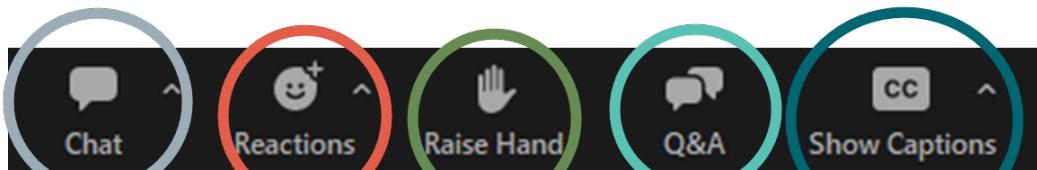


Resource Planning Advisory Group Meeting

2027 Integrated System Plan

January 27, 2026



Welcome to the meeting!

PSE

Use the **Reactions** feature to respond to content with emojis

The **Q&A** tool will be turned off during the meeting

RPAG members and PSE staff are welcome to use the **Chat** feature

Use **Raise Hand** feature if you'd like to provide a comment or ask a question

Click **Show Captions** to see real-time closed captioning

Facilitator requests

PSE

- ◆ Engage constructively and courteously towards all participants
- ◆ Respect the role of the facilitator to guide the group process
- ◆ Avoid use of acronyms and explain technical questions
- ◆ Use the feedback form or email isp@pse.com for additional input to PSE
- ◆ Aim to focus on the webinar topic
- ◆ Public comments will occur after PSE's presentations

Safety moment

PSE

◆ Safety resolutions for the new year!

- ◇ Consistently wear PPE (personal protective equipment) when necessary (safety glasses, ear plugs, sturdy boots for example)
- ◇ Report or immediately fix hazards or unsafe conditions in your home or workplace
- ◇ Always wear a seatbelt; ensure passengers in your vehicle are buckled as well

Today's speakers

PSE

- ◆ Kara Durbin, Director, Clean Energy Strategy, PSE
- ◆ Jennifer Coulson, Manager, Operations and Gas Analysis, PSE
- ◆ Elizabeth Hossner, Manager, Resource Planning & Analysis, PSE
- ◆ Alexandra Karpoff, Senior Energy Resource Planning Acquisition Analyst, PSE
- ◆ Brian Tyson, Manager, Clean Energy Planning and Implementation, PSE

Agenda

PSE

Time	Agenda Item	Presenter / Facilitator
1:00 p.m. – 1:05 p.m.	Welcome and introductions	Annie Kilburg Smith, Triangle Associates
1:05 p.m. – 1:15 p.m.	Work plan updates	Kara Durbin, PSE Jennifer Coulson, PSE
1:15 p.m. – 2:25 p.m.	Final scenarios and sensitivity discussion	Jennifer Coulson, PSE Elizabeth Hossner, PSE
2:25 p.m. – 2:35 p.m.	Break	
2:35 p.m. – 3:45 p.m.	“Maximum customer benefit scenario” definition and discussion	Alexandra Karpoff, PSE Brian Tyson, PSE
3:45 p.m. – 4:00 p.m.	Next steps and public comment opportunity	Annie Kilburg Smith, Triangle Associates
4:00 p.m.	Adjourn	All

Meeting purpose

PSE

- ◆ Update members on work plan filing
- ◆ Discuss final scenarios for the 2027 ISP and gain RPAG feedback on potential sensitivities
- ◆ Provide overview of maximum customer benefit scenario and gain RPAG feedback on PSE's recommended approach

What we need from you

PSE

- ◆ Share your questions, reflections, and advice on today's topics
- ◆ Let us know if anything is missing or unclear
- ◆ Flag areas where deeper discussion is needed
- ◆ Help us identify risks, tensions, or points of misalignment early

