

## **Hormone & Urinary Metabolites Assessment Profile**



Order: 999999-9999

Test: X999999-9999-1 Client #: 999999

Doctor: Sample Doctor, MD

**Doctors Data Inc** 123 Main St.

St. Charles, IL 60174 USA

Patient: Sample Patient

ld:999999

Age: 33 DOB: 01/01/1991

Sex: Female

Menopausal Status: Pre-menopausal,

LMP: 10/16/2024,

Sample Collection Date/Time

Midsleep 11/11/2024 02:30 **Dinnertime** 11/10/2024 18:00 **Bedtime** 11/10/2024 21:36 Waking 11/11/2024 08:25

2 Hr. Post Waking 11/11/2024 10:55 **Collection Period** Multipoint daily **Date Received** 11/14/2024 **Date Reported** 11/21/2024

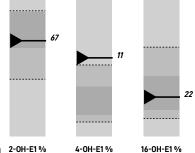
# Cortisone/day 4-0H-E1:2-0H-E1 Progesterone Cortisol/day Estrone Estrogen Estriol 5β-Pregnanediol **DHEA+DHEAS** 8-hydroxy-2'-deoxyguanosine Estradiol Testosterone $5\alpha$ -Dihydrotestosterone **Metabolized Cortisol** 5α-Pregnanediol Allopregnanolone

#### **ESTROGENS**

The bar graph represents the relationship of the catechol estrogens (2-OH-E1, 4-OH-E1, 16-OH-E1) to each other. The expected percentage for each is represented by the shaded area.

The pathway illustrates phase 1 and phase 2 metabolism of both E1 and E2. Phase 1 metabolites, also known as catechol estrogens, are active and can induce estrogenic actions. Phase 2 metabolism gives insight into a patient's ability to methylate, or potentially inactivate harmful metabolites.




4-M-E1/4-0H-E1



2-OH: generally considered safest

4-OH: potential for DNA damage

16-OH: considered highly estrogenic



**EXPECTED EXPECTED** 40-88 2-10

16-OH-E1 % **EXPECTED** 

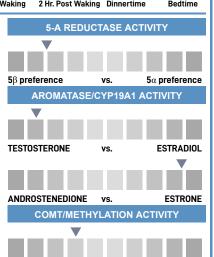
### **CORTICOIDS**

118HSD2 is responsible for the conversion of cortisol to cortisone. Inhibition of this enzyme may lead to the amount of cortisol being greater than cortisone, while increased enzyme activity can lead to higher levels of cortisone in comparison to cortisol,

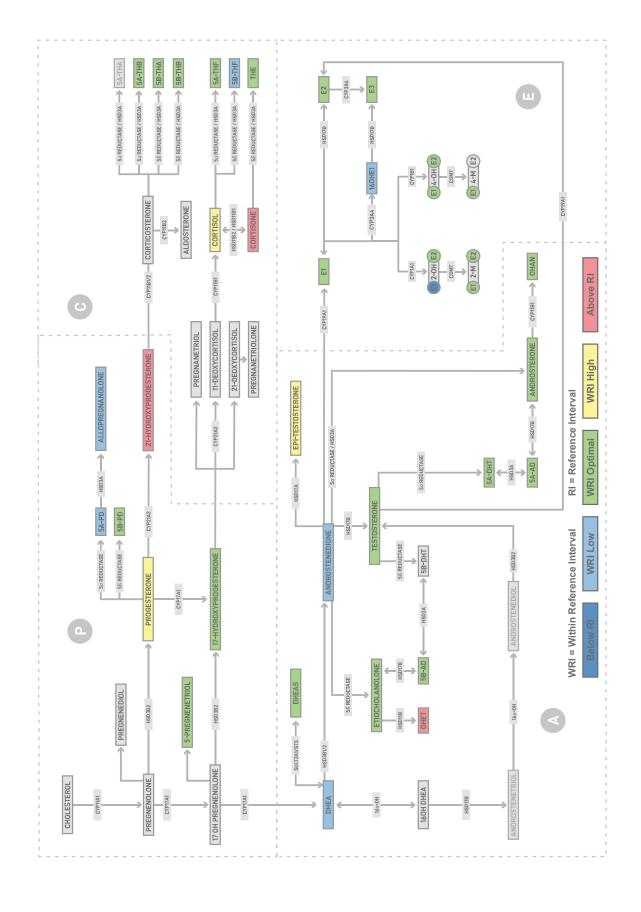


Cortisone 11βHSD2

Cortisol Cortisone 2 Hr. Post Waking Dinnertime


#### KEY RELATIONSHIPS

The graphs to the right represent metabolism preference by key enzymes, indicated by the


