STRUCTURAL CALCULATIONS

Project: Alyssa Gildea **Address:** 4802 N 29th St

Tacoma, WA 98407

Project No.: 25160

Date: October 2, 2025

PERMIT SUBMITTAL

These enclosed documents are to be used in conjunction with the plans referenced on the cover. It is essential that the contractor study the engineering requirements and required changes to the architectural plan prior to start of work. Changes may include additional foundation or footings, beam size changes, siding changes, etc.

Scope of Engineering: Engineering analyses and design to resist lateral and gravity loads in accordance with the 2021 IBC have been performed and incorporated into stamped "S" sheets. All analyses and calculations are included in this engineering report. Engineering assumptions are listed below. If these conditions are not present at the site, these calculations are void and Structural Works, PLLC must be contacted immediately.

Loading Criteria

- Building Code 2021 International Building Code

Seismic Design Category
Sds
Response Mod Factor
Site Class

D

6.5

D

- Basic Wind Speed 130 MPH, Exposure B

Live Loads U.N.O.

- Uninhabitable attics without storage
- Uninhabitable attics with storage
- Habitable attics and sleeping areas
- Decks
- All other areas
10 psf
20 psf
60 psf
40 psf

Dead Loads U.N.O.

Roof with composition roofingFloor15 psf10 psf

Snow Loads U.N.O.

- Snow 25 psf

Soils Criteria

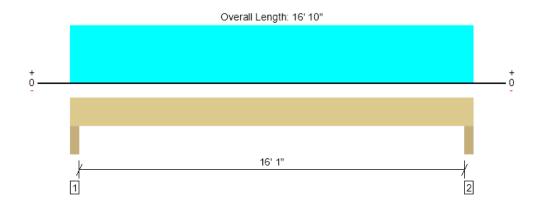
Soils consultantSoils Report #None

- Bearing Pressure Required 1500 psf (min required – Assumed)

- Min Frost Depth 12"

Structural Works PLLC

1412 Beach Drive NE #A Tacoma, WA 98422 (253) 533-0835



ROOF							
Member Name	Results (Max UTIL %)	Current Solution	Comments				
GHDR-1	Passed (70% ΔL)	1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam					
GHDR-2	Passed (75% M)	1 piece(s) 6 x 12 DF No.2					

ROOF, GHDR-1

1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8024 @ 3"	16088 (4.50")	Passed (50%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	6475 @ 1' 7 1/2"	18219	Passed (36%)	1.25	1.0 D + 1.0 Lr (All Spans)
Pos Moment (Ft-lbs)	31793 @ 8' 5"	51344	Passed (62%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.383 @ 8' 5"	0.544	Passed (L/511)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.548 @ 8' 5"	0.817	Passed (L/357)		1.0 D + 1.0 Lr (All Spans)

Member Length : 16' 10" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- · Allowed moment does not reflect the adjustment for the beam stability factor.
- ullet Volume factor of 1.00 was calculated for positive bending using length L = 16' 4".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - DF	4.50"	4.50"	2.24"	2413	5611	2806	8024	None
2 - Trimmer - DF	4.50"	4.50"	2.24"	2413	5611	2806	8024	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	16' 10" o/c	
Bottom Edge (Lu)	16' 10" o/c	

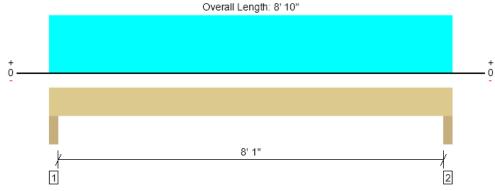
[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Roof Live (1.25)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 10"	N/A	20.0			
1 - Uniform (PSF)	0 to 16' 10"	13' 4"	15.0	20.0	25.0	Default Load
2 - Uniform (PSF)	0 to 16' 10"	13' 4"	5.0	30.0		Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


Weyerhaeuser

5/9/2025 12:37:45 PM UTC ForteWEB v3.9, Engine: V8.4.3.94, Data: V8.1.7.3

File Name: 25160

ROOF, GHDR-2

1 piece(s) 6 x 12 DF No.2

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal (typ.).

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4206 @ 3"	15469 (4.50")	Passed (27%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	2936 @ 1' 4"	8960	Passed (33%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	8266 @ 4' 5"	11050	Passed (75%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.080 @ 4' 5"	0.278	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.114 @ 4' 5"	0.417	Passed (L/877)		1.0 D + 1.0 Lr (All Spans)

Member Length : 8' 10" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - DF	4.50"	4.50"	1.50"	1250	2955	1472	4206	None
2 - Trimmer - DF	4.50"	4.50"	1.50"	1250	2955	1472	4206	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 10" o/c	
Bottom Edge (Lu)	8' 10" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Roof Live (1.25)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 10"	N/A	16.0			
1 - Uniform (PSF)	0 to 8' 10"	13' 4"	15.0	20.0	25.0	Default Load
2 - Uniform (PSF)	0 to 8' 10"	13' 5"	5.0	30.0		Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Weyerhaeuser

5/9/2025 12:37:45 PM UTC ForteWEB v3.9, Engine: V8.4.3.94, Data: V8.1.7.3

File Name: 25160

3/26/2024 DATE: **COMPANY:** STRUCALC BUILD:

StruCalc Pro **DESIGNED BY: Ercin Sahin CUSTOMER: REVIEWED BY:**

PROJ. ADDRESS:

LEVEL: LOADING: **Main Floor ASD**

MEMBER NAME: FT-3.0 SQR CODE: 2021 International Building Code

MEMBER TYPE: ISOLATED FOOTING ACI: ACI 318-19

Es (psi)

MATERIAL: Concrete

3 (ft) X 3 (ft) X 12 (in) Soil Depth TOF: 0 (ft) Bot. (4) #4 Long, (4) #4 Short

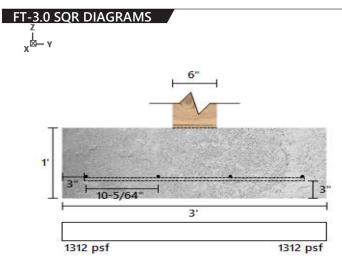
PROJECT NAME:

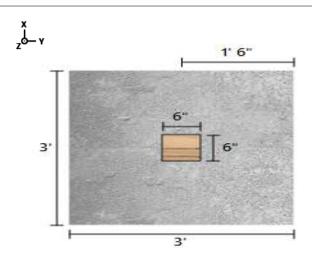
1500 psf

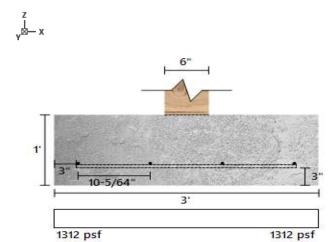
MATERIAL PROPE	RTIES					
FOOTING						
Width (ft)	Length (ft)	Depth (in)	Volume (ft³)	Footing Weight (lb/ft)		
3	3	12	9	1305		
CONCRETE						
fc' (psi)	Ec (psi)	Density (lbf/ft³)	Agg. Dia. (in)			
2500	0	145	0.75			
CALCULATION VARIABLE	S					
Bo (in)						
0						
COLUMN						
Width (in)	Length (in)	Material	Offset X (in)	Offset Y (in)		
6	6	Wood	0	0		
SOIL						
Bearing Strength (lbf/ft²)	Density (lbf/ft³)	Cohesion	Friction Angle	Depth (ft)	Rankine Coefficient (Kp)	
1500	110	0	30	0	3	
REBAR						

40000 2.9E+07 COVER

Bottom Bar Size #


Bottom Cover (in. Side Cover (in. Top Cover (in. 3


fy (psi)


3 3

PASS-FAIL						
	PASS/FAIL	MAGNITUDE	STRENGTH	LOAD COMBO	CALCULATION TYPE	
Soil Bearing Pressure (lbf/ft²)	PASS (12.6%)	1311.7	1500.0	D	ASD	
One-Way Shear X (lbf)	PASS (83.3%)	4338.5	25920.0	1.4D	LRFD	
One-Way Shear Y (lbf)	PASS (83.3%)	4338.5	25920.0	1.4D	LRFD	
Two-Way Shear (lbf)	PASS (85.6%)	12232.3	84960.0	1.4D	LRFD	
Moment X (lbf-ft)	PASS (77.0%)	4632.0	20131.5	1.4D	LRFD	
Moment Y (lbf-ft)	PASS (77.0%)	4632.0	20131.5	1.4D	LRFD	
Crushing (lbf)	PASS (85.2%)	14700.0	99450.0	1.4D	LRFD	
Compression (ft²)	PASS (100.0%)	9.0	9.0	D	LRFD	

LOAD LIST Name Left Magnitude Right Magnitude Load Start (ft) Load End (ft) Load Type Direction Type Point (lbf) Point 10500 Dead z

Address:

