Resource Planning Advisory Group Info Session

2027 Integrated System Plan

June 18, 2025

Facilitator requests

- Engage constructively and courteously towards all participants
- Respect the role of the facilitator to guide the group process
- Avoid use of acronyms and explain technical questions
- Use the <u>feedback form</u> or email <u>isp@pse.com</u> for additional input to PSE
- Aim to focus on the webinar topic
- Public comments will occur after PSE's presentations

Safety moment

Summer road trip safety

- Inspect tires for wear and tear and pressure
- Plan your route and check traffic conditions ahead of time
- Allow extra time to get to your destination account for traffic and don't rush!
- Get enough rest prior to driving
- Keep you phone put away while driving

Today's speakers

Annie Kilburg Smith

Facilitator, Triangle Associates

Will Sierzchula

Guidehouse

Agenda

Time	Agenda Item	Presenter / Facilitator
11:00 a.m. – 11:03 a.m.	Welcome and introductions	Annie Kilburg Smith, Triangle Associates
11:03 a.m. – 11:52 a.m.	PSE electric vehicle forecast	Will Sierzchula, Guidehouse
11:52 a.m. – 12:00 p.m.	Next steps and public comment opportunity	Annie Kilburg Smith, Triangle Associates
12:00 p.m.	Adjourn	All

JUNE 2025

PSE FY25 EV Forecast

RPAG Presentation

outwit complexity[™]

Contents

Executive Summary	03
VAST Overview	15
Scenario Parameters	17
Impact Forecast	19
Adoption Forecast	25
EVSE Forecast	35
Additional Results	42

Executive Summary

PSE F25 EV Forecast Overview

Guidehouse forecasted EV adoption, infrastructure, and load impacts within PSE's Service Area through 2050 across 3 adoption scenarios and 3 managed charging scenarios.

EV Adoption	Charging Needs	Load Impacts	Managed Charging
Forecasted battery- electric (BEV) and plug-in hybrid (PHEV) EV adoption for Light-, Medium- and Heavy-Duty Vehicles.	Forecasted charging infrastructure needs associated with EV adoption across charging use case and technology.	Forecasted monthly energy requirements to support EV adoption within PSE's service area.	Developed average daily weekday and weekend load shapes associated with different levels of managed charging uptake.
			Charging As Usual Charging Scenario Scenario Scenario
	Aggressive	e Scenario	
	Base Se	cenario	
	Conservativ	ve Scenario	

Background

Guidehouse has supported PSE in EV forecasting since 2019.

Base Case Light Duty Adoption

PSE forecast continues to assume the light duty segment will meet policy sales targets

Base Case Light Duty PEV Sales Washington, 2011-2024 Historic Actuals, 2025 F25 Forecast

Forecast Comparison

PSE F25 LD Forecast Aligns with other Projections

Forecast Source	Forecast Metric	Forecast Results	PSE F25 Forecast Results
NREL ¹	WA LD BEV + PHEV Population	352k in 2025 1,336k in 2030	332k in 2025 1,337k in 2030
WA Department of Ecology ²	WA LD BEV + PHEV Sales under Base Scenario	69% in 2030 100% in 2035	76% in 2030 96% in 2035

³NREL - Data Files for "The 2030 National Charging Network: Estimating U.S. Light-Duty Demand for Electric Vehicle Charging Infrastructure" | NREL Data Catalog ¹WA DoE - Washington Transportation Electrification Strategy | Tableau Public

Base Case Medium/Heavy Duty Adoption

PSE forecast no longer assumes that the MHD segment will meet policy sales targets

MHD PEV Sales Washington, 2022-2024 Historic Actuals

Base Scenario EV Adoption & Load Impacts

By 2050, 2.7 million EVs are forecasted in PSE's Service Area, requiring 8.3k GWh of energy with an annual EV peak before losses forecasted to hit 1,544 MWs.