Metabolites in the 5-alpha pathway are more androgenic than their 5-beta counterparts and can be responsible for androgenic symptoms even when hormone levels appear normal.

Aromatase is an enzyme found in the greatest amounts in peripheral fat tissue which can increase estrogens in both males and females.

4-OH-E1 is considered unfavorable due to its carcinogenic potential within breast and prostatic tissue as a reactive metabolite. When methylated by COMT, this reactive metabolite becomes stable and can be removed from the body.



4-HYDROXYESTRONE vs. 4-METHOXYESTRONE





Test: X999999-9999-1 Client #: 999999

Doctor: Sample Doctor, MD

Doctors Data Inc 123 Main St.

St. Charles, IL 60174 USA

Patient: Sample Patient

ld:999999

Age: 33 DOB: 01/01/1991

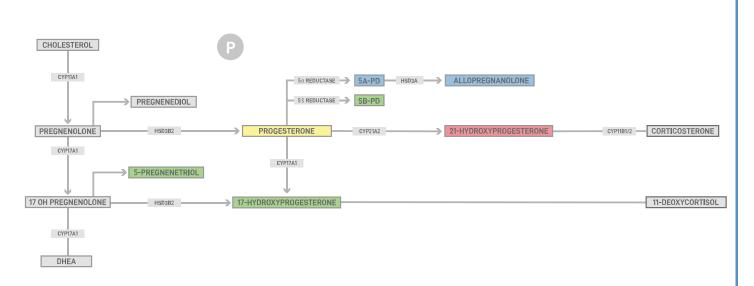
Sex: Female

Menopausal Status: Pre-menopausal,

LMP: 10/16/2024,

Sample Collection Date/Time

 Midsleep
 11/11/2024 02:30


 Dinnertime
 11/10/2024 18:00

 Bedtime
 11/10/2024 21:36

 Waking
 11/11/2024 08:25

 2 Hr. Post Waking
 11/11/2024 10:55

Collection Period Multipoint daily
Date Received 11/14/2024
Date Reported 11/21/2024



| Progesterones                       |                            | Result | Unit            | L | WRI         | Н | Reference Interval |
|-------------------------------------|----------------------------|--------|-----------------|---|-------------|---|--------------------|
| Progesterone <sup>‡</sup>           | (P4)                       | 0.72   | ng/mg Creat/Day |   | $\triangle$ |   | 0.10 – 1.10        |
| 5α-Pregnanediol <sup>‡</sup>        | (5A-PD)                    | 144    | ng/mg Creat/Day |   |             |   | 30 – 405           |
| 5β-Pregnanediol <sup>‡</sup>        | (5B-PD)                    | 2250   | ng/mg Creat/Day |   | Δ           |   | 300 – 2700         |
| Allopregnanolone <sup>‡</sup>       | (ALLOP)                    | 28     | ng/mg Creat/Day |   | Δ           |   | 3.3 – 110          |
| 21-Hydroxyprogesterone <sup>‡</sup> | (21-OHP)                   | 0.86   | ng/mg Creat/Day |   |             |   | 0.10 - 0.80        |
| 17-Hydroxyprogesterone <sup>‡</sup> | (17-OHP)                   | 0.39   | ng/mg Creat/Day |   | Δ           |   | 0.15 – 1.3         |
| 5-pregnenetriol <sup>‡</sup>        | (5-PT)                     | 91     | ng/mg Creat/Day |   | Δ           |   | 70 – 245           |
| Ratios and Calculations             |                            | Result | Unit            | L | WRI         | Н | Reference Interval |
| 5A-PD:5B-PD <sup>‡</sup>            | (alpha vs beta metabolism) | 0.064  |                 |   | Δ           |   | 0.06 – 0.24        |