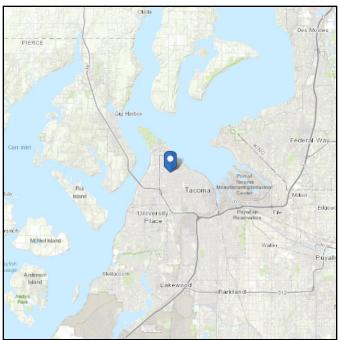
4802 N 29th St Tacoma, Washington

98407

ASCE Hazards Report

ASCE/SEI 7-16 Standard: Risk Category: || Longitude: -122.501054

Soil Class: D - Default (see


Section 11.4.3)

47.273745 Latitude:

Elevation: 346.3195050553209 ft

(NAVD 88)

Wind

Results:

Wind Speed 97 Vmph 10-year MRI 67 Vmph 25-year MRI 73 Vmph 50-year MRI 78 Vmph 100-year MRI 83 Vmph

Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed: Tue May 06 2025

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

https://ascehazardtool.org/ Tue May 06 2025

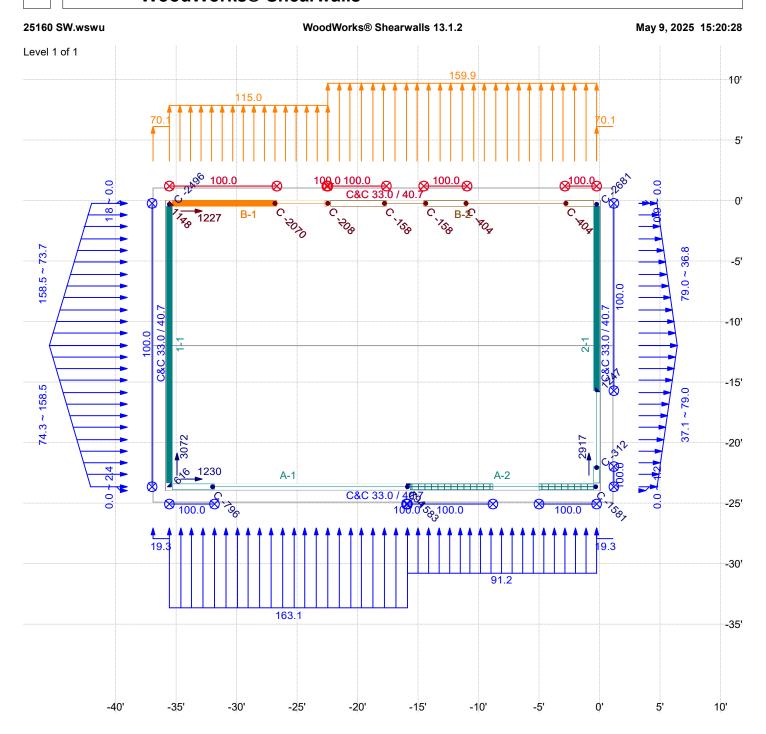
Seismic

Site Soil Class: D - Default (see Section 11.4.3)

Results:

 $S_{\mbox{\scriptsize S}}$: S_{D1} : 1.391 N/A T_L : S₁ : 0.481 6 F_a : 1.2 PGA: 0.539 F_v : N/A PGA_M: 0.647 S_{MS} : 1.669 F_{PGA} : 1.2 S_{M1} : N/A I_e : 1 C_v : S_{DS} : 1.113 1.378

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.


Data Accessed: Tue May 06 2025

Date Source: USGS Seismic Design Maps

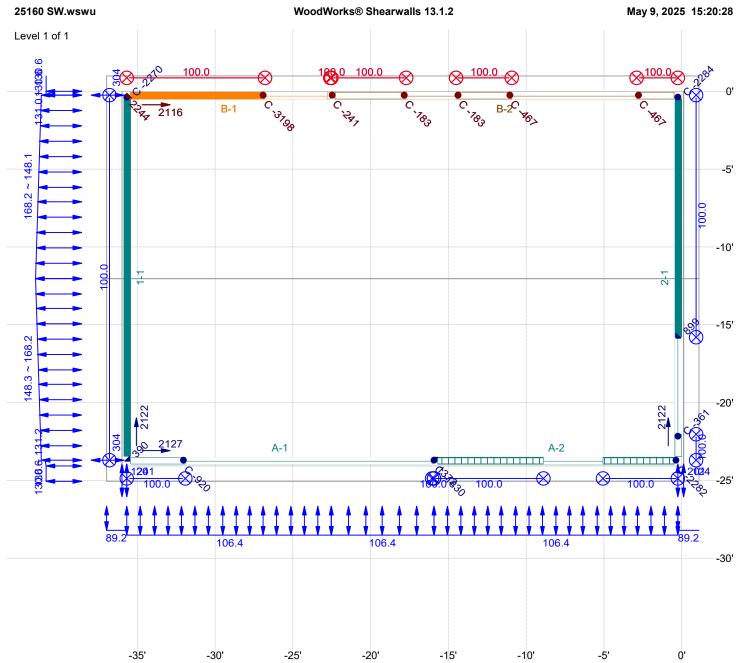
https://ascehazardtool.org/

WoodWorks® Shearwalls

SOFTWARE FOR WOOD DESIGN

Factored hold-down force (lbs)

Factored compression force (lbs)


Unfactored applied shear load (plf) Unfactored dead load (plf,lbs)
Unfactored uplift wind load (plf,lbs)

Applied point load or discontinuous shearline force (lbs)

Vertical element required Loads: Directional Case 1 Wind (W); Forces: 0.6W + 0.6D; Flexible distribution

SOFTWARE FOR WOOD DESIGN

Factored hold-down force (lbs)

Factored compression force (lbs)

Unfactored applied shear load (plf)
Unfactored dead load (plf,lbs)
Applied point load or discontinuous shearline force (lbs)

WoodWorks® Shearwalls

SOFTWARE FOR WOOD DESIGN

WoodWorks® Shearwalls 13.1.2

25160 SW.wswu May. 9, 2025 15:20:47

Project Information

DESIGN SETTINGS

	sign Code AWC SDPWS 2021		ind Standard ectional (All he	eights)	Seismic Standard ASCE 7-16			
	Load Co	ombinations		I	Building Code Capacity Modification			
For Design and M\		For Deflection (Wind:	• ,		Wind Seismic			
0.7 Seismic		1.0 Seismic + 0.		1.0	1.00 1.00			
0.6 Basic wind	l + 0.6 Dead	1.0 MRI wind + 1.	.0 Dead					
	Service Condition	ns and Load Duration			Max Shearwall Offset [ft]			
Duration	Temperature	Moistur	e Content	Plan El		Elevation		
Factor	Range	Fabrication	Service	(within	story)	(between stories)		
1.60	T<=100F	19% (<=19%)	10% (<=19%)	0.5	0	-		
		Maximum	Height-to-width Rat	tio				
Wood	d panels	Fiberboard		Gypsum				
Blocked	Unblocked		Wind	Seismic	Blocked	Unblocked		
3.5	2.0	-	-	-	-	-		
	Ignore shear resist	ance contribution of			Forces bas	sed on		
Wal	ll segments	Seis	smic	Hold-dov	vns App	lied loads		
Side with in	valid aspect ratio	Entirely gypa	sum or lumber	Drag str	uts App	lied loads		
	St	nearwall relative rigidity:	Wall capacity	•				
Non-ident	tical materials and constr	uction on the shearline:	Allowed, excep	t for material	type			
		Deflection Equation:	3-term from SD	PWS 4.3-1				
	Dr	ift limit for wind design:	1 / 500 story	height				
		FTAO strap:	Continuous at	top of highest	opening and	bottom of lowest		
		Dead load in chord	l force for overturni	ing design				
	nsion end length / 2	Compressi Wall leng		When con	npletely count Wall lengt	eracts overturning		

SITE INFORMATION

SHEINFORMATION					
ACCE 7 16 Dim	Wind ectional (All he	i	ACCE 7 16 12 0	Seismic	Dwogoduwo
ASCE /-10 DII	ectional (All ne	ignus)	ASCE /-10 12.0	Equivalent Lateral Force	
Design Wind Speed	130 mph		Risk Category	Category II - All other	S
Serviceability Wind Speed	100 mph		Structure Type	Regular	
Exposure	Exposure B		Building System	Bearing Wall	
Enclosure	Partially or	oen	Design Category	D	
Min Wind Loads: Walls	16 psf		Site Class	D	
Roofs	8 psf		Sp	ectral Response Acceleration	
Topogra	phic Information [ft]		S1: 0.480g	Ss: 1.39	90g
Shape	Height	Length	Fundamental Period	E-W	N-S
-	-	-	T Used	0.137s	0.137s
Site Location: -			Approximate Ta	0.137s	0.137s
I	Elev: Oft		Maximum T	0.192s	0.192s
Rigid build:	ing - Static anal	Lysis	Response Factor R	6.50	6.50
Case 2	E-W loads	N-S loads	Fa : 1.20	Fv: 1.82	2
Eccentricity (%)	15	15			
Loaded at	75%				

