Seventh Grade Lesson

Greenhouse Gas Emissions

Description

Students will learn about Earth's atmosphere, its chemical composition and changing trends. Students will research an advanced manufacturing company initiative and make a proposal to reduce its greenhouse gas emissions.

Advanced Manufacturing Jobs

environmental engineer, pollution control engineering technician, quality control inspector

Essential Vocabulary

Atmosphere: a thin layer of gases surrounding the Earth.

Carbon footprint: refers to the greenhouse gas emissions caused, either directly or indirectly, by a person, organization, event, service or product.

Combustion: chemical process involving the burning of different types of fuel and causing pollution.

Greenhouse effect: ability to trap sun's heat inside of the atmosphere.

GHGs: abbreviation for greenhouse gases which trap heat in the atmosphere.

Manufacturing: making something on a large scale using machinery.

Math Standards	Standards for Math Practice
7.EE.B.3 Solve multi-step real-world and	☐ MP1: Make sense of problems and persevere in
mathematical problems posed with positive and	solving them.
negative rational numbers presented in any form	☐ MP2: Reason abstractly and quantitatively.
(whole numbers, fractions, and decimals).	☐ MP3: Construct viable arguments and critique the
7.EE.B.3a Apply properties of operations to	reasoning of others.
calculate with numbers in any form; convert	
between forms as appropriate.	☑ MP5: Use appropriate tools strategically.
	☑ MP6: Attend to precision.
	•
	☐ MP7: Look for and make use of structure.
	☐ MP8: Look for and express regularity in repeated
	reasoning.

Science Standards	Sci. & Eng. Practices	Crosscutting Concepts
7.ESS3: Earth and Human Activity	☐ Asking Questions/Designing	⊠ Pattern
Graphically represent the	Problems	⊠ Cause and effect
composition of the atmosphere as a	□ Developing & using models	☐ Scale, proportion, and
mixture of gases and discuss the	☐ Controlled investigations	quantity
potential for atmospheric change. 2. Engage in a scientific argument	☑ Data analysis & interpretation	☐ Systems and system models
through graphing and translating data	☐ Math & computational thinking	☐ Energy and matter
regarding human activity and climate.	☐ Constructing explanations &	☐ Structure and function
	designing solutions	⊠ Stability and change
7.LS2: Ecosystems: Interactions,	⊠ Engaging in argument from	
Energy and Dynamics	evidence.	
1. Develop a model to depict the	☐ Obtaining, evaluating &	
cycling of matter, including carbon and	communicating information	
oxygen, including the flow of		
energy among biotic and abiotic parts		Α
of an ecosystem.		

Task Background Knowledge

- 1. Students should have an understanding of the Earth's atmosphere, its chemical makeup and function.
- 2. Students should have an understanding of human activities that alter the Earth's atmosphere balance.

Student Misconceptions:

- 1. Students think that air around the Earth is mainly warmed by energy transferred directly by sunlight.
- 2. The greenhouse effect is due to human activity.

Pre-Assessment:

Teacher will use formative assessments to determine the student's prior knowledge and skills related to the lesson. For example, a teacher can use a self-assessment probe to ask students to reflect and comment on their level of knowledge and skill across a range of items.

Engage:

Students will brainstorm on what they already know about Earth's atmosphere.

Possible questions:

- 1. What is Earth's air made of?
- 2. What gases do we need to survive? Explain

Show students two videos. Students will revisit these two questions and compare their previous knowledge about the atmosphere with the information presented in the videos. Students will write questions they still have after seeing the videos. See Engage Atmosphere Student Handout.

YouTube Video: Learn About Planet Earth - Earth's Atmosphere (5:41 min) https://www.youtube.com/watch?v=fyfN9t_E0w8

You Tube Video: Atmosphere (2:18 min) https://www.youtube.com/watch?v=ZyhsVX-bsik

Explore

Infer: How is the Earth's atmosphere changing?