## **Progesterone Metabolites Information**

Progesterone is excreted in urine in small quantities. Majority of progesterone is metabolized to  $5\beta$ -pregnanediol (typically highest),  $5\alpha$ -pregnanediol, and subsequently to allopregnanolone. This test measures progesterone and its metabolites. Allopregnanolone concentrations are useful in the context of oral progesterone use due to its GABA-like effects for sleep and anxiety relief. 17-hydroxyprogesterone and 21-hydroxyprogesterone results are also reported. They reflect endogenous cortisol and corticosterone production.

#### Notes:

WRI – Within Reference Interval - represented by bracket and stated ranges on report, Dark Blue = Below RI, Light Blue = WRI low, Green = Optimal, Yellow = WRI high, Red = Above RI, <dl = result below detection limit





Test: X999999-9999-1 Client #: 999999

Doctor: Sample Doctor, MD

Doctors Data Inc 123 Main St.

St. Charles, IL 60174 USA

Patient: Sample Patient

ld:999999

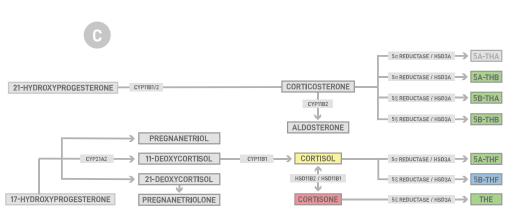
Age: 33 DOB: 01/01/1991

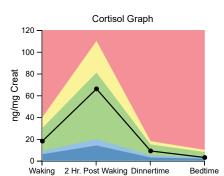
Sex: Female

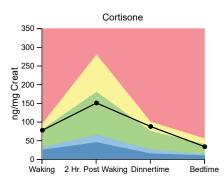
Menopausal Status: Pre-menopausal,

LMP: 10/16/2024,

Sample Collection Date/Time


 Midsleep
 11/11/2024 02:30


 Dinnertime
 11/10/2024 18:00


 Bedtime
 11/10/2024 21:36

 Waking
 11/11/2024 08:25

2 Hr. Post Waking 11/11/2024 10:55
Collection Period Multipoint daily
Date Received 11/21/2024
Date Reported 11/21/2024







| Free Cortisol and Cortisone        |     | Result | Unit            | L | WRI         | н | Reference Interval |
|------------------------------------|-----|--------|-----------------|---|-------------|---|--------------------|
| Cortisol Waking <sup>‡</sup>       |     | 18     | ng/mg Creat     |   |             |   | 6 – 40             |
| Cortisol Waking+2hrs <sup>‡</sup>  |     | 66     | ng/mg Creat     |   |             |   | 14 – 110           |
| Cortisol Dinnertime <sup>‡</sup>   |     | 9      | ng/mg Creat     |   |             |   | 3 – 18             |
| Cortisol Bedtime <sup>‡</sup>      |     | 3      | ng/mg Creat     |   |             |   | 2 – 10             |
| Cortisol/day <sup>‡</sup>          | (F) | 33     | ng/mg Creat/Day |   | $\triangle$ |   | 9 – 35             |
| Cortisone Waking <sup>‡</sup>      |     | 77     | ng/mg Creat     |   |             |   | 25 – 95            |
| Cortisone Waking+2hrs <sup>‡</sup> |     | 150    | ng/mg Creat     |   |             |   | 45 – 280           |
| Cortisone Dinnertime <sup>‡</sup>  |     | 87     | ng/mg Creat     |   |             |   | 15 – 100           |
| Cortisone Bedtime <sup>‡</sup>     |     | 33     | ng/mg Creat     |   |             |   | 10 – 55            |
| Cortisone/day <sup>‡</sup>         | (E) | 97     | ng/mg Creat/Day |   |             |   | 30 – 95            |
| Creatinine Waking                  |     | 91.5   | mg/dL           |   |             |   | 30 – 225           |

#### **Notes**

WRI – Within Reference Interval - represented by bracket and stated ranges on report, Dark Blue = Below RI, Light Blue = WRI low, Green = Optimal, Yellow = WRI high, Red = Above RI, <dl = result below detection limit





Test: X999999-9999-1 Client #: 999999

Doctor: Sample Doctor, MD

Doctors Data Inc 123 Main St.