WoodWorks® Shearwalls

25160 SW.wswu May. 9, 2025 15:20:47

Structural Data

STORY INFORMATION

				Hold-dow	/n
	Story Elev [ft]	Floor/Ceiling Depth [in]	Wall Height [ft]	Length subject to shrinkage [in]	Bolt length [in]
Ceiling	12.00	0.0			
Level 1	2.00	0.0	10.00	3.75	4.5
Foundation	2.00				

BLOCK and ROOF INFORMATION

	Block			Roo	of Panels	
	Dimensions [ft]		Face	Type	Slope	Overhang [ft]
Block 1	1 Story	E-W Ridge				,
Location X,Y =	-36.08	-24.08	North	Side	26.5	1.00
Extent X,Y =	36.17	24.08	South	Side	26.5	1.00
Ridge Y Location, Offset	-12.04	0.00	East	Gable	90.0	1.00
Ridge Elevation, Height	18.00	6.00	West	Gable	90.0	1.00

SHEATHING MATERIALS by WALL GROUP

		Sheathing								Fas	tener	s			Apply
Grp	Surf	Material	Ratng	Thick	GU	Ply	Or	Gvtv	Size	Type	RS	Eg	Fd	Bk	Notes
				in	in			lbs/in				in	in		
1	Ext	Struct I OSB	24/16	7/16	-	-	Horz	83500	8d	Common	N	6	12	Υ	3

Legend:

Grp - Wall Design Group number, used to reference wall in other tables (created by program)

Surf – Exterior or interior surface when applied to exterior wall

Ratng – Span rating, see SDPWS Table C4.2.3C

Thick - Nominal panel thickness

GU - Gypsum underlay thickness

Ply - Number of plies (or layers) in construction of plywood sheets

Or – Orientation of longer dimension of sheathing panels or lumber planks. Dbl. = Double diagonal.

Gvtv - Shear stiffness in Ib/in. of depth from SDPWS Tables C4.2.3A-B

Type - Fastener type from SDPWS Tables 4.3A-D:

Common: common wire nail; Box: galvanized box nail; Casing: casing nail; Roof: galvanized roofing nail; Cooler: cooler nail; WBoard: wallboard nail;

Screw: drywall screw; Gauge: nail measured by gauge; Galv: galvanized gauge nail; GWB: Gypsum wallboard blued nail

Size - From Tables 4.3A-D and Table A1; shown in Wall Input fastener dropdown

Common nails: 6d = 0.113 x 2", 8d = 0.131 x 2.5", 10d = 0.148 x 3", 12d = 0.148 x 3.5"

Box or casing nails: $6d = 0.099 \times 2^{\circ}$, $8d = 0.113 \times 2.5^{\circ}$, $10d = 0.128 \times 3^{\circ}$, $12d = 0.126 \times 3.5^{\circ}$

Gauge, roofing and GWB nails: 13 ga = 0.92" x 1-1/8"; 11 ga = 0.120" x 1-1/8" (GWB nail for gypsum lath & plaster), 1-1/4" (gyp. L&P), 1-1/2" (wire lath & plaster, 1/2" fiberboard, 1/2" GWB), 1-3/4" (GSB, 5/8" GWB, 25/32" fiberboard, 2-ply GWB base), 2-3/8" (2-ply GWB face)

Cooler or wallboard nail: 5d = .086" x 1-5/8"; 6d = .092" x 1-7/8"; 8d = .113" x 2-3/8"; 6/8d = 6d base ply, 8d face ply for 2-ply GWB.

Drywall screws: No. 6, 1-1/4" long.

RS - Ring-shank nails (non-shearwalls only), with increased withdrawal capacity as per NDS 12.2.3.2.

Eg - Panel edge fastener spacing. For lumber sheathing, no. of nails per board at shear wall boundary. For 2-ply GWB, spacing of all nails in face ply.

Fd - Field spacing interior to panels. For lumber sheathing, no. of nails per board at interior studs. For 2-ply GWB, spacing of all nails in face ply.

Bk – Sheathing is nailed to blocking at all panel edges; Y(es) or N(o)

Apply Notes - Notes below table legend which apply to sheathing side

Notes:

3. Shear capacity for current design has been increased to the value for 15/32" sheathing with same nailing because stud spacing is 16" max. or panel orientation is horizontal. See SDPWS Table 4.3A Note 2.

FRAMING MATERIALS and STANDARD WALL by WALL GROUP

Wall	Species	Grade	b	d	Spcg	SG	Е	Fcp	Standard Wall
Grp			in	in	in		psi^6		
1	D.Fir-L	No.2	1.50	5.50	16	0.50	1.60	625	_

Legend:

Wall Grp - Wall Design Group

b – Stud breadth (thickness)

d - Stud depth (width)

Spcg – Maximum on-centre spacing of studs for design, actual spacing may be less.

SG - Specific gravity

E – Modulus of elasticity

Standard Wall - Standard wall designed as group.

Fcp - Compressive strength perpendicular to grain

Notes:

Check manufacture requirements for stud size, grade and specific gravity (G) for all shearwall hold-downs.

The following factors are applied to Fcp for compressive design and deformation under wall segment end studs:

Bearing area factor Cb from NDS 3.10.4, under window openings.

SHEARLINE, WALL and OPENING DIMENSIONS

North-south	Type	Wall	Location	Exter	nt [ft]	Length	FHS	Aspect	Height	Studs
Shearlines		Group	X [ft]	Start	End	[ft]	[ft]	Ratio	[ft]	S N
Line 1										_
Level 1										
Line 1	Seg	1	-35.75	-23.75	-0.25	23.50	23.25	i –	10.00	
Wall 1-1	Seq	1	-35.75	-23.75	-0.25	23.50	23.25	0.43	-	2 2
Line 2	beg	-	33.73	20.70	0.20	20.00	23.23	0.10		
Level 1								1		
Line 2		1	-0.25	-23.75	-0.25	23.50	15.58	_	10.00	
Wall 2-1	0	1	-0.25	-23.75 -23.75				_	-	2 2 2 2 2 2 2 2
	Seg	_			-0.25	23.50	15.58		_	2 2 2 2 2 2
Segment 1		_	-	-23.75 -22.08	-22.08	1.67	_	6.00	7.00	2 2
Opening 1		_	_		-15.83	6.25		-	7.00	2 2
Segment 2		_	-	-15.83	-0.25	15.58	15.33	0.64	-	2 2
East-west	Туре	Wall	Location	Exter	nt [ft]	Length	FHS	Aspect	Height	Studs
Shearlines	• •	Group	Y [ft]	Start	End	[ft]	[ft]	Ratio	[ft]	W E
Line A										
Level 1										
Line A		1	-23.75	-35.75	-0.25	35.50	15.75	-	10.00	
Wall A-1	NSW		-23.75	-35.75	-16.00	19.75	0.00	_	-	2 2
Segment 1		-	-	-35.75	-32.00	3.75	-	2.67	_	2 2 2 2
Opening 1		-	-	-32.00	-16.08	15.92	-	_	8.00	2 2
Segment 2		-	-	-16.08	-16.00	0.08	-	120.00	-	2 2
Wall A-2	FT	1	-23.75	-16.00	-0.25	15.75	15.75	-	-	2 2
Segment 1		-	-	-16.00	-8.92	7.08	6.83	0.56	-	
Opening 1		-	-	-8.92	-5.08	3.83	-	-	4.00	
Segment 2		-	-	-5.08	-0.25	4.83	4.58	0.83	-	
Line B										
Level 1										
Line B		1	-0.25	-35.75	-0.25	35.50	8.92	_	10.00	
Wall B-1	Sea	1	-0.25	-35.75	-22.58	13.17	8.92	_	-	2 2
Segment 1		_	_	-35.75	-26.83	8.92	8.67	1.12	_	2 2
Opening 1		_	_	-26.83	-22.67	4.17	_		4.00	2 2
Segment 2		_	_	-22.67	-22.58	0.08	_	120.00	-	2 2
Wall B-2	NSW		-0.25	-22.58	-0.25	22.33	0.00	-	_	2 2
Segment 1		_	-	-22.58	-17.75	4.83	-	2.07	_	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Opening 1		_	_	-17.75	-14.58	3.17	_	-	7.00	2 2
Segment 2		_	_	-14.58	-11.00	3.58	_	2.79	-	2 2
Opening 2		_	_	-11.00	-2.92	8.08	_	-	8.00	2 2
Segment 3		-	-	-2.92	-0.25	2.67	-	3.75	-	2 2
l ogond:			ļ							

Legend.

Type – Seg: Segmented, Prf: Perforated, FT: FTAO (force transfer around openings), NSW: Non-shearwall, NW: Non-wood/Proprietary, ND: Not designed Location – Position in structure perpendicular to wall

Length – Shear line: Distance between exterior perpendicular walls defining the shear line extent

Wall, segment, or opening: End-to-end length of the element

FHS - Depending on element, shows different definitions of full-height sheathing length (FHS):

Shear lines with multiple walls, segmented walls, or FTAO walls: Total shear-resisting FHS

Individual wall segments or walls without openings: Distance between hold-downs beff

Perforated walls: Sum of factored segment lengths bi defined in SDPWS 4.3.5.6

Aspect Ratio - Ratio of wall height to segment length (h/b); for FTAO walls, the aspect ratio of the central pier

Wall Group - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall

Studs: Number of end studs at the south and north or west and east ends of a wall segment or a perforated or FTAO wall.