Part I: Students will explore website "Our Atmosphere" by going to http://sunshine.chpc.utah.edu/Labs/OurAtmosphere/atmosphere_main.html

After exploring the website, students will list the gases that makeup the Earth's atmosphere in descending order and create a pie chart representing the Earth's atmosphere's chemical composition. Model how to draw a pie chart using the data table below, making the appropriate conversions and calculations. Students will need a protractor for graphing. Students will also

answer questions on the importance of the atmosphere and the greenhouse effect.

See Explore Atmosphere Student Handout.

Gas		Change Percent to Decimal	Multiply by 360	Angle Size in Pie Chart
Nitrogen	78.08%			
Oxygen	20.95%			
Argon	0.93%			
Carbon dioxide	0.038%			
Trace Gases	0.004%			

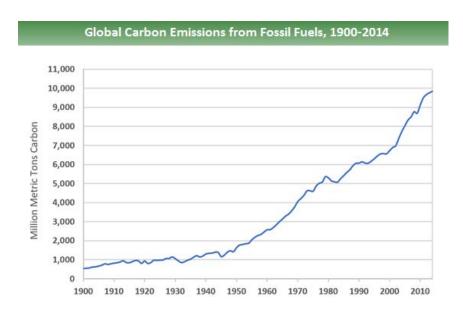
Part II: Students will explore the "Atmosphere Design Lab", an interactive website explaining the roles of gases in the atmosphere. For the Atmosphere Design Lab, go to http://forces.si.edu/atmosphere/interactive/atmosphere.html

After exploring the interactive website, students will complete the following data table identifying the role of chemicals normally found in the atmosphere and their primary sources. Students will also document possible chemical changes and their effects. See Explore Atmosphere Student Handout. Below are some teacher notes.

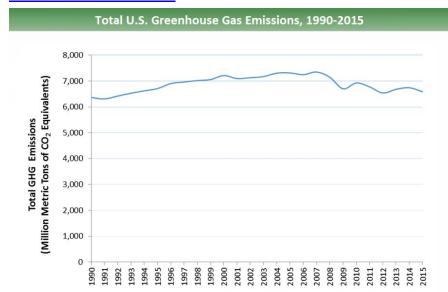
Important	Oxygen- O2	Carbon Dioxide- CO2	Ozone (gas composed of 3
Details:			oxygen atoms)
Role	Combined with sugar, it	Warms planet by retaining	Protects from Ultraviolet
	produces energy, CO2 and	heat from sun; part of	radiation from the sun
	H2O; allowing us to live	greenhouse gases	
Source	Released by plants during	Burning fossil fuels,	Accumulated in Earth's
	photosynthesis	automobiles exhaust,	atmosphere
		power plants, decaying	
		plants and animals, etc.	
Effects of	Too much can make things	Making the planet too hot	Block too much of the UV
Higher Levels	turn into flames	and unbearable	radiation needed to produce
			Vitamin D
Other	Since Earth was formed 4.6	Makes less than 1% of	Some chemicals caused a
	billion years ago, oxygen	atmosphere; but vital to	reduction in the ozone. Once
	levels have risen making	keep planet warm	these were banned, the ozone
	1/5 of the Earth's		layer expects to be repaired
	atmosphere		in 40 to 50 years.

Explain:

Explain the concepts using a PowerPoint or other presentation forms. Emphasize the


importance of the Earth's atmosphere and how its gases form the greenhouse effect. Explain that scientists are investigating the effects of human activities and manufacturing emissions on the atmosphere. Make a cross-curricular connection with social studies by explaining how the Industrial Revolution changed the work place by incorporating machines able to do work faster and more efficiently. However, machines burn fossil fuels generating gas emissions into the atmosphere. Share data from American Chemistry Society explaining the increasing trend of greenhouse gases. Additional information can be found at

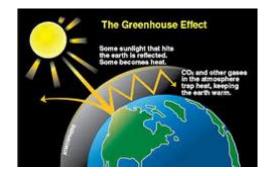
https://www.acs.org/content/acs/en/climatescience/greenhousegases/industrialrevolution.html