St. Charles, IL 60174 USA

Patient: Sample Patient

ld:999999

**Age:** 33 **DOB:** 01/01/1991

Sex: Female

Menopausal Status: Pre-menopausal,

LMP: 10/16/2024,

Sample Collection Date/Time

 Midsleep
 11/11/2024 02:30

 Dinnertime
 11/10/2024 18:00

 Bedtime
 11/10/2024 21:36

 Waking
 11/11/2024 08:25

 2 Hr. Post Waking
 11/11/2024 10:55

Collection Period Multipoint daily
Date Received 11/14/2024
Date Reported 11/21/2024

| Free Cortisol and Cortisone                        |                 | Result | Unit            | L   | WRI      | н | Reference Interval |
|----------------------------------------------------|-----------------|--------|-----------------|-----|----------|---|--------------------|
| Creatinine Waking+2hrs                             |                 | 115    | mg/dL           |     | Δ        |   | 30 – 225           |
| Creatinine Dinnertime                              |                 | 54.3   | mg/dL           |     | <u> </u> |   | 30 – 225           |
| Creatinine Bedtime                                 |                 | 38.3   | mg/dL           | 4   |          |   | 30 – 225           |
| Creatinine/day                                     |                 | 75.5   | mg/dL/Day       |     |          |   | 30 – 225           |
| Corticoid Metabolites and DHEA                     |                 | Result | Unit            | L [ | WRI      | Н | Reference Interval |
| Tetrahydrodehydrocorticosterone <sup>‡</sup>       | (5B-THA)        | 90     | ng/mg Creat/Day |     | Δ        |   | 40 – 130           |
| 5β-Tetrahydrocorticosterone <sup>‡</sup>           | (5B-THB)        | 120    | ng/mg Creat/Day |     | <u> </u> |   | 58 – 240           |
| 5α-Tetrahydrocorticosterone <sup>‡</sup>           | (5A-THB)        | 210    | ng/mg Creat/Day |     | Δ        |   | 90 – 380           |
| 5α-Tetrahydrocortisol <sup>‡</sup>                 | (5A-THF)        | 502    | ng/mg Creat/Day |     |          |   | 450 – 1300         |
| 5β-Tetrahydrocortisol <sup>‡</sup>                 | (5B-THF)        | 812    | ng/mg Creat/Day |     |          |   | 720 – 2050         |
| Tetrahydrocortisone <sup>‡</sup>                   | (THE)           | 2580   | ng/mg Creat/Day |     |          |   | 1650 – 4000        |
| Dehydroepiandrosterone <sup>‡</sup>                | (DHEA)          | 17     | ng/mg Creat/Day |     | Δ        |   | 15 – 190           |
| Dehydroepiandrosterone Sulfate <sup>‡</sup>        | (DHEAS)         | 600    | ng/mg Creat/Day |     | <u> </u> |   | 45 – 3000          |
| Ratios and Calculations                            |                 | Result | Unit            | L [ | WRI      | Н | Reference Interval |
| DHEA+DHEAS‡                                        |                 | 620    | ng/mg Creat/Day |     |          |   | 50 – 2000          |
| THE+5A-THF+5B-THF <sup>‡</sup> (Metabo             | lized Cortisol) | 3890   | ng/mg Creat/Day |     | A        |   | 2600 – 7200        |
| 5A-THF+5B-THF/THE <sup>‡</sup> (Cortisol/Cortisone | e Metabolites)  | 1      |                 |     |          |   | 0.6 – 1.2          |
| Cortisol/Cortisone <sup>‡</sup> (11B               | HSD activity)   | 0.34   |                 |     |          |   | 0.18 - 0.60        |
| 5A-THF/5B-THF ratio <sup>‡</sup> (alpha vs beta    | a metabolism)   | 0.62   |                 |     |          |   | 0.19 – 0.82        |