- By 2050, Light-duty (LD) EVs represent 98% of • the total EV population
- EV forecasts are heavily affected by Advanced ٠ Clean Cars II sales targets

• MHDVs, while only 2% of the total EV population, are forecasted to represent 26% of the required energy due to their larger batteries, lower efficiency, and greater VMT

EV Peak Before Losses¹

- The weekday peak load associated with EV charging occurs between 7:00 and 8:00 PM
- The peak is driven by residential charging for LDVs and depot charging for MHDVs

Near-Term energy impacts

PSE energy and peak demand impacts are forecasted to increase by 6x and 5x from 2024-2030

Annual Energy Consumption By Duty Impacts (GWh), PSE Service Area, 2024-2030

Annual EV Peak Before Losses By Duty Unmanaged Charging Impacts (MW), PSE Service Area, 2024-2030

Charging Use Cases Vary by Hour of Day in 2050

Different use cases function to flatten out load by concentrating at different times of the day

Impacts of Managed Charging on Load

Shifts load out of peak hours, creating spikier load shape

Market Trend: Leveling of sales in 2024 and uncertainty in 2025

Nationally, EV adoption from 2023 to 2024 was linear – not exponential like many analysts had expected. This could mean the next group of adopters will be slower to shift from ICEV to BEV.

Policy Uncertainty and Reversal

- The current political environment creates uncertainty regarding whether policies such as the IRA and CA emissions waiver will be repealed.
- Some ZEV states, such as CT, have reversed position on sales mandates.

OEM Delays in EV Transition

- Major OEMs including Toyota, Stellantis, Volkswagen, and Ford all reduced their EV production and sales targets.
- Automakers have shifted some focus from fully-electric to hybrid-electric vehicles.

A strong set of national and state policies still provides support for an expanding EV market share. OEMs have invested considerable resources and time in bringing EV models to market and driving down prices.

Favorable Federal and State Policies

- Infrastructure Investment and Jobs Act (IIJA)
- Inflation Reduction Act (IRA)
- EPA limits on tailpipe emissions
- WA Advanced Clean Cars II
- WA Advanced Clean Trucks
- WA Clean Fuel Standard

OEM EV Investment and Goals

- China is leading the world in EV adoption. S&P Global estimates EVs will make up almost 30% of market share in 2025.
- Investments in Extended-Range Electric Vehicle (EREV) by companies like Ford and Hyundai could increase future PHEV Adoption

Key Takeaways

EV adoption and associated energy requirements in PSE's service area are expected to grow significantly: An average of 315 GWh per year of load is estimated to be added to the PSE system (2025-2050) due to EV adoption.

Policy-defined sales targets have greatest impact: The assumption that WA will meet sales targets established under the ACC II drives high EV adoption. However, it is not clear whether these sales targets will be met, or the policies revoked.

Significant down-side risks to short-term and long-term EV adoption: Market uncertainty should result in slower near-term EV sales while congress removing the CA emissions waiver or WA repealing the ACC II could lower the state's long-run EV adoption trajectory.

Uncertainty in LDV forecasts related to home charging: As more individuals without access to home charging adopt EVs, dependence on workplace and public market charging will likely grow, shifting load from night to evening or mid-day.

Uncertainty in MHDV forecasts related to unknown market behavior: As a nascent market, it is still unclear what the charging needs and behavior may be for large vehicles (e.g., Long-Haul trucks) as duty-cycle, battery efficiency, and use of in depot vs. in route charging are not vet well-established.

2025

2030

2035

2040

Guidehouse 人 Outwit Complexity

2050

2045

VAST Overview

VAST Suite Overview

Guidehouse's Vehicle Analytics & Simulation Tool (VAST) Suite uses in-house datasets and industry insights to provide market transparency as a single / repeatable source of truth for EV analysis needs.

• Distribution Planning

- Customer Program Design

- Regulatory Filing & Rate Design
- Stakeholder Engagement ٠
- Economic Development Impacts