Explain in addition to scientists, government agencies such as the U.S. Department of Energy and the Environmental Protection Agency (EPA) are monitoring the manufacturing companies, their energy usage and emissions to the atmosphere. New advanced manufacturing processes use large amounts of energy produced mostly by burning fossil fuels creating large amounts of gas emissions. Over many years, the gas emissions have increased and accumulated in the atmosphere. Scientists believe that the accumulation of gas in the atmosphere is affecting the perfect balance known as the greenhouse effect and causing a climate change. According to the EPA, industry's direct or indirect gas emissions in 2015 accounted for 29 percent of the total United States gas emissions, making industry the largest contributor to greenhouse gases. Government agencies are continuously monitoring gas emissions and hope to slow down its accumulation in the atmosphere by making manufacturing companies and all involved stakeholders aware of the situation. Additional information on industry emissions can be found at https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

Part I: Students will analyze the global and United States emissions and answer the following questions:

- 1. What trends do you observe in the Global Greenhouse Gas Emissions graph?
- 2. What trends do you observe in the U.S. Greenhouse Gas Emissions graph?
- 3. How do these two graphs compare?
- 4. What could be the causes of these trends?

Graph from EPA website: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data#Trends


Graph from EPA website: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

Teacher Note: Students should infer that United States regulations are helping control the gas emissions.

Part II: Students will analyze the Global Carbon Atlas map for 2016 CO2 Emissions at http://www.globalcarbonatlas.org/en/CO2-emissions and answer the following questions:

- 1. What differences do you observe among the circles on the map?
- 2. Which countries or continents have the highest number of circles?
- 3. Which countries have the higher emissions? Go to the right toolbar and click on Chart View. List the top 10 countries with the highest emissions in descending order.

Country	Emissions in MtCO2
China	10151
US	5312
India	2431
Russia Federation	1635
Japan	1209
Germany	802
Iran	656
Saudi Arabia	634
South Korea	595
Canada	563

- 4. How do China and United States compare in their emissions from 2000 to 2015? Click on the right toolbar and go to Time Series.
 - a. What trend do you notice for China?
 - b. What trend do you notice for United States?
- 5. Infer: Why is it important for US citizens to be aware of the emissions of other countries?

Elaborate

Share with students an overview presented by the United States Environmental Agency stating that human activities are responsible for the excessive accumulation of greenhouse gases in the atmosphere. The largest source of greenhouse gas emissions from human activities in the United States results from burning fossil fuels for electricity, heat, and transportation. Manufacturing processes produce goods and raw materials that we all use every day. These processes, directly produced 21 percent of gas emissions. But when taking into account the use of electricity, the direct and indirect combined gas emissions for industry rise to 29 percent, becoming the largest contributor of greenhouse gases.

Essential question: How do progressive towns support existing manufacturing companies

and promote the establishment of new ones, while preventing an increase of greenhouse gases that ultimately could alter the Earth's atmosphere's balance?

Part I: Students will research and build a model explaining how carbon moves through the atmosphere and is used by living and non-living factors such as manufacturing companies and other processes. For more information on the carbon cycle, students may go to https://scied.ucar.edu/carbon-cycle

See Part I: Carbon Movement Model Student Handout. Using their own model, students will answer:

- 1. What will be the effects of carbon overproduction by any of the processes part of the model?
- 2. What process can counterbalance the overproduction of carbon? Explain.
- 3. Why is carbon dioxide vital in maintaining the perfect balance of the greenhouse gases? Use a mathematical model to justify your answer.

Part II: Students will research the EPA website: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions and learn about the United States greenhouse gas emissions and analyze its sources. For a deeper understanding of the industry role, students should click on the Industry tab and read about the progress in reducing emissions. See Part II: Student Task on Industrial Greenhouse Gases Effects Handout.