## **Adrenal Corticoid Metabolites Information**

Under stress, the HPA axis controls the secretion of cortisol from the adrenal cortex. In saliva and blood, cortisol levels are the highest 30 minutes after waking and gradually decline throughout the day (measured by "cortisol awakening response" – CAR). When testing cortisol in urine throughout the day, highest value is typically seen during the second timed collection. Adrenal corticoid page provides four different aspects of cortisol metabolism and excretion: graphical pattern of cortisol and cortisone excretion, average cortisol and cortisone per day, metabolized cortisol, and metabolic preference for cortisol or cortisone. Cortisol and cortisone output is graphed in a diurnal pattern over the course of the day. Metabolized cortisol calculation includes the daily metabolites of cortisol (5A-THF, 5B-THF) and cortisone (THE) which may be a better representation of daily cortisol output than measuring cortisol and cortisone alone.

#### Notes

WRI – Within Reference Interval - represented by bracket and stated ranges on report, Dark Blue = Below RI, Light Blue = WRI low, Green = Optimal, Yellow = WRI high, Red = Above RI, <dl = result below detection limit



Test: X999999-9999-1 Client #: 999999

Doctor: Sample Doctor, MD

Doctors Data Inc 123 Main St.

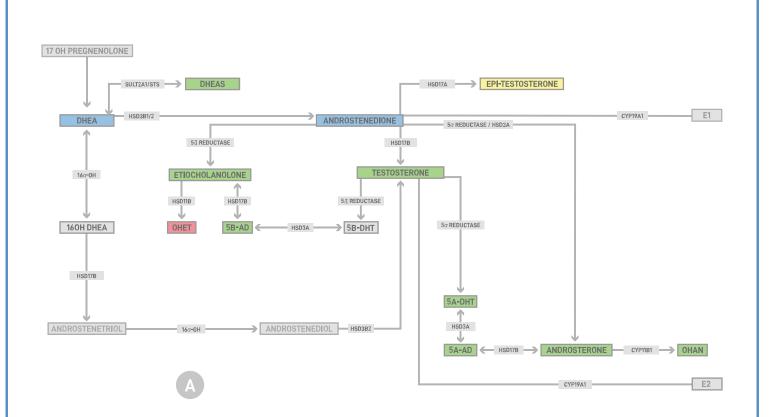
St. Charles, IL 60174 USA

Patient: Sample Patient

ld:999999

Age: 33 DOB: 01/01/1991

Sex: Female


Menopausal Status: Pre-menopausal,

LMP: 10/16/2024,

Sample Collection Date/Time

Midsleep11/11/2024 02:30Dinnertime11/10/2024 18:00Bedtime11/10/2024 21:36Waking11/11/2024 08:252 Hr. Post Waking11/11/2024 10:55Collection PeriodMultipoint daily

**Date Received** 11/14/2024 **Date Reported** 11/21/2024



| Androgens                            |          | Result | Unit            | L | WRI | н | Reference Interval |
|--------------------------------------|----------|--------|-----------------|---|-----|---|--------------------|
| Androstenedione <sup>‡</sup>         | (A4)     | 0.63   | ng/mg Creat/Day |   | Δ   |   | 0.35 – 4.0         |
| EPI-Testosterone <sup>‡</sup>        | (EPI-T)  | 14     | ng/mg Creat/Day |   |     | Δ | 0.0 – 15           |
| Testosterone <sup>‡</sup>            | (T)      | 2.7    | ng/mg Creat/Day |   | Δ   |   | 1.0 – 12           |
| Androsterone <sup>‡</sup>            | (AN)     | 725    | ng/mg Creat/Day |   | Δ   |   | 390 – 2200         |
| 11-hydroxy-Androsterone <sup>‡</sup> | (OHAN)   | 475    | ng/mg Creat/Day |   | Δ   |   | 180 – 800          |
| 5α-Androstanediol <sup>‡</sup>       | (5A-AD)  | 7.8    | ng/mg Creat/Day |   | Δ   |   | 4.0 – 25           |
| 5α-Dihydrotestosterone <sup>‡</sup>  | (5A-DHT) | 0.8    | ng/mg Creat/Day |   | Δ   |   | 0.4 – 4.0          |
| Etiocholanolone <sup>‡</sup>         | (ET)     | 1390   | ng/mg Creat/Day |   |     |   | 540 – 2500         |

#### Notes

WRI – Within Reference Interval - represented by bracket and stated ranges on report, Dark Blue = Below RI, Light Blue = WRI low, Green = Optimal, Yellow = WRI high, Red = Above RI, <dl = result below detection limit



Test: X999999-9999-1 Client #: 999999

Doctor: Sample Doctor, MD

Doctors Data Inc 123 Main St.