Loads

WIND SHEAR LOADS (as entered or generated)

F W	Element	Load Case	Wnd Dir	Surf			n itti	line nit n	efl	Ht
			ווט	Dir	Prof	Locatio Start	End	[lbs,plf,p Start	End	[ft]
	1 1	I								
W	L Gable	1	W->E	Wind	Line	-24.08	-12.04	0.0	86.7	
	Wall	1	W->E	Wind	Line	-23.75	-0.25	71.9		
W	R Gable	1	W->E	Wind	Line	-12.04	0.00	86.7	0.0	
E	L Gable	1	W->E	Lee	Line	-24.08	-12.04	0.0	43.1	
E	Wall	1	W->E	Lee	Line	-23.75	-0.25	35.9		
E	R Gable	1	W->E	Lee	Line	-12.04	0.00	43.1	0.0	
W	L Gable	1	E->W	Lee	Line	-24.08	-12.04	0.0	43.1	
W	Wall	1	E->W	Lee	Line	-23.75	-0.25	35.9		
W	R Gable	1	E->W	Lee	Line	-12.04	0.00	43.1	0.0	
E	L Gable	1	E->W	Wind	Line	-24.08	-12.04	0.0	86.7	
E	Wall	1	E->W	Wind	Line	-23.75	-0.25	71.9		
E	R Gable	1	E->W	Wind	Line	-12.04	0.00	86.7	0.0	
S	Roof	1	S->N	Wind	Line	-37.08	1.08	19.3		
S	Wall	1	S->N	Wind	Line	-35.75	-16.00	71.9		
S	Wall	1	S->N	Wind	Line	-35.75	-0.25	71.9		
N	Roof	1	S->N	Lee	Line	-37.08	1.08	70.1		
N	Wall	1	S->N	Lee	Line	-35.75	-0.25	44.9		
N	Wall	1	S->N	Lee	Line	-22.58	-0.25	44.9		
S	Roof	1	N->S	Lee	Line	-37.08	1.08	70.1		
S	Wall	1	N->S	Lee	Line	-35.75	-0.25	44.9		
S	Wall	1	N->S	Lee	Line	-35.75	-16.00	44.9		
N	Roof	1	N->S	Wind	Line	-37.08	1.08	19.3		
N	Wall	1	N->S	Wind	Line	-35.75	-0.25	71.9		
N	Wall	1	N->S	Wind	Line	-22.58	-0.25	71.9		
	E E W W W E E E S S S N N N S S S N N	E Wall E R Gable W L Gable W Wall W R Gable E L Gable E Wall E R Gable S Roof S Wall N Roof N Wall N Wall S Roof S Wall S Roof N Wall N Roof	E Wall E R Gable U L Gable U L Gable U Wall E L Gable E L Gable E Wall E R Gable S Roof S Wall S Wall I N Roof N Wall S Roof S Wall N Roof S Wall S Roof S Wall	E Wall 1 W->E E R Gable 1 W->E W L Gable 1 E->W W Wall 1 E->W W R Gable 1 E->W E L Gable 1 E->W E L Gable 1 E->W E R Gable 1 E->W S Roof 1 S->N S Wall 1 S->N N Roof 1 S->N N Wall 1 S->N N Roof 1 N->S Wall 1 N->S N Wall 1 N->S	E Wall 1 W->E Lee E R Gable 1 W->E Lee W L Gable 1 E->W Lee W R Gable 1 E->W Lee E L Gable 1 E->W Wind E R Gable 1 E->W Wind S Roof 1 S->N Wind S Wall 1 S->N Wind N Wall 1 S->N Lee N Wall 1 S->N Lee S Wall 1 S->N Lee S Wall 1 N->S Lee S Wall 1 N->S Wind N Wall 1 N->S Wind	E Wall 1 W->E Lee Line E R Gable 1 E->W Lee Line W Wall 1 E->W Lee Line W R Gable 1 E->W Lee Line E D L E->W Wind Line Line E Wall 1 E->W Wind Line Line S Roof 1 S->N Wind Line Line	E Wall 1 W->E Lee Line -23.75 E R Gable 1 W->E Lee Line -12.04 W L Gable 1 E->W Lee Line -24.08 W Wall 1 E->W Lee Line -23.75 W R Gable 1 E->W Wind Line -23.75 E R Gable 1 E->W Wind Line -23.75 E R Gable 1 E->W Wind Line -23.75 E R Gable 1 E->W Wind Line -37.08 E Wall 1 S->W Wind Line -35.75 E R Gable 1 S->N Wind Line -35.75 S Wall 1 S->N Wind Line -35.75 N Wall 1 S->N Lee Line -37.08 S Wall <	E Wall 1 W->E Lee Line -23.75 -0.25 E R Gable 1 W->E Lee Line -12.04 0.00 W L Gable 1 E->W Lee Line -24.08 -12.04 W Wall 1 E->W Lee Line -23.75 -0.25 W R Gable 1 E->W Lee Line -12.04 0.00 E L Gable 1 E->W Wind Line -23.75 -0.25 E R Gable 1 E->W Wind Line -23.75 -0.25 E R Gable 1 E->W Wind Line -23.75 -0.25 E R Gable 1 S->N Wind Line -37.08 1.08 S Wall 1 S->N Wind Line -35.75 -0.25 E R Gable 1 S->N Wind Line -35.75 -0.25 E R Gable 1 S->N Wind Line -35.75 -0.25 E R Gable 1 S->N Wind Line -35.75 -0.25 N Wall 1 S->N Lee Line -35.75	E Wall E R Gable I W->E Lee Line -23.75 -0.25 35.9 E R Gable I W->E Lee Line -12.04 0.00 43.1 W L Gable I E->W Lee Line -23.75 -0.25 35.9 W R Gable I E->W Lee Line -23.75 -0.25 35.9 W R Gable I E->W Lee Line -23.75 -0.25 35.9 W R Gable I E->W Lee Line -23.75 -0.25 35.9 W R Gable I E->W WLEE Line -12.04 0.00 43.1 E L Gable I E->W Wind Line -24.08 -12.04 0.0 E Wall I E->W Wind Line -23.75 -0.25 71.9 E R Gable I E->W Wind Line -23.75 -0.25 71.9 E R Gable I E->W Wind Line -37.08 I .08 I 9.3 S Wall I S->N Wind Line -35.75 -0.25 71.9 N Roof I S->N Wind Line -35.75 -0.25 71.9 N Roof I S->N Lee Line -37.08 I .08 70.1 N Wall I S->N Lee Line -37.08 I .08 70.1 N Wall I S->N Lee Line -35.75 -0.25 44.9 S Roof I N->S Lee Line -35.75 -0.25 44.9 N Roof I N->S Lee Line -35.75 -0.25 44.9 N Roof I N->S Lee Line -35.75 -0.25 44.9 N Roof I N->S Lee Line -35.75 -0.25 44.9 N Roof I N->S Lee Line -35.75 -0.25 44.9 N Roof I N->S Lee Line -35.75 -0.25 44.9 N Roof I N->S Lee Line -35.75 -0.25 71.9	E Wall E R Gable I W->E Lee Line -23.75 -0.25 35.9 E R Gable I W->E Lee Line -12.04 0.00 43.1 0.0 W L Gable W Wall I E->W Lee Line -24.08 -12.04 0.0 43.1 W Wall I E->W Lee Line -23.75 -0.25 35.9 W R Gable I E->W Lee Line -12.04 0.00 43.1 0.0 E L Gable I E->W Wind Line -24.08 -12.04 0.0 43.1 0.0 E L Gable I E->W Wind Line -24.08 -12.04 0.0 86.7 E Wall I E->W Wind Line -24.08 -12.04 0.0 86.7 E R Gable I E->W Wind Line -23.75 -0.25 71.9 E R Gable I E->W Wind Line -12.04 0.00 86.7 0.0 S Roof I S->N Wind Line -37.08 1.08 19.3 S Wall I S->N Wind Line -35.75 -16.00 71.9 S Wall I S->N Wind Line -35.75 -0.25 71.9 N Roof I S->N Lee Line -37.08 1.08 70.1 N Wall I S->N Lee Line -37.08 1.08 70.1 S Roof I S->N Lee Line -37.08 1.08 70.1 S Roof I S->N Lee Line -35.75 -0.25 44.9 S Roof I N->S Lee Line -35.75 -0.25 44.9 S Roof I N->S Lee Line -35.75 -0.25 44.9 N Roof I N->S Lee Line -35.75 -0.25 44.9 N Roof I N->S Lee Line -35.75 -0.25 44.9 N Roof I N->S Lee Line -35.75 -0.25 44.9 N Roof I N->S Lee Line -35.75 -0.25 44.9 N Roof I N->S Lee Line -35.75 -0.25 44.9 N Roof I N->S Lee Line -35.75 -0.25 44.9 N Roof I N->S Wind Line -35.75 -0.25 71.9

Legend:

Block - Block used in load generation

Accum. = loads from one block combined with another

Manual = user-entered loads (so no block)

F - Building face (north, south, east or west)

Element - Building surface on which loads generated or entered

Load Case - One of the following:

ASCE 7 All Heights: Case 1 or 2 from Fig 27.3-8 or minimum loads from 27.1.5

ASCE 7 Low-rise: Reference corner and Case A or B from Fig 28.3-1 or minimum loads from 28.3.4

Wind Dir - Direction of wind for loads with positive magnitude, also direction of MWFRS.