2027 ISP Work Plan filing

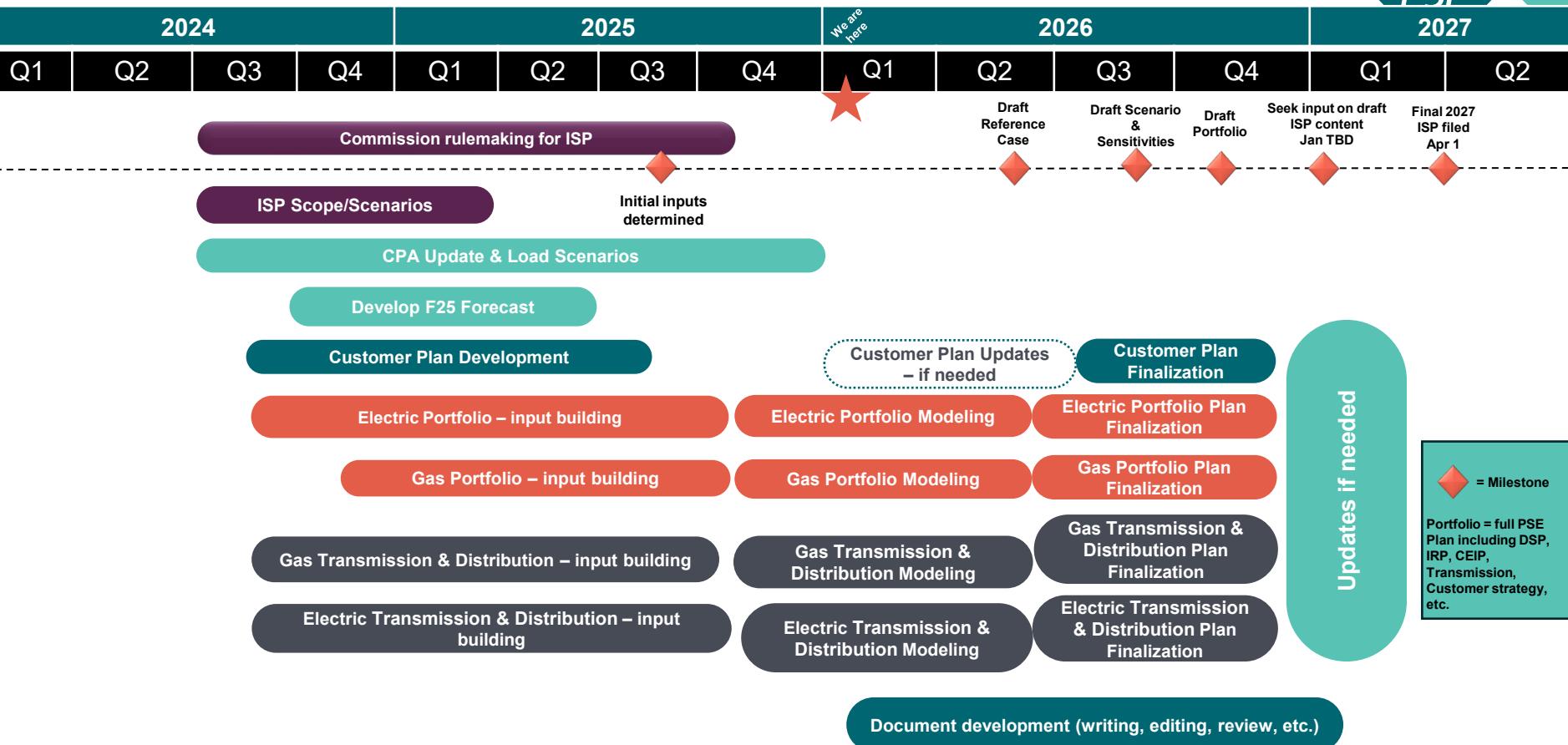
Kara Durbin, PSE

January 27, 2026

Work plan highlights

PSE

- ◆ Required by final ISP rules; builds upon previously submitted engagement plan
- ◆ Filed in December for the remainder of the planning period (included in meeting materials for reference)
- ◆ Includes:
 - ◇ Work plan outlining ISP development process
 - ◇ Public participation plan outlining anticipated engagement activities
- ◆ May be amended if process changes are substantial (we will notify RPAG members if that occurs)