St. Charles, IL 60174 USA

Patient: Sample Patient

ld:999999

Age: 33 DOB: 01/01/1991

Sex: Female

Menopausal Status: Pre-menopausal,

LMP: 10/16/2024,

Sample Collection Date/Time

 Midsleep
 11/11/2024 02:30

 Dinnertime
 11/10/2024 18:00

 Bedtime
 11/10/2024 21:36

 Waking
 11/11/2024 08:25

2 Hr. Post Waking 11/11/2024 10:55
Collection Period Multipoint daily
Date Received 11/21/2024
Date Reported 11/21/2024

| Androgens                                    |                         | Result | Unit            | L | W | રા | Н | Reference Interval |
|----------------------------------------------|-------------------------|--------|-----------------|---|---|----|---|--------------------|
| 11-hydroxy-Etiocholanolone <sup>‡</sup>      | (OHET)                  | 504    | ng/mg Creat/Day |   |   |    |   | 40 – 470           |
| 5β-Androstanediol <sup>‡</sup>               | (5B-AD)                 | 33     | ng/mg Creat/Day |   |   |    |   | 9.0 – 110          |
| Dehydroepiandrosterone <sup>‡</sup>          | (DHEA)                  | 17     | ng/mg Creat/Day |   |   |    |   | 15 – 190           |
| Dehydroepiandrosterone Sulfate               | ‡ (DHEAS)               | 600    | ng/mg Creat/Day |   |   | Δ  |   | 45 – 3000          |
| Ratios and Calculations                      |                         | Result | Unit            | L | W | RI | Н | Reference Interval |
| DHEA+DHEAS‡                                  |                         | 620    | ng/mg Creat/Day |   |   |    |   | 50 – 2000          |
| Androsterone (5α) /<br>Etiocholanolone (5β)‡ | (5α Reductase Activity) | 0.52   |                 |   |   |    |   | 0.5 – 1.4          |
| Testosterone / EPI-Testosterone‡             |                         | 0.19   |                 |   |   |    |   | 0.1 – 2.0          |



## **Androgen Metabolites Information**

Androgens play a significant role in structure and function of muscle, bone, and connective tissue, metabolic homeostasis and reproduction in both men and women. When evaluating the androgens, it is important to look at unconjugated hormones, enzymes, metabolites, and clinical symptoms to gain an understanding of the complete clinical picture. The key areas of focus within the androgen pathway are androstenedione, DHEA, testosterone, 5-alpha and 5-beta reductase, and aromatase (CYP19). Monitoring 5-alpha vs 5-beta activity is of particular interest as 5-alpha metabolites are more androgenic. Symptoms associated with higher androgen levels are often seen when levels of 5-alpha reductase and its corresponding metabolites are elevated. 5-beta reductase and its corresponding metabolites are much less androgenic.

#### Notes:

WRI – Within Reference Interval - represented by bracket and stated ranges on report, Dark Blue = Below RI, Light Blue = WRI low, Green = Optimal, Yellow = WRI high, Red = Above RI, <dl = result below detection limit



Test: X999999-9999-1 Client #: 999999

Doctor: Sample Doctor, MD

Doctors Data Inc 123 Main St.