Students will analyze the information provided and answer the following questions:

- 1. What trend do you observe in the industry emissions?
- 2. How much have the industry emissions decreased since 1990?
- 3. What are ways for the industry sector to reduce even further their emissions? Explain each opportunity:
 - a. Energy efficiency
 - b. Fuel switching
 - c. Recycling
 - d. Training and awareness

Part III: As a leading advanced manufacturing country, the United States will continue having higher energy demands and possibly an increase in greenhouse gas emissions. To protect Earth's atmosphere and maintain its perfect balance, industries must be aware of their effects on the atmosphere and the many ways in which they can reduce their impact. Research different industries using the EPA Greenhouse Gas Reporting Program at https://www.epa.gov/ghgreporting/ghg-reporting-program-data-sets Students may research specific advanced manufacturing companies within our state and identify their current initiatives for reducing greenhouse gas emissions.

Student Task: Choose a local or national company and research their practices to reduce emissions. Then create a proposal for a local industry. In your proposal be sure to include:

- a. the industry's main product(s), location and 2016 gas emissions,
- b. rationale for the existing problem of excessive greenhouse gas emissions,
- c. possible future consequences if the emissions are not controlled and/or reduced, and
- d. two or more ways to reduce their emissions without affecting their productivity.

See the Emissions Proposal Rubric.

Evaluate:

Teacher may choose to administer a standard-based assessment and determine the students' mastery level after completing the task.

Resources:

Handouts:

Engage Earth's Atmosphere

Explore Atmosphere Design Lab

Explain Global and US Gas Emissions Data Analysis

Elaborate Part I- Carbon Movement Model

Elaborate Part II and III: Emissions Proposal Student Task

Rubric:

Emissions Proposal (attached)

Videos:

Learn About Planet Earth - Earth's Atmosphere https://www.youtube.com/watch?v=fyfN9t_E0w8

Atmosphere https://www.youtube.com/watch?v=ZyhsVX-bsik

References:

American Chemical Society. (n.d.). What are the Greenhouse Gas Changes Since the Industrial Revolution? Retrieved on December 8, 2017, from

https://www.acs.org/content/acs/en/climatescience/greenhousegases/industrialrevolution.html

Astrophysics Science Project Integrating Research and Education. (n.d.). Our Atmosphere. Retrieved on October 15, 2017, from

http://sunshine.chpc.utah.edu/Labs/OurAtmosphere/atmosphere_main.html

Global Carbon Project. (2016). Global Carbon Atlas. Retrieved on October 18, 2017, from http://www.globalcarbonatlas.org/en/CO2-emissions

Smithsonian Institution. (n.d.). Atmosphere Design Lab. Retrieved on December 9, 2017, from http://forces.si.edu/atmosphere/interactive/html/index.htm

United States Environmental Protection Agency. (n.d.). Global Greenhouse Gas Emissions Data. Retrieved on December 8, 2017, from https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data#Trends

United States Environmental Protection Agency. (n.d.). Greenhouse Gas Reporting Program Data Sets. Retrieved on December 9, 2017, from https://www.epa.gov/ghgreporting/ghg-reporting-program-data-sets

United States Environmental Protection Agency. (n.d.) Sources of Greenhouse Gas Emissions- Industry. Retrieved on December 8, 2017, from https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

University Corporation for Atmospheric Research. (2007). The Carbon Cycle. Retrieved on December 9, 2017, from https://scied.ucar.edu/carbon-cycle

Engage: Earth's Atmosphere A Different Approach to KWL

	Activity:	Student's Notes
K	Brainstorm:	
	What do I know about the Earth's	
	atmosphere? What is air made of?	
	What gases do we need to survive?	
	What gases do we need to survive:	
_	Var. Tuba Vidaa Laarsiaar	
L	You Tube Video Learning: Learn About Planet Earth - Earth's	
	Atmosphere?	
	https://www.youtube.com/watch?v=fyfN9t_	
	E0w8	
L	You Tube Video Learning: Atmosphere	
	https://www.youtube.com/watch?v=ZyhsV	
	<u>X-bsik</u>	
W	Reflect: What questions do I still have	
	about the atmosphere?	