國

Scenario Parameters

VEHICLE ELECTRIFICATION

F25 Scenario Definitions

Drivers	Drivers Description		vers Description Low Scenario		Base Scenario	High Scenario	
S Incentive	es	Dollar per EV tax incentive (\$)	Any existing and planned incentives discontinued	Currently existing and planned incentive policies	Additional "cash on the hood" incentive per vehicle covering 50% of incremental cost of EV over ICEV ¹		
Vehicle (Cost	EV MSRP (\$)	Base EV MSRP forecast - GHI	Base EV MSRP forecast - GHI	15% lower EV MSRP vs. base forecast (leading to decreased EV operating costs)		
Fuel Pric	es	Gasoline and diesel prices (\$ per gallon)	AAA average base assumption, adjusted for inflation	AAA average base assumption, adjusted for inflation	75% higher gasoline and diesel prices vs. base (leading to increased operating ICEV costs)		
Consum Awarene Accepta	er ess & nce	Marketing & outreach impacting customer familiarity (i.e., awareness, acceptance)	Lower consumer awareness and acceptance vs base (leading to decreased EV adoption)	Base assumption, calibrated to Washington's historical consumer awareness metrics - GHI	1/3 higher consumer awareness and acceptance vs. base (leading to increased EV adoption) ¹		
Regulati	ons	Policies regulating ICEVs and EVs	ACT and ACC policies overturned	ACT policy sales targets not met. Financial penalty imposed on ICEVS for ZEV sales shortfall	Adoption consistent with relevant regulatory rules, including Advanced Clean Cars II and Advance Clean Trucks		
Vehicle I Traveled	Miles	Annual VMT by vehicle class and powertrain	Base assumption from FHWA, EMFAC, EDF, and AFDC	Base assumption from FHWA, EMFAC, EDF, and AFDC	30% higher VMT vs. base (leading to increased energy requirement)		

¹Incentives and Consumer Awareness and Acceptance drivers will be adjusted to achieve regulatory targets per Regulations driver requirement.

PSE Territory Load Impacts Forecast Results

VEHICLE ELECTRIFICATION

Unmanaged charging scenario has peak later in day

Guidehouse

Guidehouse 人 Outwit Complexity

Use Cases Help to Flatten EV Load Shape

Guidehouse 人 Outwit Complexity

Peak Demand Comparison Between F25 Aggressive and Base Scenario (Unmanaged Charging)

Peak Demand by Scenario MWs, Puget Sound Energy, 2025-2050 2,415 Aggressive Base 2,148 1,769 1,544 1,292 1,366 1,113 721 785 390 213 109 2025 2030 2035 2040 2045 2050

SUD, Market, & Workplace comprise Most LD impacts

Guidehouse

Public Charging > 50% of MHDV Impacts

PSE Service Area EV Adoption Forecast Results

VEHICLE ELECTRIFICATION

PSE Territory Population by Powertrain

Guidehouse A Outwit Complexity

PSE Territory Sales by Powertrain

LDV Sales by Powertrain '000 Vehicles, Puget Sound Energy, 2025-2050

PSE Territory Population by Class

MHDV EV Population by Class '000 Vehicles, Puget Sound Energy, 2025-2050

LDV EV Population by Class '000 Vehicles, Puget Sound Energy, 2025-2050

Guidehouse 人 Outwit Complexity

PSE Territory Sales by Class

MHDV EV Sales by Class '000 Vehicles, Puget Sound Energy, 2025-2050

LDV EV Sales by Class '000 Vehicles, Puget Sound Energy, 2025-2050

Guidehouse 人 Outwit Complexity

Policies strongly affect adoption by scenario

EV Penetration as a Share of Total Population ('000 Vehicles) %, Puget Sound Energy, 2050

,					
Passenger Cars	74%		26%	1,396	
Light Trucks	73%		27%	2,308	Ъ
Delivery Trucks	58%		42%	91	00
Short Haul Trucks	47%		53%	16	gre
Long Haul Trucks	59%		41%	21	SS
Semi Trucks	32%		68%	10	NS.
Transit Buses	47%		53%	1	e
School Buses	53%		47%	4	
Dassandar Cars	720/2		280/2	1 302	
Light Trucks	7270		20%	2 300	
Delivery Trucks	220/2		67%	2,500	
Short Haul Trucks	20%		71%	16	Φ
	2570		64%	21	as
Semi Trucks	20%		80%	10	Ф
Transit Buses	Z070 //20/2		57%	1	
School Buses	4370		510/2	1	
SCHOOL DUSES	4970		J1 70		
Passenger Cars	45%		55%	1,347	
Light Trucks	44%		56%	2,204	S
Delivery Trucks	21%		79%	89	n
Short Haul Trucks	19%		81%	16	se
Long Haul Trucks	24%		76%	21	Z
Semi Trucks	13%		87%	10	ati
Transit Buses	31%		69%	1	Ve
School Buses	38%		62%	4	

ICEV EV (BEV + PHEV)