Anticipated remaining ISP engagement timeline

PSE

**includes ISP targets and goal setting, specific actions, and equitable distribution of benefits*

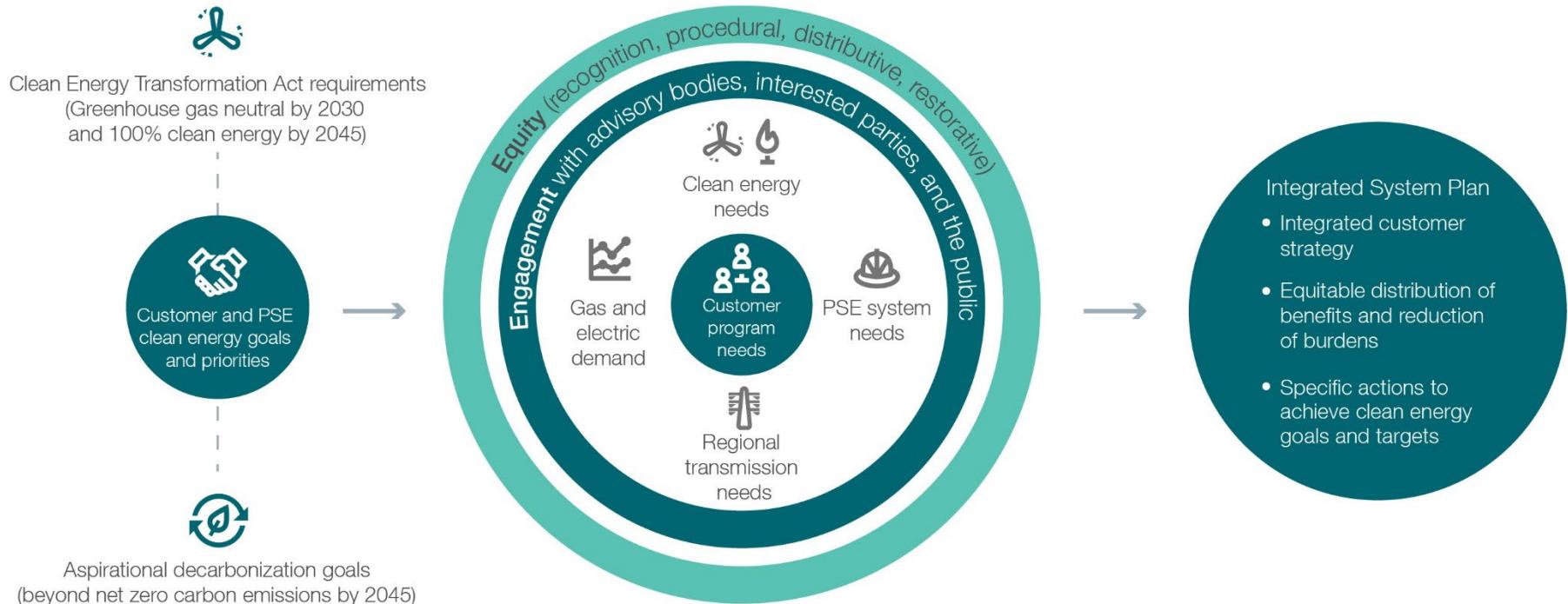
Updated 2027 ISP schedule by planning area

Scenarios and sensitivities

Jennifer Coulson, PSE

Elizabeth Hossner, PSE

January 27, 2026



Objectives

- ◆ *Inform* RPAG of final scenarios for the 2027 ISP
- ◆ *Consult* RPAG regarding potential sensitivities for the 2027 ISP
- ◆ Feedback PSE needs for sensitivities
 - ◇ Are we missing anything important/critical?
 - ◇ If you had to prioritize this list of sensitivities, what would be your top 3?
- ◆ How feedback will be used
 - ◇ PSE will consider all feedback and will do our best to model as many sensitivities as the schedule allows

Developing the 2027 ISP

PSE

Adapting IRP terminology – scenarios and sensitivities

PSE

Scenario

A set of planning assumptions about the future that inform modeling and analysis; scenarios help us understand what future resources may be needed