Surf Dir - Windward or leeward side of the building for loads in given direction

Prof - Profile (distribution)

Location - Start and end points on building element

Magnitude - Start = intensity of uniform and point loads or leftmost intensity of trapezoidal load, End = right intensity of trap load

Trib Ht - Tributary height of area loads only

Notes:

All loads entered by the user or generated by program are specified (unfactored) loads. The program applies a load factor of 0.60 to wind loads before distributing them to the shearlines.

WoodWorks® Shearwalls

WIND C&C LOADS

Block	Building	Wind	Level	Magniti	ude [psf]
	Face	Direction		Interior	End Zone
Block 1	West	Windward	1	33.0	40.7
Block 1	West	Windward	1	33.0	40.7
Block 1	East	Leeward	1	33.0	40.7
Block 1	East	Leeward	1	33.0	40.7
Block 1	West	Leeward	1	33.0	40.7
Block 1	West	Leeward	1	33.0	40.7
Block 1	East	Windward	1	33.0	40.7
Block 1	East	Windward	1	33.0	40.7
Block 1	South	Windward	1	33.0	40.7
Block 1	South	Windward	1	33.0	40.7
Block 1	North	Leeward	1	33.0	40.7
Block 1	North	Leeward	1	33.0	40.7
Block 1	South	Leeward	1	33.0	40.7
Block 1	South	Leeward	1	33.0	40.7
Block 1	North	Windward	1	33.0	40.7
Block 1	North	Windward	1	33.0	40.7

DEAD LOADS (for hold-down calculations)

Shear	Level	Profile	Tributary	Locatio	n [ft]	Mag [lbs,p	sf,psi]
Line			Width [ft]	Start	End	Start	End
A	1	Line		-35.75	-16.00	100.0*	
A	1	Line		-16.00	-0.25	100.0*	
В	1	Line		-35.75	-22.58	100.0*	
В	1	Line		-22.58	-0.25	100.0*	
1	1	Line		-23.75	-0.25	100.0*	
2	1	Line		-23.75	-0.25	100.0*	

WoodWorks® Shearwalls

25160 SW.wswu May. 9, 2025 15:20:47

BUILDING MASSES

Level 1							Magnit	tude	Trib
Force	Building	Block	Wall	Profile	Location	on [ft]	[lbs,plf	,psf]	Width
Dir	Element		Line		Start	End	Start	End	[ft]
E-W	Roof	Block 1		Line	-25.08	1.00	381.7	381.7	
E-W	Roof	Block 1		Line	-25.08	1.00	381.7	381.7	
E-W	R Gable	Block 1		Line	-24.08	-12.04	60.0	0.0	
E-W	L Gable	Block 1		Line	-12.04	0.00	0.0	60.0	
E-W	L Gable	Block 1		Line	-24.08	-12.04	60.0	0.0	
E-W	R Gable	Block 1		Line	-12.04	0.00	0.0	60.0	
N-S	Roof	Block 1		Line	-37.08	1.08	260.8	260.8	
N-S	Roof	Block 1		Line	-37.08	1.08	260.8	260.8	
Both	Wall 1-1	n/a	1	Line	-23.75	-0.25	50.0	50.0	
Both	Wall 2-1	n/a	2	Line	-23.75	-0.25	50.0	50.0	
Both	Wall A-1	n/a	A	Line	-35.75	-16.00	50.0	50.0	
Both	Wall A-2	n/a	A	Line	-16.00	-0.25	50.0	50.0	
Both	Wall B-1	n/a	В	Line	-35.75	-22.58	50.0	50.0	
Both	Wall B-2	n/a	В	Line	-22.58	-0.25	50.0	50.0	

Legend:
Force Dir - Direction in which the mass is used for seismic load generation, E-W, N-S, or Both

Building element - Roof, gable end, wall or floor area used to generate mass, wall line for user-applied masses, Floor F# - refer to Plan View for floor area

Wall line - Shearline that equivalent line load is assigned to

Location - Start and end points of equivalent line load on wall line

Trib Width. - Tributary width; for user applied area loads only

25160 SW.wswu

WoodWorks® Shearwalls

May. 9, 2025 15:20:47

SEISMIC LOADS

Level 1					
Force	Profile	Locatio	n [ft]	Mag [lbs,p	lf,psf]
Dir		Start	End	Start	End
E-W	Line	-25.08	-24.08	130.6	130.6
E-W	Line	-24.08	-23.75	130.6	131.2
E-W	Point	-23.75	-23.75	304	304
E-W	Line	-23.75	-12.04	148.3	168.2
E-W	Line	-12.04	-0.25	168.2	148.1
E-W	Point	-0.25	-0.25	304	304
E-W	Line	-0.25	0.00	131.0	130.6
E-W	Line	0.00	1.00	130.6	130.6
N-S	Line	-37.08	-35.75	89.2	89.2
N-S	Point	-36.08	-36.08	124	124
N-S	Point	-35.75	-35.75	201	201
N-S	Line	-35.75	-22.58	106.4	106.4
N-S	Line	-22.58	-16.00	106.4	106.4
N-S	Line	-16.00	-0.25	106.4	106.4
N-S	Point	-0.25	-0.25	201	201
N-S	Line	-0.25	1.08	89.2	89.2
N-S	Point	0.08	0.08	124	124

Leaend

Loads in table can be accumulation of loads from several building masses, so they do not correspond with a particular building element. Location - Start and end of load in direction perpendicular to seismic force direction

Notes

All loads entered by the user or generated by program are specified (unfactored) loads. The program applies a load factor of 0.70 and redundancy factor to seismic loads before distributing them to the shearlines.

Design Summary

25160 SW.wswu

SHEARWALL DESIGN

Wind Shear Loads, Flexible Diaphragm

All shearwalls have sufficient design capacity.

Wind Shear Loads, Rigid Diaphragm

All shearwalls have sufficient design capacity.

Components and Cladding Wind Loads, Out-of-plane Sheathing

All shearwalls have sufficient design capacity.

Components and Cladding Wind Loads, Nail Withdrawal

All shearwalls have sufficient design capacity.

Seismic Loads, Flexible Diaphragm

All shearwalls have sufficient design capacity.

Seismic Loads, Rigid Diaphragm

All shearwalls have sufficient design capacity.

HOLD-DOWN DESIGN

Wind Loads, Flexible Diaphragm

All hold-downs have sufficient design capacity.

Wind Loads, Rigid Diaphragm

All hold-downs have sufficient design capacity.

Seismic Loads, Flexible Diaphragm

All hold-downs have sufficient design capacity.

Seismic Loads, Rigid Diaphragm

All hold-downs have sufficient design capacity.

COMPRESSION FORCE DESIGN

Wind Loads, Flexible Diaphragm

Bottom plate has sufficient perpendicular-to-grain compressive capacity under all wall end studs.

Wind Loads, Rigid Diaphragm

Bottom plate has sufficient perpendicular-to-grain compressive capacity under all wall end studs.

Seismic Loads, Flexible Diaphragm

Bottom plate has sufficient perpendicular-to-grain compressive capacity under all wall end studs.

Seismic Loads, Rigid Diaphragm

Bottom plate has sufficient perpendicular-to-grain compressive capacity under all wall end studs.

Refer to the Deflection table for possible issues regarding fastener slippage (SDPWS Table C4.2.3D) for walls that otherwise pass.

