concepts, The Traps, and The Fixes.

Note to Student: These 5 questions represent the "bottlenecks" of the course. If you can solve these, you are ready for the exam.

Question 1: The Transformation "Fake Out"

Concept: Function Transformations $y = af[k(x - d)] + c$

- The Problem:

Given the base function $f(x) = \sqrt{x}$, determine the equation of the transformed function $g(x)$ if it has been vertically compressed by a factor of $\frac{1}{2}$, reflected in the y-axis, and translated 6 units to the right.

- The Trap :

Writing the equation as $g(x) = \frac{1}{2}\sqrt{-x-6}$.

Why it fails: You applied the reflection ($k = -1$) and the shift ($d = -6$) separately without factoring.

- The Tutor's Fix :

Always factor the $k\$$ -value (the horizontal reflection/stretch) away from the x .

- Step 1: Write the inside as $-(x - d)$.
 - Step 2: Since it is 6 units right, $d = 6$.
 - Correct Equation: $g(x) = \frac{1}{2}\sqrt{-(x-6)}$ or $g(x) = \frac{1}{2}\sqrt{-x+6}$
-

Question 2: The Ambiguous Case of Sine

Concept: Trigonometry (Sine Law)

- The Problem:

In ΔABC , $\angle A = 30^\circ$, $a = 6 \text{ cm}$, $b = 10 \text{ cm}$. Find all possible $\angle B$.

- The Trap :

Using Sine Law to find $\angle B$, getting one answer $\approx 56^\circ$, and finishing the question. You just lost half the marks.

- The Tutor's Fix :

Before you calculate, check the "Height", h .

$$h = b \sin A = 10 \sin 30^\circ = 5$$

Since side $a = 6 \text{ cm}$ is bigger than the height (5) but smaller than side $b = 10 \text{ cm}$, there are TWO possible triangles.

- **Case 1:** $\angle B \approx 56^\circ$ (Acute).
- **Case 2:** $\angle B = 180^\circ - 56^\circ = 124^\circ$ (Obtuse). *You must solve for both.*

Question 3: The "Impossible" Trig Identity

Concept: Trigonometric Identities

- The Problem:

Prove that: $\frac{\sin 2x}{1+\cos x} = \tan x$

- The Trap :

Staring at the "1" in the denominator and getting stuck, or picking the wrong version of $\cos 2x$ (like $1 - 2 \sin^2 x$), which makes the algebra messy.

- The Tutor's Fix :

Your goal is to delete the "1" in the denominator.

- Choose the double angle formula that has a "- 1" in it: $\cos 2x = 2 \cos^2 x - 1$.
- Substitute $\cos 2x$ in the denominator: $1 + \cos 2x = 1 + 2 \cos^2 x - 1$.
- The 1s cancel instantly. You are left with $\frac{2 \sin x \cos x}{2 \cos^2 x}$, which simplifies directly to $\frac{\sin x}{\cos x} = \tan x$.

Question 4: The Annuity "Timing" Problem

Concept: Financial Math (Sequences & Series)

- The Problem:

You want to buy a car in 3 years. You deposit \$200 at the end of every month into an account paying 6%/a compounded monthly.

- The Trap :

1. Using the formula for *Present Value* (PV) instead of *Future Value* (FV).
2. Forgetting to adjust the interest rate (i) and number of periods (n).

- The Tutor's Fix :

Ask: "Do I have the money NOW (Loan) or LATER (Savings)?"

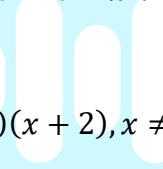
- Savings = Future Value Formula.
- **Adjust variables first:** $i = \frac{0.06}{12} = 0.005$. $n = 3 \times 12 = 36$
- Only then plug into the formula.

Question 5: Simplifying Rational Expressions

Concept: Rational Functions & Restrictions

- The Problem:

Simplify and state restrictions: $f(x) = \frac{x^2-9}{x^2+5x+6}$


- The Trap :

Canceling out terms and then stating restrictions on the final answer only.

- The Tutor's Fix :

Restrictions must be stated on the original denominator.

- Factor top: $(x - 3)(x + 3)$.
- Factor bottom: $(x + 2)(x + 3)$.
- **STOP!** State restriction now: $x \neq -2, -3$.
- Now cancel $(x + 3)$.
- Final Answer: $(x - 3)(x + 2), x \neq -2, -3$ (If you forget the -3 , you lose the mark).

MIND LEARNING
EMPOWERING MINDS

Need help solving these? Book your
Exam Rescue Session at mindlc.com