Reference scenario

The scenario that most reflects current laws, regulations, and energy use trends that is used as a baseline for comparison

Sensitivity

A version of the reference scenario where one factor is changed to evaluate the impact of the change on the resulting portfolio

Portfolio

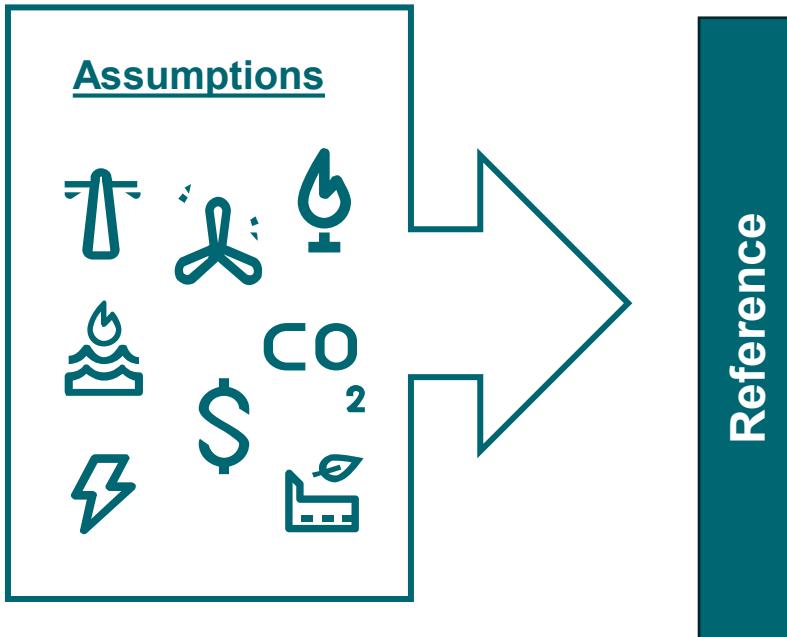
A set of different resources (customer programs, energy supply, and delivery) identified as a way of reliably meeting customer demands

Feedback

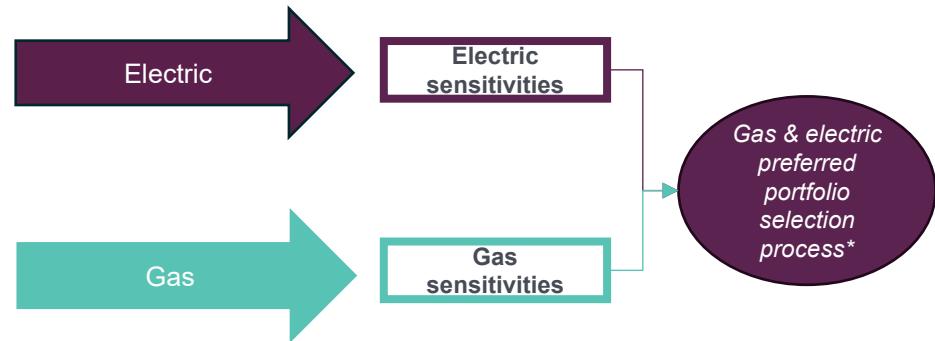
PSE

- ◆ Previous ISP scenario and sensitivity discussions:
 - ◇ [Dec. 19, 2024](#)
 - ◇ [Feb. 27, 2025](#)
 - ◇ [June 24, 2025](#)
 - ◇ [July 29, 2025](#)
- ◆ To review all the questions and feedback we received about scenarios and sensitivities please see the [2027 ISP feedback memo](#).