Flexible Diaphragm Wind Design ASCE 7 Directional (All Heights) Loads

SHEAR RESULTS

393 393 - - 393 393 393 393 393		393 393 - - - 393 393 393	9224 6116 6116 6116 6116 - 6116	0.33S 0.32S - - - - - - - - - - - - 0.48S 0.50S
393 - - 393 393 393 393 393 393	-	393 - - - - 393 393	9224 6116 6116 6116 - 6116	0.32S - - - - - - S 0.48S
393 - - 393 393 393 393 393 393	-	393 - - - - 393 393	9224 6116 6116 6116 - 6116	0.32S - - - - - - S 0.48S
393 - - 393 393 393 393 393 393	-	393 - - - - 393 393	9224 6116 6116 6116 - 6116	0.32S - - - - - - S 0.48S
- 393 393 393 393 393	- - - - -	- - - - 393 393	6116 6116 6116 6116 - 6116	- - - - S 0.48S
393 393 393 393 393	- - -	- - 393 393	6116 6116 6116 - 6116	- - - - S 0.48S
393 393 393 393 393	- - -	- - 393 393	6116 6116 6116 - 6116	- - - - S 0.48S
393 393 393 393 393	- - -	- 393 393	6116 6116 - 6116	- - - S 0.48S
393 393 393 393	- - -	393 393	6116 - 6116	- S 0.48S
393 393 393	- - -	393 393	- 6116	- S 0.48S
393 393	-	393	6116	0.485
393	-			
		393	6116	0.50s
				1
Allo	owabie	Shear [plf]		Resp.
Ext	Co	C Cmb	V [lbs]	Ratio
_	_	_	6182	_
393	-	_	6182	l –
393	-	393	2780	0.26S
393	-	393	1505	0.33
393	-	393	1897	0.26S
_	-	-	3500	-
	-	-	3500	-
393		393	3500	0.35s
	_			- s
	- 393	 393 - 393 -	 393 393 - 393	3500 393 3500

Legend:

W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group.

For Dir - Direction of wind force along shearline.

v - Design shear force on segment = ASD-factored shear force per unit length of full-height sheathing (FHS)

vmax/vft - Perforated walls: Collector and in-plane anchorage force as per SDPWS eqn. 4.3-9 = V/FHS/Co. FHS is factored for narrow segments as per 4.3.3.4

FTAO walls: Shear force in piers above and below either openings or piers beside opening(s). Aspect ratio factor does not apply to these piers.

V – ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment

Asp/Cub – Unblocked wood structural panel factor Cub from SDPWS 4.3.5.3 or Aspect Ratio factor from 4.3.5.5.1, which for perforated walls is sum bi / FHS from 4.3.5.6 with bi defined in 4.3.3.4. For multi-segment walls, wall row shows Cub and segment rows show Asp. For single-segment walls and perforated walls, value shown is Asp for blocked walls and Cub for unblocked walls.

Int, Ext - Nominal unit shear capacity of interior and exterior sheathing, factored by Table 4.3-1 Note 3 for framing specific gravity and Note 10 for presence of hold-downs. For wall segments, also include unblocked factor Cub and aspect ratio adjustments.

Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-6.

C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using Eqns. 4.3-3,-4.

Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co.

V - Total factored shear capacity of shearline, wall or segment.

Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "S" indicates that the seismic design criterion was critical in selecting wall.

Notes

Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,1.

Hold-Down and Compression Design (flexible wind design)

Level 1	•		•		1	Tensile Ho	ld-down			-	
Line-		Locat	ion [ft]	Load	or Com	pressive S	Stud Force	[lbs]		Cap	Crit
Wall	Posit'n	X	Ÿ	Case	Shear	Dead	Uplift	Cmb'd	Hold-down	[lbs]	Resp.
Line 1							-				
1-1	L End	-35.75	-23.62	1	1321	705		616	HDU2-SDS	3075	0.20
1-1	L End	-35.75	-23.62	1	1271	1175		2446	Compression	10312	0.24
1-1	R End	-35.75	-0.37	1	1271	705		566	HDU2-SDS	3075	0.18
1-1	R End	-35.75	-0.37	1	1321	1175		2496	Compression	10312	0.24
Line 2											
İ	V Elem	-0.25	-22.21	1	0	313		312	Compression		
2-1	R Op 1	-0.25	-15.71	1	1902	655		1247	HDU2-SDS	3075	0.41
2-1	R Op 1	-0.25	-15.71	1	2006	1092		3097	Compression	10312	0.30
2-1	R End	-0.25	-0.37	1	2006	468		1538	HDU2-SDS	3075	0.50
2-1	R End	-0.25	-0.37	1	1902	779		2681	Compression	10312	0.26
Line A					[
A-1	L Op 1	-32.12	-23.75	1	0	796		796	Compression		_
A-1	R Op 1	-15.96	-23.75	1	0	1583		1583	Compression	10312	0.15
A-2	L End	-15.87	-23.75	1	794			794	HDU2-SDS	3075	0.26
A-2	L End	-15.87	-23.75	1	794			794	Compression	10312	0.08
A-2	R End	-0.37	-23.75	1	794	473		321	HDU2-SDS	3075	0.10
A-2	R End	-0.37	-23.75	1	794	788		1581	Compression	11601	0.14
Line B											
B-1	L End	-35.62	-0.25	1	1416	268		1148	HDU5-SDS	5645	0.20
B-1	L End	-35.62	-0.25	1	1416	446		1861	Compression	10312	0.18
B-1	L Op 1	-26.96	-0.25	1	1416	393		1023	HDU5-SDS	5645	0.18
B-1	L Op 1	-26.96	-0.25	1	1416	654		2070	Compression	11601	0.18
B-1	R Op 1	-22.54	-0.25	1	0	208		208	Compression		_
B-2	L Op 2	-17.87	-0.25	1	0	158		158	Compression		_
B-2	R Op 2	-14.46	-0.25	1	0	158		158	Compression		-
B-2	L Op 2	-11.12	-0.25	1	0	404		404	Compression		-
	V Elem	-2.79	-0.25	1	0	404		404	Compression		

Legend:

Line-Wall:

At wall or opening – Shearline and wall number

At vertical element – Shearline

Posit'n – Position of stud pack that hold-down is attached to or which is applying compression force:

V Elem – Vertical element: column or strengthened studs required where not at wall end or opening

L or R End – At left or right wall end

L or R Op n – At left or right side of opening n

t @ Op n – Uplift force t at opening n from offset opening in perforated wall above, from SDPWS 4.3.6.4.2.1

Location - Co-ordinates in Plan View

Load Case – Results are for critical load case:

ASCE 7 All Heights: Case 1 or 2 from Fig. 27.3-8

ASCE 7 Low-rise: Windward corner(s) and Case A or B from Fig. 28.3-1

ASCE 7 Minimum loads (27.1.5 / 28.3.4): "Min"

Tensile Hold-down or Compressive Stud Force – Upwards force on hold-down at one end of the wall or downward force on bottom plate under studs at the other end, for each force direction. Includes forces transferred from upper levels.

Shear – Overturning component = $V \times h / beff$ from SDPWS Eqn. 4.3-7; $V = begin{align*} V = begin{al$

Dead - Dead load resisting component, factored for ASD by 0.60 for tension and 1.0 for compression

Uplift – Uplift wind load component, factored for ASD by 0.60

Cmb'd – Sum of ASD-factored overturning, dead and uplift forces. May also include the uplift force t from perforated walls from SDPWS 4.3.6.4.2.1 when openings are staggered.

Hold-down – Device model number from hold-down database; "Compression" for bearing of end stud pack on bottom plate

Cap – Hold-downs: Allowable ASD tension load from database; Compression: allowable ASD bearing force = Ct CM Cb Fcp A; A = cross sectional area of end studs. Refer to Framing materials table for details

Crit. Resp. – Critical Response = Combined ASD force / Allowable ASD tension load

Notes:

HDU2-SDS2.5 for studs with thickness > 0'-3" and depth > 0'-3.5": Uses 6 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

HDU5-SDS2.5 for stude with thickness > 0'-3" and depth > 0'-3.5": Uses 14 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

Refer to the Shear Line Dimensions table for wall height h, effective segment length beff and perforated wall adjusted sum of bi, to the Story Table for joist depth, and to the Shear Results table for perforated factor Co.

Most severe of wind load cases is used for overturning calculation.

Designer is responsible for design of connection from wall to floor or foundation for shear force shown in Shear Results table. Refer to SDPWS 4.3.6.4.3 for foundation anchor bolt requirements.

COLLECTOR FORCES (flexible wind design)

Level 1	-				Drag	Strut	Strap/B	locking
Line-	Position on Wall	Locatio	n [ft]	Load	Force	[lbs]	Force	e [lbs]
Wall	or Opening	X	Υ	Case	>	<	>	<
Line 2								
2-1	Right Opening 1	-0.25	-15.83		-983	1036		
Line A					Ĭ	İ		
A-2	Left Wall End	-16.00	-23.75		-684	684		
A-2	Left Opening 1	-8.92	-23.75		-495	495		
A-2	Right Opening 1	-5.08	-23.75		-129	129		
A-2	Left Opening 1	-8.92	-23.75			i	297	297
A-2	Right Opening 1	-5.08	-23.75			i	202	202
Line B								
B-1	Left Opening 1	-26.83	-0.25		919	-919		
	_					1		

Legend:

Line-Wall - Shearline and wall number

Position...- Side of opening or wall end that drag strut is attached to

Location - Co-ordinates in Plan View

Load Case - Results are for critical load case:

ASCE 7 All heights Case 1 or 2

ASCE 7 Low-rise corner; Case A or B

Drag strut Force - Axial force in transfer element at openings, gaps, or changes in design shear along shearline. + : tension; - : compression.

Based on ASD-factored shearline force (vmax from 4.3.6.4.1.1 for perforated walls)

Strap/Blocking Force - For FTAO walls, force transferred from above and below opening to shearwall pier.

