Glycolic-based removers make cement "mud up" because they **chemically break down the calcium-rich glue that holds concrete together.** Once that glue dissolves, the concrete **loses its structure** and turns into a muddy slurry.

Here's a simple, accurate breakdown:

✓ 1. Concrete Is Held Together by Calcium Compounds

Concrete is made of:

- Sand
- Stone
- Cement paste (the glue)

The cement paste is mostly calcium-based compounds like:

- Calcium hydroxide
- Calcium silicate hydrate (CSH)
- Calcium carbonate

This cement paste is the ONLY part that glycolic acid can dissolve.

2. Glycolic Acid Reacts With Calcium in the Cement

Glycolic acid is an α -hydroxy organic acid, and it reacts strongly with calcium compounds.

When glycolic hits concrete:

- It forms calcium glycolate (a dissolved salt)
- It dissolves the calcium bonds holding the sand and rock together

This destroys the cement's structure.

♦ 3. Once the Calcium Glue Breaks Down → **Everything Turns to Mud**

As the glycolic acid dissolves the cement:

- The cement paste softens
- Water penetrates the weakened structure
- The sand and fines fall out of the concrete
- The residue becomes soft, mushy, and muddy

This is the "mudding up" drivers see.

It's literally the cement turning back into a slurry, because the chemical is reversing part of the hardening chemistry that made concrete solid.

4. Glycolic Doesn't Touch the Sand or

Rock

Sand and aggregate remain intact — they just fall out because the glue disappears.

So mudding isn't the chemical thickening.

It's the **concrete itself reverting into mud** as the cement breaks down.

5. Why Glycolic Does This Better Than **Other Acids**

Compared to hydrochloric or sulfuric:

- Glycolic dissolves cement more controllably
- It doesn't aggressively attack metals
- It penetrates better because of its organic structure
- It reacts slower, giving time for the concrete to break down evenly

This controlled action is why glycolic-based removers are safer but still highly effective.