Final 2027 ISP scenarios


PSE

Scenarios	Building Electrification	Large Load Requests	Customer Programs	EV Adoption
Reference (HB 1589): Current Trends	Current building electrification pilots, funding low-income through CCA	Data Centers (+ other new large load requests): based on high probability of interconnection <i>(lower demand impact)</i>	Reference CPA for customer programs: no gas appliance conservation, building codes restricting gas, 2% conservation & 10% DR or commercially feasible beginning in 2030 <u>electric only</u>	Reference
Scenario 1 (Mid): Incentivized electrification	Starting in 2030, building electrification based on equipment failure and market adoption rate with an incentive	Data Centers (+ other new large load requests): based on high probability of interconnection <i>(lower demand impact)</i>	Customer Programs (DR, DER, DSR, etc.) sized to load (adjusted CPA to demand levels)	Reference
NEW Scenario 2 (Mid +): Building Electrification Only	Starting in 2030, electrify buildings at a pace that brings the emissions of both utilities below the utility's proportional share of the state GHG emission goals	Data Centers (+ other new large load requests): based on high probability of interconnection <i>(lower demand impact)</i>	Customer Programs (DR, DER, DSR, etc.) sized to load (adjusted CPA to demand levels)	Reference
Scenario 3 (High): Enhanced electrification	Starting in 2030, electrify buildings at a pace that brings the emissions of both utilities below the utility's proportional share of the state GHG emission goals. Constrained by equipment failure	Data Centers (+ other new large load requests): based on mid probability of interconnection <i>(higher demand impact)</i>	Customer Programs (DR, DER, DSR, etc.) sized to load (adjusted CPA to demand levels)	High
Scenario 4 (High+): Unconstrained electrification	Starting in 2030, electrify buildings at a pace that brings the emissions of both utilities below the utility's proportional share of the state GHG emission goals. Unconstrained	Data Centers (+ other new large load requests): based on mid probability of interconnection <i>(higher demand impact)</i>	Customer Programs (DR, DER, DSR, etc.) sized to load (adjusted CPA to demand levels)	High



Sensitivity process overview

1. The **reference portfolio** is the least-cost set of resources to meet the base set of assumptions.

2. **Sensitivity analysis** goes through a process to change one or more of the base assumptions to examine the effect on the portfolio

**Note – Sensitivities are one aspect of the portfolio selection process, there are many other components not represented here (i.e., scenarios, decision framework, etc.)*

Draft 27 ISP sensitivities – gas utility

PSE

- ◆ When running a sensitivity, we are looking for changes in:
 1. Portfolio costs
 2. Resource: types (supply & system), location, and amount
 3. GHG emissions
- ◆ When setting up a sensitivity, we group them into different themes:
 - ◇ Requirements by WAC
 - ◇ Policy changes & analysis
 - ◇ Emerging technology
 - ◇ Delivery system planning
 - ◇ Other

Draft 27 ISP sensitivity themes – gas utility

PSE

Requirements by WAC

No CCA

Benchmark conservation (optimize like traditional IRP)

Policy changes & analysis

CCA

SCGHG

IRA

I-2066

Emerging technology

★ Renewable natural gas

★ Green hydrogen

★ Turquoise hydrogen

Delivery system planning

% renewable fuel on system

Customer partial/full heating system switch

System wide/Geographic electrification

Other

★ Customers being more sensitive to rising bill impacts

Low natural gas prices

★ High natural prices

★ Based on feedback from interested parties

Optional – not all sensitivities will be analyzed due to time constraints

Sensitivity PSE plans on analyzing

Feedback discussion

PSE

- ◆ Are we missing any critical sensitivity themes?
- ◆ If you had to prioritize these sensitivities, what are your top 2-3?

Draft 27 ISP sensitivities – electric utility

PSE

◆ When running a sensitivity, we are looking for changes in:

1. Portfolio costs
2. Resource: types (supply and system), location, and amount
3. GHG emissions

◆ When setting up a sensitivity, we group them into different themes:

- ◇ Requirements by WAC
- ◇ Transmission availability
- ◇ Policy changes & analysis
- ◇ Customer programs
- ◇ Emerging technology
- ◇ Other

Draft 27 ISP sensitivity themes – electric utility

PSE

Requirements by WAC

CETA

Maximum customer benefit

Energy efficiency 2%

Demand response 10%

Transmission availability

Additional transmission available

No new transmission available

Policy changes & analysis

CETA & SCGHG

CCA

I-2066

ITC & PTC

Customer programs

Additional DER such as V2X or V2G

Conservation bundled by capacity

Emerging technology

All emerging tech available

SMR

Geothermal

Mid and long duration energy storage

Offshore wind

Other

Alternative compliance cost

Residential exchange

Resource adequacy

Availability of NG resources

★ Based on feedback from interested parties

Optional – not all sensitivities will be analyzed due to time constraints

Sensitivity PSE plans on analyzing

Feedback discussion

PSE

- ◆ Are we missing any critical sensitivity themes?
- ◆ If you had to prioritize these sensitivities, what are your top 2-3?