- -> Due to shearline force in the west-to-east or south-to-north direction
- <- Due to shearline force in the east-to-west or north-to-south direction

MWFRS DEFLECTION (flexible wind design)

These deflections are used to determine shearwall stiffness for force distribution

Wall,	W						Bend	ling	Ga	Nail	slip	Shear	Hold	Total
segment	Gp	Dir	Srf	V	b	h	Α	Defl	kips/	Vn	en	Defl	Defl	Defl
				plf	ft	ft	sq.in	in	in	lbs	in	in	in	in
Level 1														
Line 1												Ì		
1-1	1	S->N	ExtS	130.7	23.50	10.00	16.5	.002	13.8	196	.032	.095	0.04	0.14
		N->S	ExtS	125.7	23.50	10.00	16.5	.002	13.8	196	.032	.091	0.04	0.13
Line 2												1		
2-1,2	1	s->N	ExtS	187.2	15.58	10.00	16.5	.004	13.8	196	.032	.136	0.07	0.21
		N->S	ExtS	197.4	15.58	10.00	16.5	.004	13.8	196	.032	.143	0.08	0.23
Line A												1		
A-2	1	Both	-	_					_	_	-	-		0.22
A-2,1		Both	ExtS	103.2	7.08	9.00	16.5	.003	13.8	196	.032	.067	0.12	0.19
A-2,2		M->E	ExtS	103.2	4.83	9.00	16.5	.005	13.8	196	.032	.067	0.18	0.25
		E->M	ExtS	103.2	4.83	9.00	16.5	.005	13.8	196	.032	.067	0.19	0.26
Line B														
B-1,1	1	W->E	ExtS	137.6	8.92	10.00	16.5	.005	13.8	196	.032	.100	0.11	0.22
		E->W	ExtS	137.6	8.92	10.00	16.5	.005	13.8	196	.032	.100	0.11	0.21

Leaend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B.

W Gp - Wall design group, refer to Sheathing and Framing Materials tables.

Dir - Force direction.

Srf - Wall surface = Int(erior) or Ext(erior) for perimeter walls, 1 or 2 for interior partitions; Comb = Combined v and Ga for identical materials on each side; S = Ga from side with stronger shear resistance; $W = 2 \times Ga$ of weaker side.

v – ASD shear force per unit distance on wall segment.

Unblocked walls = v / Cub as per SDPWS 4.3.4.3, Cub = Unblocked factor from 4.3.5.3, shown in the Shear Results table.

Perforated walls = vmax from Eqn. 4.3-9, as per 4.3.4.2.

FTAO walls = Unit shear force in pier beside opening(s).

b - Wall or segment length.

Segmented wall or FTAO wall segments = Width of wall segment between openings.

Perforated wall = Sum of FHS segments, modified as in 4.3.3.4 per 4.3.4.2.

FTAO wall = Length of wall including openings.

h - Wall height.

FTAO piers = Distance from bottom of opening to top of wall; for end segments, results using that distance and the wall height are averaged.

Defl — Horizontal shear wall deflection due to given term:

Bending = $8vh^3$ / EAb; A = Effective cross sectional area of segment end stud(s), E = stud mod. of elasticity in Framing Materials table For i studs at one end and j at the other, A = 2 ij / (i + j) x area of one stud, based on Ex. C4.3.4-3

Shear = vh / 1000 Ga; Ga = vw / (vw / Gvtv + 0.75 en), from SDPWS Ex. C4.3.4-1.

vw = ASD sheathing capacity.

Gvtv = Shear stiffness from C4.3.4, shown in Sheathing Materials table.

en = Nail slip from Table C4.2.3D of form aVn^b for WSP, varies linearly to value at capacity for other materials.

Vn = Shear force per nail along panel edge at ASD capacity vw.

Hold – Anchorage system (hold-down) = da x h / beff.

da = Vertical hold-down displacement; refer to Hold-down Displacement table for components.

beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) beff is given in the Shear Wall Dimensions table.

For FTAO walls, hold-down device at end of wall is applied to all segments, as per APA T555.

Total Defl – Deflection from bending + shear + hold-down, as per Eqn. 4.3-2.

For FTAO walls, the average of the values for the segments, as per APA T555.

MWFRS HOLD-DOWN DISPLACEMENT (flexible wind design)

These displacements are used to determine deflections for force distribution

Wall,		Hold-	Tens.	Vert.	Displace	ment	Slip	page	Shrink	Comp.	Crush	Total	Horz
segment	Dir	down	force	Manuf	Add	da	Vf	da	+Extra	force	da	da	Defl
			lbs	in	in	in	lbs	in	in	lbs	in	in	in
Level 1													
Line 1			1										
1-1	S->N	HDU2-SDS	616	.018	.000	0.018	-	_	.068	2496	0.01	0.09	0.04
	N->S	HDU2-SDS	566	.016	.000	0.016	_	_	.068	2446	0.01	0.09	0.04
Line 2			1										
2-1,2	s->N	HDU2-SDS	1247	.036	.000	0.036	_	_	.068	2682	0.01	0.11	0.07
	N->S	HDU2-SDS	1538	.044	.000	0.044	-	-	.068	3098	0.01	0.12	0.08
Line A													
A-2,1	W->E	HDU2-SDS	751	.021	.000	0.021	_	_	.068	1509	0.00	0.09	0.12
	E->W	HDU2-SDS	636	.018	.000	0.018	-	-	.068	1317	0.00	0.09	0.12
A-2,2	M->E	HDU2-SDS	720	.021	.000	0.021	-	-	.068	1221	0.00	0.09	0.18
	E->M	HDU2-SDS	835	.024	.000	0.024	-	-	.068	1413	0.00	0.10	0.19
Line B													
B-1,1	W->E	HDU5-SDS	1148	.023	.000	0.023	-	_	.068	2070	0.01	0.10	0.11
	E->W	HDU5-SDS	1023	.021	.000	0.021	-	-	.068	1861	0.00	0.09	0.11

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B

Dir - Force direction

Tens., Comp. – Accumulated ASD hold-down tension force T and end stud compression force C from overturning, dead and wind uplift loads.

da - Vertical displacements due to the following components:

Vert. Displacement - Elongation when slippage calculated separately; displacement when combined elongation/slippage used

Manuf – Using manufacturer's value for anchor bolt length, or no bolt contribution for connector-only elongation

Unless marked with * = (ASD tension force / ASD hold-down capacity) x max ASD elongation or displacement

* - Maximum strength-level elongation or displacement is used. May result in higher than actual displacements for lightly loaded hold-downs, causing the segment to draw less force due to lower than actual stiffness.

Add – Due to longer anchor bolt length than manufacturer's value, or entire bolt length for connector-only elongation = TL / (Ab x Es)

Ab = bolt cross-sectional area

Es = steel modulus = 29000000 psi

L = Lb - Lh

Lb = Total bolt length shown in Storey Information table

Lh = Manufacturer's anchor bolt length for given displacement/elongation from hold-down database

Slippage - Due to vertical slippage of hold-down fasteners attached to stud(s) when not combined with elongation

Nails = en from SDPWS Table C4.2.3D using values for wood structural panels

Bolts = $Vf/(270,000 D^{1.5})$ (NDS 11.3.6); \tilde{D} = bolt diameter, Vf = Tension force T/ number of fasteners

Shrink + Extra - Wood shrinkage plus extra displacement due to mis-cuts, gaps, etc.

Shrinkage = 0.002 x (19% fabrication - 10% in-service moisture contents) x Ls

Ls = Length between anchor bolt fasteners subject to perp-to-grain shrinkage; see Story Information table

Crush - Deformation of bottom plate at compression end of wall segment

 $= 0.02" \, x \, [r/0.73, \, r < 0.73; \, (1 + (r-0.73)/0.27), \, 0.73 < r < 1; \, 2 \, r^{\land} 3, \, r > 1]$

r = fcp / Fcp'; Fcp' = Ct CM Fcp; fcp = C / A, A = cross sectional area of end studs