Consistent F25 and F24 base and aggressive sales

Policy parameters result in F25 and F24 differences

PSE service area shows similar LDV adoption as WA

PSE service area shows similar MHDV adoption as WA

PSE Territory EVSE Needs Forecast Results

VEHICLE ELECTRIFICATION

Most charging occurs at single-unit dwellings

MDV L2 charging biggest component of MHDV EVSE

Guidehouse 人 Outwit Complexity

Most charging coming from L2 ports

Installed Capacity (Gigawatt) by Technology Capacity (Gigawatt), 2025-2050

Guidehouse 人 Outwit Complexity

Installed Capacity (Gigawatt) by Use Case Capacity (Gigawatt), 2025-2050

F25 LDV charging tracks F24 closely

F25 MDV Base ports lower due to greater utilization

Your Guides

Joshua Goodman Director jogoodman@guidehouse.com

Will Sierzchula Managing Consultant will.sierzchula@guidehouse.com

Isaiah Westphalen Senior Consultant iwestphalen@guidehouse.com

Jenny Pham Consultant jepham@guidehouse.com

Additional Results

Washington State EV Adoption Forecast Results

VEHICLE ELECTRIFICATION

More electrification and BEVs in Aggressive Scenario

Guidehouse A Outwit Complexity

Scenario levers have big impact on MHDVs

All EVs lag in conservative scenario

EV Penetration as a Share of Total Population ('000 Vehicles) %, Washington State, 2050

						5
Passenger Cars	72%			28%	3,708	
Light Trucks	70%			30%	6,216	⊳
Delivery Trucks	57%			43%	282	ŝ
Short Haul Trucks	47%			53%	52	fre
Long Haul Trucks	57%			43%	67	SS
Semi Trucks	33%			67%	33	Ś.
Transit Buses	59%			41%	7	Ð
School Buses	51%			49%	14	
Passenger Cars	70%			30%	3 708	1
	68%			32%	6,216	
Delivery Trucks	32%			68%	282	
Short Haul Trucks	29%			71%	52	B
Long Haul Trucks	35%			65%	67	SE
Semi Trucks	21%			79%	33	Û
Transit Buses	54%			46%	7	
School Buses	47%			53%	14	
Passanger Cars	100/2			5.80%	2 709	ī
Light Trucks	4270			60%	6 216	0
	20%			80%	292	õ
Short Haul Trucks	1.8%			820%	202 52	S
	220%			72%	52	en
Long Haut Hucks	120/2			970/	22	Va.
Transit Buses	12%			58%	7	ť
School Buses	36%			64%	14	Ð
3011001 00363	5070	the second se			T-4	

ICEV EV (BEV + PHEV)

Similar LDV electrification between F24 and F25

Guidehouse 人 Outwit Complexity

Guidehouse

48

Drop in F25 base scenario due to ACT policy change

MHDV PEV Population by Study '000 Vehicles, Washington State, 2025-2050

Washington State EVSE Needs Forecast Results

VEHICLE ELECTRIFICATION

LDV port counts follow adoption trends

LDV EVSE By Use Case '000 Ports, Washington State, 2025-2050 **LDV EVSE By Technology** '000 Ports, Washington State, 2025-2050 4,145 4,145 LDV Fleet Depot Aggressive L1 Aggressive 3,744 3,744 MUD 3,346 3,346 937 L2 Market 930 2,671 2,671 DC 916 SUD SUD-Shared 2,776 1,545 1,545 2,542 Workplace 3,182 2,392 2,791 2,016 2,411 1,797 414 414 1,223 970 3,950 3,950 3,498 3,498 3,037 3,037 Base Base 2,283 2,283 2,624 2,357 3,084 1,144 1,144 2,164 2,645 2,203 1,720 1,538 306 306 902 Conservative Conservative 2,372 2,372 2,125 2,125 1,881 1,881 1,483 1,483 841 841 1,580 1,434 1,835 1,337 1,594 1,112 1,361 281 281 1,001 660 2025 2030 2035 2040 2045 2050 2025 2030 2035 2040 2045 2050

MHDV port counts follow adoption trends

Guidehouse 人 Outwit Complexity

F25 LDV ports similar to F24 figures

F25 MHDV port count lower due to port sharing

Next steps

Upcoming activities

Date	Activity
June 24, 2025	RPAG meeting
June 25, 2025	Feedback form for this meeting closes
July 29, 2025	RPAG meeting