Questions?

Break

January 27, 2026

Maximum customer benefit

Alexandra Karpoff, PSE

Brian Tyson, PSE

Objectives

- ◆ Review “maximum customer benefit” regulatory requirements
- ◆ Describe context and history
- ◆ Present recommended approach
- ◆ Feedback PSE needs
 - ◇ Feedback on proposed approach
 - ◇ Sensitivity prioritization
- ◆ How feedback will be used
 - ◇ PSE will use feedback to determine the best approach for meeting this regulatory requirement

Regulatory framework – electric only requirement

PSE

The Maximum Customer Benefit sensitivity is set forth in:

480-96-050 (4)(c): At least one sensitivity must be a maximum customer benefit scenario. This sensitivity should model the maximum amount of customer benefits described in RCW 19.405.040(8) prior to balancing against other goals.

RCW 19.405.040(8): In complying with this section, an electric utility must, consistent with the requirements of RCW 19.280.030 and 19.405.140, ensure that all customers are benefiting from the transition to clean energy: Through the equitable distribution of energy and nonenergy benefits and reduction of burdens to vulnerable populations and highly impacted communities; long-term and short-term public health and environmental benefits and reduction of costs and risks; and energy security and resiliency.

What should be maximized:

- Energy and nonenergy benefits
- Reduction of burdens
- Public health
- Environmental benefits
- Reduction of costs and risks
- Energy security and resiliency

2021 Integrated Resource Plan

PSE

Analyzed multiple sensitivities separately

Lowest cost portfolio

Maximize DERs

100 percent renewable

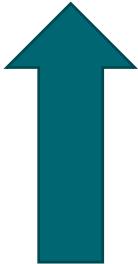
How do comparable utilities approach this?

PSE

PacifiCorp
Single sensitivity

- Prioritize distributed generation, demand response, energy efficiency
- Avoid high-voltage transmission upgrades in Yakima and Walla Walla communities

Avista
Single sensitivity


- Prioritize distributed solar and storage
- Prohibit air emitting resources
- Increase Power Act adder for energy efficiency to 20%
- Assume Named Communities have higher level of roof top solar and electric vehicles compared to other scenarios

Maximum customer benefit limitations


PSE

PSE can adjust input assumptions (e.g., force more or prohibit selection of specific resources) but we cannot directly predetermine outcomes (e.g., force the model to maximize a specific benefit)

*Example: Prioritizing distributed resources (e.g., force model to select a certain level of distributed resources) **may**:*

- Improve energy and nonenergy benefits
- Have environmental benefits
- Improve energy security and resiliency

- Decrease affordability (increased system-wide bill impacts)

27 ISP sensitivities that maximize customer identified priorities*

PSE

Highly reliable

- All scenarios and sensitivities must meet reliability requirements to be considered a viable portfolio