Explore- Atmosphere Design Lab Student Handout

Infer: How is the Earth's atmosphere changing?

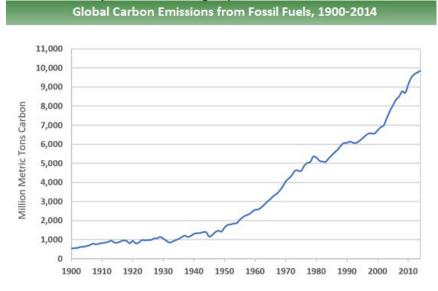
Part I: Explore website "Our Atmosphere" using this link: http://sunshine.chpc.utah.edu/Labs/OurAtmosphere/atmosphere_main.html
After discovering information on the website, answer the following questions:

- 1. What gases make up the Earth's atmosphere?
 - a. List gases in descending order.
 - b. Create a pie graph to represent the gases that makeup the Earth's atmosphere.

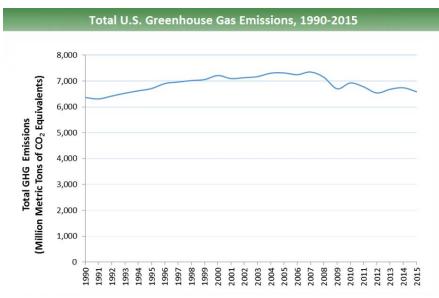
Gas	Percent in Atmosphere	Change Percent to Decimal	Multiply by 360	Earth Gases Pie Chart

- 2. Why do we have an atmosphere?
- 3. What is the greenhouse effect?
- 4. Why is it important?

Part II: Explore the "Atmosphere Design Lab", an interactive website explaining the roles of gases in the atmosphere. For the Atmosphere Design Lab, go to http://forces.si.edu/atmosphere/interactive/atmosphere.html


1. After exploring the interactive website, complete the following data table.

Important Details:	Oxygen- O2	CO2	Ozone (gas composed of 3 oxygen atoms)
Role			
Source			
Effects of Higher Levels			
Other			


Summarize your findings: How is the chemical composition of the atmosphere changing?	

Explain: Global and US Gas Emissions Data Analysis

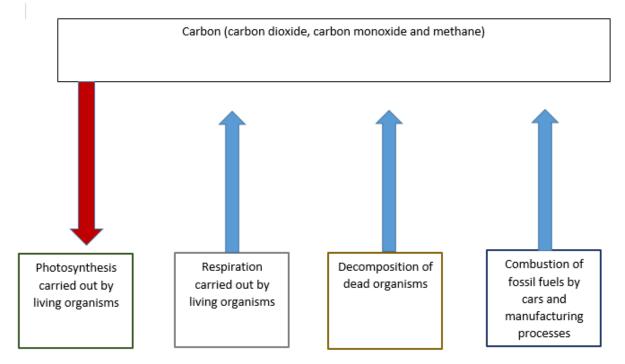
Part I: Analyze the two graphs below and answer the following questions:

Graph from EPA website: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data#Trends

Graph from EPA website: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

- 1. What trends do you observe in the Global Greenhouse Gas Emissions graph?
- 2. What trends do you observe in the US Greenhouse Gas Emissions graph?
- 3. How do these two graphs compare?
- 4. What could be the causes of these trends?

Part II: Analyze the Global Carbon Atlas map for 2016 CO2 Emissions at http://www.globalcarbonatlas.org/en/CO2-emissions and answer the following questions:


- 1. What differences do you observe among the circles on the map?
- 2. Which countries or continents have the highest number of circles?
- 3. Which countries have the higher emissions? Go to the right toolbar and click on Chart View. List the top 10 countries with the highest emissions in descending order.