St. Charles, IL 60174 USA

**TESTOSTERONE** 

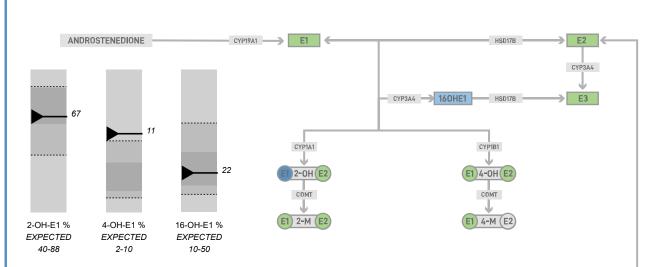
Patient: Sample Patient

ld:999999

Age: 33 DOB: 01/01/1991

Sex: Female

Menopausal Status: Pre-menopausal,


LMP: 10/16/2024,

Sample Collection Date/Time

**Date Reported** 

Midsleep11/11/2024 02:30Dinnertime11/10/2024 18:00Bedtime11/10/2024 21:36Waking11/11/2024 08:252 Hr. Post Waking11/11/2024 10:55Collection PeriodMultipoint dailyDate Received11/14/2024

11/21/2024



**Estrogens** Result Unit Reference Interval WRI 7.9 Estrone<sup>‡</sup> (E1) ng/mg Creat/Day 3.8 - 222-Hydroxyestrone<sup>‡</sup> (2-OH-E1) 10 ng/mg Creat/Day 13 - 340.0 - 2.94-Hydroxyestrone<sup>‡</sup> (4-OH-E1) 1.6 ng/mg Creat/Day 1.4 – 15 16α-Hydroxyestrone<sup>‡</sup> (16-OH-E1) 3.4 ng/mg Creat/Day 1.0 - 7.102-Methoxyestrone<sup>‡</sup> 2.4 ng/mg Creat/Day (2-M-E1) 4-Methoxyestrone<sup>‡</sup> (4-M-E1) 0.015 ng/mg Creat/Day 0.005 - 0.0601.5 - 13Estradiol<sup>‡</sup> (E2) 3.7 ng/mg Creat/Day 0.80 - 3.92-Hydroxyestradiol<sup>‡</sup> 1.7 (2-OH-E2) ng/mg Creat/Day 0.0 - 1.24-Hydroxyestradiol<sup>‡</sup> (4-OH-E2) 0.54 ng/mg Creat/Day 2-Methoxyestradiol<sup>‡</sup> (2-M-E2) 0.24 ng/mg Creat/Day 0.06 - 0.70Estriol<sup>‡</sup> 11 ng/mg Creat/Day 2.8 - 23

#### Notes

WRI – Within Reference Interval - represented by bracket and stated ranges on report, Dark Blue = Below RI, Light Blue = WRI low, Green = Optimal, Yellow = WRI high, Red = Above RI, <dl = result below detection limit



Test: X999999-9999-1 Client #: 999999

Doctor: Sample Doctor, MD

Doctors Data Inc 123 Main St.

St. Charles, IL 60174 USA

Patient: Sample Patient

ld:999999

Age: 33 DOB: 01/01/1991

Sex: Female

Menopausal Status: Pre-menopausal,

LMP: 10/16/2024,

Sample Collection Date/Time

Midsleep11/11/2024 02:30Dinnertime11/10/2024 18:00Bedtime11/10/2024 21:36Waking11/11/2024 08:252 Hr. Post Waking11/11/2024 10:55

Collection Period Multipoint daily
Date Received 11/14/2024
Date Reported 11/21/2024

| Ratios and Calculations       |                             | Result | Unit            | L [ | WRI | Н | Reference Interval |
|-------------------------------|-----------------------------|--------|-----------------|-----|-----|---|--------------------|
| 2-OH-E1 % <sup>‡</sup>        | (2-OH-E1 %)                 | 67     | %               |     | Δ   |   | 40 – 88            |
| 4-OH-E1 % <sup>‡</sup>        | (4-OH-E1 %)                 | 11     | %               |     |     |   | 2 – 10             |
| 16-OH-E1 % <sup>‡</sup>       | (16-OH-E1 %)                | 22     | %               |     | Δ   |   | 10 – 50            |
| 2-M-E1:2-OH-E1 <sup>‡</sup>   | (COMT/Methylation activity) | 0.22   |                 |     |     |   | 0.08 - 0.60        |
| 2-M-E2:2-OH-E2 <sup>‡</sup>   | (COMT/Methylation activity) | 0.13   |                 |     | Δ   |   | 0.06 - 0.80        |
| 4-M-E1:4-OH-E1‡               | (COMT/Methylation activity) | 0.0087 |                 |     |     |   | 0.004 – 0.10       |
| 2-OH-E1:16-OH-E1 <sup>‡</sup> |                             | 3.0    |                 |     | Δ   |   | ≥ 0.70             |
| 4-OH-E1:2-OH-E1 <sup>‡</sup>  |                             | 0.16   |                 |     |     |   | 0.00 – 0.17        |
| Oxidative Stress Metabolite   |                             | Result | Unit            | L   | WRI | н | Reference Interval |
| 8-hydroxy-2'-deoxyguanos      | sine <sup>‡</sup> (8-OHdG)  | 5.7    | ng/mg Creat/Day |     | Δ   |   | 0.0 – 7.5          |