Minimize bill impacts

- No CETA/CCA/SCGHG
- Lowest reasonable cost portfolio

Reduce environmental impacts

- No new emitting resources

Increase customer participation

- High DER
- High energy efficiency and demand response

Approach

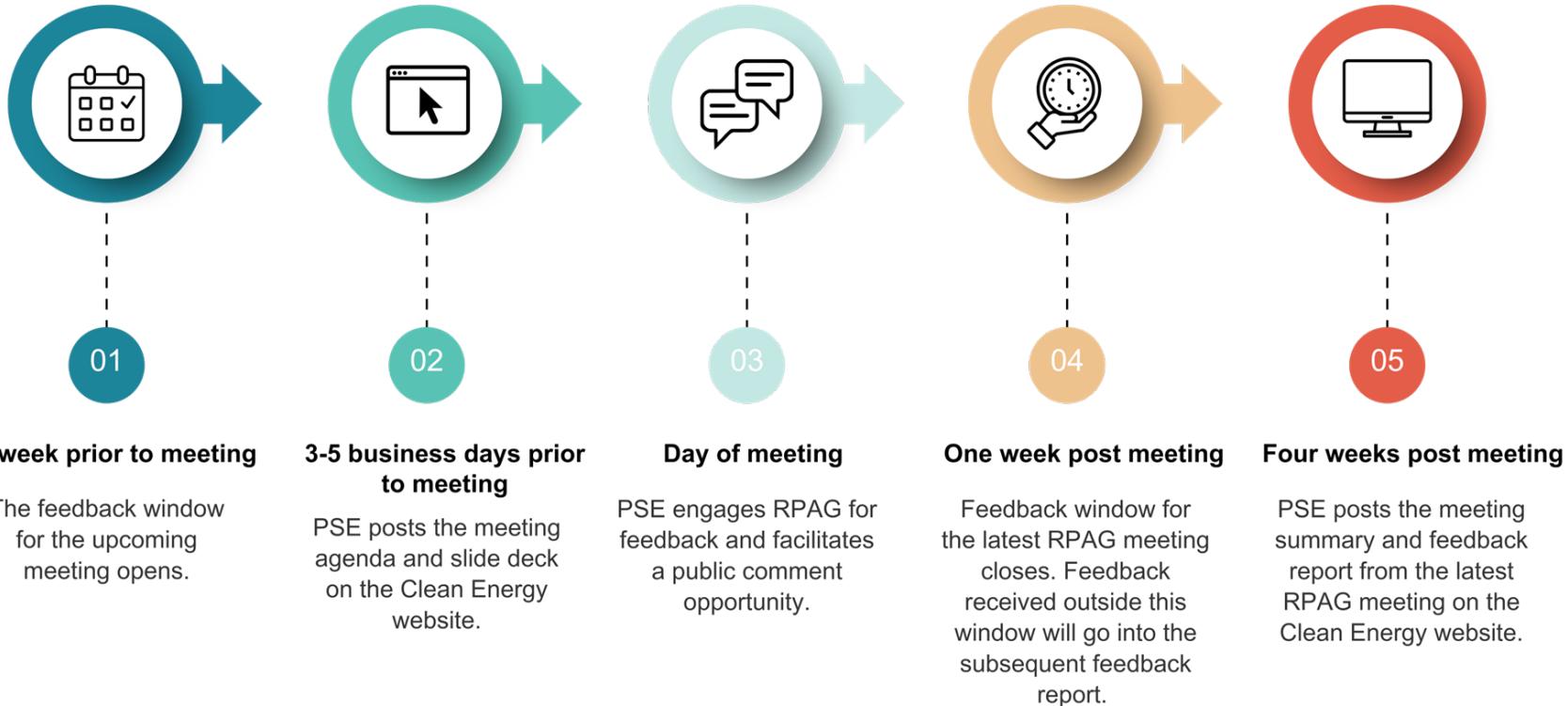
Analyze multiple maximum customer benefit sensitivities that maximize different customer benefits:

- ◆ Lowest reasonable cost
- ◆ High DER, EE, and DR
- ◆ No new emitting resources

Feedback requested

- ◆ Does this approach seem reasonable?
- ◆ Please identify up to three sensitivity themes that, in your opinion, best maximize customer benefits

Questions?


A dark, atmospheric background image showing an aerial view of a hydroelectric dam and reservoir. The dam is a long, low structure with a concrete base and a metal framework on top. A large reservoir of dark blue water is in front, with a small boat visible. The surrounding land is covered in a mix of green and yellow autumn-colored trees. In the far background, a large, snow-capped mountain peak rises against a hazy sky.

Next steps

January 27, 2026

Feedback process

PSE

Visit our website

PSE

- ◆ You can find meeting materials, meeting summaries, feedback reports, and links to meeting recordings on the RPAG portion of our [clean energy planning website](#).