Country	Emissions in MtCO2

- 4. Go to the right toolbar and click on Time Series. From 2000 to 2015,
 - a. What trend do you notice for China?
 - b. What trend do you notice for United States?
- 5. Infer: Why is it important for US citizens to be aware of the emissions of other countries?

Elaborate Part I- Carbon Movement Model

Research the movement of carbon through different processes including manufacturing and develop a model. An example is provided below:

Using your model, answer the following questions:

- 1. What will be the effects of carbon overproduction by any of the processes part of the model?
- 2. What process can counterbalance the overproduction of carbon? Explain.
- 3. Why is carbon dioxide vital in maintaining the perfect balance of the greenhouse gases? Use a mathematical model to justify your answer.

Elaborate- Part II and III: Student Task on Industrial Greenhouse Gases Effects

Part II: Research and analyze data provided in the Environmental Protection Agency website (https://www.epa.gov/ghgemissions/sources-greenhouse-gasemissions). For a deeper understanding of the role of industry, click on the Industry tab and read about the progress in reducing emissions. Analyze the information provided and answer the following questions:

- 1. What trend do you observe in the industry emissions?
- 2. How much have the industry emissions decreased since 1990?
- 3. What are ways for the industry sector to reduce even further their emissions? Explain each opportunity:
 - a. Energy Efficiency
 - b. Fuel Switching
 - c. Recycling
 - d. Training and Awareness

Part III-Student Task: As a leading advanced manufacturing country, the United States will continue having higher energy demands and possibly an increase in greenhouse gas emissions. To protect Earth's atmosphere and maintain its perfect balance, industries must be aware of their effects on the atmosphere and the many ways in which they can reduce their impact. Research different industries using the EPA Greenhouse Gas Reporting Program at https://www.epa.gov/ghgreporting/ghg-reporting-program-data-sets You may also research specific advanced manufacturing companies within our state and identify their current initiatives for reducing greenhouse gas emissions. What are your recommendations for them?

Student Task: Choose a local or national company and research their practices to reduce gas emissions. Then create a proposal for your chosen industry. In your proposal be sure to include:

- a. industry's main product(s), location and 2016 gas emissions,
- b. rationale for the existing problem of excessive greenhouse gas emissions,
- c. possible future consequences if the emissions are not controlled and/or reduced, and
- d. two or more ways to reduce their emissions without affecting their productivity.

Evaluate- Emissions Proposal Rubric

Evaluate Emissions Proposal using the following indicators:

Task	3	2	1
Components	Above the	Met Expectations	Below
-	Expectations	-	Expectations
Industry			Proposal does not
Product(s) and	describes the industry's	1	describe the industry's
Emissions Data	main product(s),	. ,	main product(s),
	includes its emissions		neither/nor includes its
	data and makes a	brief connection	emissions data. A brief
	connection between the		statement of the
	both.		industry is made.
Rationale for	Proposal includes a	Proposal includes a	Proposal does not
Excessive	complete rationale of		include a rationale of
Emissions	the current existing		the current existing
Problem	problem with excessive		problem with excessive
	emissions in United		emissions. A general
	States and other		statement is made
		with some emissions	about the current
	is supported with	data.	problem.
	emissions data		
	including United States and other countries.		
F.,4,,,,,	Proposal clearly	Proposal explains the	Proposal does not
Future	explains the damaging		explain the
Consequences	consequences if	emissions are not	consequences if
	emissions are not		emissions are not
	controlled and/or		controlled and/or
	reduced and provides	one example.	reduced. A general
	one or two examples.	one example.	consequence is
	one or two examples.		mentioned without
			details.
Wavs to Reduce	Proposal includes two	Proposal includes one	Proposal includes no
Emissions	or more ways to reduce	way to reduce	specific ways to reduce
			emissions without
	affecting the company's	affecting the company's	affecting the company's
	productivity. Each	productivity. Each	productivity. A vague
	recommendation has	recommendation is well	
	detailed explanation	explained.	included without details.
	and justification.		