Contact us

- Via email at isp@pse.com
- Via feedback form at: <u>https://www.cleanenergyplan.pse.com/contact</u>
- Leave us a voicemail at 425-818-2051
- Subscribe to our email list
- Visit our website: <u>cleanenergyplan.pse.com</u>

Public comment opportunity

How to participate in the public comment opportunity

- Please use the "raise hand" if you would like to provide comment
- Each speaker will have up to **3 minutes** to give comments
- Comments should relate to today's meeting topics
- Please keep remarks respectful no personal attacks
- Comments and questions will be included in the feedback report
- You are welcome and encouraged to send written feedback to isp@pse.com

Thanks for joining us!

Appendix

F24 Scenario Definitions

I	Drivers	Description	scription Low Scenario		High Scenario
\$ \$	Incentives	Dollar per EV tax incentive (\$)	Any existing and planned incentives discontinued	Currently existing and planned incentive policies	Additional "cash on the hood" incentive per vehicle covering 50% of incremental cost of EV over ICEV ¹
Ĭ,	Vehicle Cost	EV MSRP (\$)	15% higher EV MSRP vs. base forecast (leading to increased EV operating costs)	Base EV MSRP forecast - GHI	15% lower EV MSRP vs. base forecast (leading to decreased EV operating costs)
	Fuel Prices	Gasoline and diesel prices (\$ per gallon)	25% lower gasoline and diesel prices vs. base (leading to decreased operating ICEV costs)	AAA average base assumption, adjusted for inflation	75% higher gasoline and diesel prices vs. base (leading to increased operating ICEV costs)
	Consumer Awareness & Acceptance	Marketing & outreach impacting customer familiarity (i.e., awareness, acceptance)	1/3 lower consumer awareness and acceptance vs. base (leading to decreased EV adoption)	Base assumption, calibrated to Washington's historical consumer awareness metrics - GHI	1/3 higher consumer awareness and acceptance vs. base (leading to increased EV adoption) ¹
	Regulations	Policies regulating ICEVs and EVs	Policy overturned or not met	Adoption consistent with relevant regulatory rules, including Advanced Clean Cars II and Advance Clean Trucks	Adoption consistent with relevant regulatory rules, including Advanced Clean Cars II and Advance Clean Trucks

¹Incentives and Consumer Awareness and Acceptance drivers will be adjusted to achieve regulatory targets per Regulations driver requirement.

Additional Forecast Options

- Charger Accessibility: Lower residential charging/higher public charging
- Fleet Charging: Primarily depot charging/corridor charging

Key Takeaways

Policy is a major driver of EV adoption, infrastructure, and impacts

Adoption

- Scenario parameters increased MHD BEVs by 68% in aggressive scenario and decreased by 36% in conservative scenario
- The aggressive scenario pushed up adoption of electric semis, while the conservative scenario had fewer delivery truck BEVs.

EVSE

- Big decrease in MHDV EVSE in conservative scenario – due to fewer delivery trucks that have a 1:1 vehicle to charger ratio.
- Similar port count in base and conservative scenarios, but big difference in impacts – since electric semis have higher vehicle to charger ratio and bigger impacts.

Impacts

- Managed charging flattens load from SUD impacts and pushes peak to middle of day.
- For unmanaged charging scenario, aggressive scenario has 56% higher peak demand due to additional corridor and market charging in middle of day.

Acronyms

Acronym	Meaning
ACC/ACC II	Advanced Clean Cars policy
BEV	Battery electric vehicle
EREV	Extended-range electric vehicle
EV	Electric vehicle
ICE	Internal combustion engine
IIJA	Infrastructure Investment and Jobs Act
IRA	Inflation Reduction Act
LDV	Light duty vehicle
MHDV	Medium and heavy-duty vehicle
MSRP	Manufacturers suggested retail price
MW	Megawatt
NREL	National Renewable Energy Laboratory
OEM	Original equipment manufacturer
PEV	Plug-in electric vehicle
VAST	Vehicle Analytics & Simulation Tool
VMT	Vehicle miles traveled
ZEV	Zero emissions vehicle

14 RPAG Info Session – June 18, 2024