Upcoming meetings

August 2025

No scheduled meeting

September 30, 2025

1 p.m. – 4 p.m.

October 28, 2025

1 p.m. – 3 p.m.

November 13, 2025

1 p.m. – 4 p.m.

Registration information and how members of the public may participate are posted 2-4 weeks in advance of each meeting. Meeting materials are posted at least 3 business days in advance of each meeting.

RPAG Meeting | July 29, 2025

Demand forecast after conservation
7/29/25 | 10 a.m. – 1 p.m. Puget

RPAG Meeting | June 24, 2025

Gas modeling and assumptions, gas delivery system, non-pipe alternatives

RPAG info session | June 18, 2025

Electric vehicle forecast information session for the 2027 ISP 6/18/25 | 11

RPAG Meeting | May 15, 2025

Resource adequacy methodology and electric modeling for the 2027 ISP

RPAG Meeting | March 25, 2025

Customer strategy for the 2027 ISP
3/25/25 | 1 p.m. – 4 p.m. Puget

RPAG Meeting | Feb. 27, 2025

Electric delivery system, regional and local transmission, and finalizing

Upcoming activities

PSE

Date	Activity
February 4, 2026	Feedback form for this meeting closes
February 26, 2026	RPAG meeting
March 26, 2026	RPAG meeting

Contact us

- ◆ Via email at isp@pse.com
- ◆ Via feedback form at:
<https://www.cleanenergyplan.pse.com/contact>
- ◆ Leave us a voicemail at 425-818-2051
- ◆ [Subscribe to our email list](#)
- ◆ Visit our website: [cleanenergyplan.pse.com](https://www.cleanenergyplan.pse.com)

Public comment opportunity

January 27, 2026

How to participate in public comment opportunity

PSE

- ◆ Please use the “raise hand” feature if you would like to provide comment
- ◆ Each speaker will have up to 3 minutes to give comments
- ◆ Comments should relate to today’s meeting topics
- ◆ Please keep remarks respectful – no personal attacks
- ◆ Comments and questions will be included in the feedback report with PSE’s response
- ◆ You are welcome and encouraged to send written feedback and questions to isp@pse.com

Thank you for joining us!

January 27, 2026

Appendix

Definitions and acronyms

PSE

Acronym	Definition	Acronym	Definition
BPA	Bonneville Power Administration	GHG	Greenhouse gas
CCA	Climate Commitment Act	IRP	Integrated Resource Plan
CETA	Clean Energy Transformation Act	ISP	Integrated System Plan
CPA	Conservation Potential Assessment	ITC	Investment Tax Credit
DER	Distributed energy resource	PTC	Production Tax Credit
DR	Demand response	RA	Resource adequacy
DSP	Delivery system planning	RPAG	Resource Planning Advisory Group
DSR	Demand-side resource	SCGHG	Social cost of greenhouse gas
ELCC	Effective load carrying capability	V2X/V2G	Vehicle to everything/vehicle to grid

Discussion – if needed

PSE

- ◆ How would you build this sensitivity given the constraints described (e.g., what resources would you prioritize or exclude in developing the modeling scenario)?

Energy storage

- Short duration (Lithium-Ion 4 hour)
- Medium duration (CAES 8-hour) - Emerging
- Long duration (Iron-Air 100-hour) - Emerging

Wind

- Onshore wind
- Offshore wind - Emerging
- Hybrid and co-located with energy storage and solar

Solar photovoltaic (PV)

- Utility scale
- Hybrid and co-located with energy storage and wind

Baseload

- Small Modular Reactor (SMR) – Emerging
- Combined Cycle Combustion Turbine (CCCT)
- Enhanced Geothermal - Emerging

Peaker

- Natural Gas with oil backup – converts to alternative fuel in 2045
- Hydrogen/NG blend with backup fuel – Emerging
- Renewable Peaker

Customer programs

- Solar
- Energy storage
- Energy efficiency
- V2G / V2X

Transmission

- May or may not be limited holistically
- Limit or prioritize geographically (e.g., PacifCorp example)