How Acids Dissolve Concrete — **Simple** Scientific Breakdown

Concrete is mostly:

- Sand + rock (does NOT dissolve)
- Cement paste (this *does* dissolve)

The cement paste is the "glue" holding everything together. It's made of calcium-based compounds, and acids react with calcium.

When an acid dissolves calcium, the concrete loses structure \rightarrow it softens, breaks apart, and rinses off.

The way this happens depends on which acid is used.

$\stackrel{\checkmark}{\mathscr{A}}$ 1. Glycolic Acid — Breaks the Glue \rightarrow **Creates Mud**

What happens chemically

Glycolic acid reacts with the calcium in cement and forms calcium glycolate, which is highly soluble in water.

That means calcium (the glue) dissolves and washes away.

What drivers see

- Concrete softens
- Sand starts falling out
- It becomes **muddy**
- Brushes and rinses off easily

Why it matters

Glycolic doesn't damage aluminum or paint, and it dissolves deep into the buildup

2. Phosphoric Acid — Hardens the Surface → No Mudding

What happens chemically

Phosphoric acid reacts with calcium to form calcium phosphate, which is:

- Hard
- Insoluble
- Crust-forming

So instead of dissolving the cement glue, it creates a new hard layer.

What drivers see

- No mudding
- Concrete stays crusty
- Builds a shell on top
- Doesn't break down heavy buildup

Why it matters

Good for light haze or cement film, but NOT for thick buildup on trucks or equipment.

3. Muriatic (Hydrochloric) Acid — Very Aggressive → Fast Dissolve but Dangerous

What happens chemically

Hydrochloric acid reacts with calcium to form **calcium chloride**, which *is* soluble — so it will dissolve cement.

BUT:

- Reaction is extremely aggressive
- Releases sharp fumes
- Corrodes aluminum and steel
- Eats through paint, wiring, hoses, chrome, etc.

What drivers see

- Heavy fizzing
- Fast breakdown
- Severe metal damage
- Rapid corrosion

Why it matters

It works fast — but destroys trucks.

Not suitable for fleet use.

Why Acid Strength (Concentration) Matters

Different acids + different concentrations = very different behaviors.

Low Concentration

- Slower reaction
- Safer on surfaces
- Better for daily maintenance
- More dwell time needed

Medium Concentration

- Balanced performance
- Good for moderate buildup
- More controlled chemical action

High Concentration

- Faster reaction
- Heavier dissolving power
- Higher risk of:
 - o Etching aluminum
 - Damaging decals
 - o Creating excessive fumes
 - Burning skin or eyes