## **Estrogen Metabolites Information**

Evaluation of the estrogen metabolism pathway relies on understanding several key steps of metabolism: the amount of unconjugated estrogens, hydroxylation of E1 and E2 (phase I), methylation of hydroxy estrogens (phase II), and the function of key enzymes. Estrogen is metabolized down three phase I pathways: 2-OH (considered the safest), 4-OH (considered the most genotoxic), and 16-OH (considered the most estrogenic). In phase II, estrogens are methylated, making them less reactive and ready for excretion. The ratio of 4-M E1/E2 to 4-OH E1 / 2 and 2-M E1/E2 to 2-OH E1/E2 can help determine if adequate methylation of catechol estrogens is occurring. The higher the ratio, the higher the likelihood of metabolizing toward the pathway with lower harm potential, and therefore less reactive quinone formation. Even if 4-OH metabolites are elevated, adequate methylation can indicate these metabolites are being detoxified, rendering them potentially less harmful.

#### Notes

WRI – Within Reference Interval - represented by bracket and stated ranges on report, Dark Blue = Below RI, Light Blue = WRI low, Green = Optimal, Yellow = WRI high, Red = Above RI, <dl = result below detection limit





11/21/2024

Order: 999999-9999

Test: X999999-9999-1 Client #: 999999

Doctor: Sample Doctor, MD

**Doctors Data Inc** 123 Main St.

St. Charles, IL 60174 USA

Patient: Sample Patient

ld:999999

Age: 33 DOB: 01/01/1991

Sex: Female

Menopausal Status: Pre-menopausal,

LMP: 10/16/2024,

Sample Collection Date/Time

**Date Reported** 

Midsleep 11/11/2024 02:30 Dinnertime 11/10/2024 18:00 Bedtime 11/10/2024 21:36 Waking 11/11/2024 08:25 2 Hr. Post Waking 11/11/2024 10:55 Collection Period Multipoint daily **Date Received** 11/14/2024

## **Progesterones**



## 21-OH Progesterone (21-OHP)

21-Hydroxyprogesterone is a steroid hormone with mineralocorticoid properties produced in the adrenal gland which serves as a precursor hormone to aldosterone. Elevated levels may not be clinically significant on their own, but could lead to mineralocorticoid hypertension. Elevations have been associated with chronic exposure to ACTH, Cushing's disease, type 2 diabetes, congenital adrenal hyperplasia or rarely adrenocortical carcinoma.

## **Androgens**



## 11-hydroxy-Etiocholanolone (OHET)

OHET is the product of cortisol metabolism as well as 11-oxygenated androgens produced from the adrenal gland. Levels tend to reflect levels of etiocholanolone.

## **Corticoids**



#### Cortisone

Cortisone is the inactive form of cortisol. Elevations of cortisone may reflect high cortisol production, excessive 11B-HSD2 activity, or insufficient conversion by 11B-HSD1.

## **Estrogens**



## 2-Hydroxyestrone (2-OH-E1)

Adequate levels of 2-OH-E1 have been shown to be a favorable marker for breast health. Low levels of 2-OH E1 may be due to low levels of estrone, or more active CYP3A4 or CYP1B1 enzymes. Increasing the activity of CYP1A1 to increase 2-OH-E1 is a consideration.