Total da - Vert. Displacement + Slippage + Shrink + Crush + Extra

Horz Defl – Anchorage deflection term in SDPWS Eqn. C.4.3.4-1 = h / beff x da

h = Wall height. For end segments in FTAO walls, h is the average of the wall height and the distance from the bottom of opening to top of wall beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width)

h and b are shown in Deflection table, beff in the Shear Wall Dimensions table

Rigid Diaphragm Wind Design ASCE 7 Directional (All Heights) Loads

SHEAR RESULTS

N-S	W	For	ASD	Shear Force	[plf]	Asp	-Cub		Allo	wable	Shea	r [plf]		Resp.
Shearlines	Gp	Dir	V	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Co	С	Cmb	V [lbs]	Ratio
Line 1														
Level 1		1				1								
Ln1, Lev1	1	S->N	135.4	_	3183	' –	1.0	-	393	-		393	9224	0.35s
	1	N->S	131.7	-	3096	-	1.0	-	393	-		393	9224	0.34S
Line 2		1				1								
Ln2, Lev1	-	S->N	_	_	2806	-	-	-	_	_		-	6116	-
	-	N->S	-	_	2935	-	-	-	-	-		-	6116	-
Wall 2-1	1	S->N	_	_	2806	-	1.0	-	393	_		-	6116	-
	1	N->S	_	_	2935	-	1.0	-	393	_		-	6116	-
Seg. 1	-	Both	0.0	_	0	-	1.0	-	393	_		393	_	- S
Seg. 2	-	S->N	180.0	-	2806	-	1.0	-	393	-		393	6116	0.46S
	-	N->S	188.3	-	2935	-	1.0	-	393	-		393	6116	0.48S
E-W	W	For	ASD	Shear Force	plf]	Asp	-Cub		Allo	wable	Shea	r [plf]		Resp.
Shearlines	Gp	Dir	v	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Co	С	Cmb	V [lbs]	Ratio
Line A														
Level 1		ĺ				ĺ								
LnA, Lev1	_	Both	_	_	1498	-	_	_	_	_		_	6182	-
Wall A-2	1	Both	-	-	1498	-	1.0	-	393	-		-	6182	-
Seg. 1	-	Both	125.7	74.7	890	-	1.0	-	393	-		393	2780	0.32S
Open. 1	-	Both	_	158.5	608	-	-	-	393	_		393	1505	0.40
Seg. 2	-	Both	125.7	74.7	607	-	1.0	-	393	-		393	1897	0.32S
Line B														
LnB, Lev1	-	Both	_	_	959	-	-	-	-	_		-	3500	-
Wall B-1	1	Both	_	_	959	-	1.0	-	393	-		-	3500	-
Seg. 1	-	Both	107.6	_	959	-	1.0	-	393	-		393	3500	0.27S
Seg. 2	-	Both	0.0	-	0	_	1.0	-	393	-		393	-	- S
				-		-								

Legend:

W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group.

For Dir - Direction of wind force along shearline.

v - Design shear force on segment = ASD-factored shear force per unit length of full-height sheathing (FHS)

vmax/vft - Perforated walls: Collector and in-plane anchorage force as per SDPWS eqn. 4.3-9 = V/FHS/Co. FHS is factored for narrow segments as per 4.3.3.4

FTAO walls: Shear force in piers above and below either openings or piers beside opening(s). Aspect ratio factor does not apply to these piers.

V – ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment

Asp/Cub – Unblocked wood structural panel factor Cub from SDPWS 4.3.5.3 or Aspect Ratio factor from 4.3.5.5.1, which for perforated walls is sum bi / FHS from 4.3.5.6 with bi defined in 4.3.3.4. For multi-segment walls, wall row shows Cub and segment rows show Asp. For single-segment walls and perforated walls, value shown is Asp for blocked walls and Cub for unblocked walls.

Int, Ext - Nominal unit shear capacity of interior and exterior sheathing, factored by Table 4.3-1 Note 3 for framing specific gravity and Note 10 for presence of hold-downs. For wall segments, also include unblocked factor Cub and aspect ratio adjustments.

Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-6.

C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using Eqns. 4.3-3,-4.

Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co.

V - Total factored shear capacity of shearline, wall or segment.

Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "S" indicates that the seismic design criterion was critical in selecting wall.

Notes

Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,1.

Hold-Down and Compression Design (rigid wind design)

Level 1					1	ensile Ho	ld-down			_	
Line-		Locat	ion [ft]	Load	or Com	pressive S	Stud Force	[lbs]		Cap	Crit
Wall	Posit'n	X	Y	Case	Shear	Dead	Uplift	Cmb'd	Hold-down	[lbs]	Resp.
Line 1											
1-1	L End	-35.75	-23.62	1	1369	705		664	HDU2-SDS	3075	0.22
1-1	L End	-35.75	-23.62	1	1332	1175		2506	Compression	10312	0.24
1-1	R End	-35.75	-0.37	1	1332	705		627	HDU2-SDS	3075	0.20
1-1	R End	-35.75	-0.37	1	1369	1175		2544	Compression	10312	0.25
Line 2					[
2-1	R Op 1	-0.25	-15.71	1	1830	468		1362	HDU2-SDS	3075	0.44
2-1	R Op 1	-0.25	-15.71	1	1914	779		2693	Compression	10312	0.26
2-1	R End	-0.25	-0.37	1	1914	468		1446	HDU2-SDS	3075	0.47
2-1	R End	-0.25	-0.37	1	1830	779		2609	Compression	10312	0.25
Line A					Ĭ				_		
A-2	L End	-15.87	-23.75	1	966	473		494	HDU2-SDS	3075	0.16
A-2	L End	-15.87	-23.75	1	966	788		1754	Compression	10312	0.17
A-2	R End	-0.37	-23.75	1	966	473		494	HDU2-SDS	3075	0.16
A-2	R End	-0.37	-23.75	1	966	788		1754	Compression	11601	0.15
Line B					Ĭ				_		
B-1	L End	-35.62	-0.25	1	1107	268		840	HDU5-SDS	5645	0.15
B-1	L End	-35.62	-0.25	1	1107	446		1553	Compression	10312	0.15
B-1	L Op 1	-26.96	-0.25	1	1107	268		840	HDU5-SDS	5645	0.15
B-1	L Op 1	-26.96	-0.25	1	1107	446		1553	Compression	11601	0.13
	-								-		

Legend:

Line-Wall:

At wall or opening - Shearline and wall number

At vertical element - Shearline

Posit'n – Position of stud pack that hold-down is attached to or which is applying compression force:

V Elem – Vertical element: column or strengthened studs required where not at wall end or opening

L or R End - At left or right wall end

L or R Op n – At left or right side of opening n

t @ Op n – Uplift force t at opening n from offset opening in perforated wall above, from SDPWS 4.3.6.4.2.1

Location - Co-ordinates in Plan View

Load Case – Results are for critical load case:

ASCE 7 All Heights: Case 1 or 2 from Fig. 27.3-8

ASCE 7 Low-rise: Windward corner(s) and Case A or B from Fig. 28.3-1

ASCE 7 Minimum loads (27.1.5 / 28.3.4): "Min"

Tensile Hold-down or Compressive Stud Force – Upwards force on hold-down at one end of the wall or downward force on bottom plate under studs at the other end, for each force direction. Includes forces transferred from upper levels.

Shear – Overturning component = $V \times h$ / beff from SDPWS Eqn. 4.3-7; V = force on segment, ASD-factored by 0.60; h = wall height, beff = wall segment length – (tension stud pack width + hold-down anchor bolt offset) – (1/2 compression stud pack width). For perforated walls = $V \times h$ / Co sum (bi) from SDPWS Eqn. 4.3-8.

Dead - Dead load resisting component, factored for ASD by 0.60 for tension and 1.0 for compression

Uplift - Uplift wind load component, factored for ASD by 0.60

Cmb'd – Sum of ASD-factored overturning, dead and uplift forces. May also include the uplift force t from perforated walls from SDPWS 4.3.6.4.2.1 when openings are staggered.

Hold-down - Device model number from hold-down database; "Compression" for bearing of end stud pack on bottom plate

Cap – Hold-downs: Allowable ASD tension load from database; Compression: allowable ASD bearing force = Ct CM Cb Fcp A; A = cross sectional area of end studs. Refer to Framing materials table for details

Crit. Resp. - Critical Response = Combined ASD force / Allowable ASD tension load

Notes:

HDU2-SDS2.5 for studs with thickness > 0'-3" and depth > 0'-3.5": Uses 6 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

HDU5-SDS2.5 for studs with thickness > 0'-3" and depth > 0'-3.5" : Uses 14 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

Refer to the Shear Line Dimensions table for wall height h, effective segment length beff and perforated wall adjusted sum of bi, to the Story Table for joist depth, and to the Shear Results table for perforated factor Co.

Most severe of wind load cases is used for overturning calculation.

Designer is responsible for design of connection from wall to floor or foundation for shear force shown in Shear Results table. Refer to SDPWS 4.3.6.4.3 for foundation anchor bolt requirements.

COLLECTOR FORCES (rigid wind design)

Level 1		-			Drag 9		•	locking
Line-	Position on Wall	Locatio	n [ft]	Load	Force	[lbs]	Force	e [lbs]
Wall	or Opening	X	Υ	Case	>	<	>	<
Line 2								
2-1	Right Opening 1	-0.25	-15.83		-945	989		
Line A						İ		
A-2	Left Wall End	-16.00	-23.75		-833	833		
A-2	Left Opening 1	-8.92	-23.75		-603	603		
A-2	Right Opening 1	-5.08	-23.75		-157	157		
A-2	Left Opening 1	-8.92	-23.75			i	361	361
A-2	Right Opening 1	-5.08	-23.75			İ	246	246
Line B								
B-1	Left Opening 1	-26.83	-0.25		718	-718		
						ĺ		

Legend:

Line-Wall - Shearline and wall number

Position...- Side of opening or wall end that drag strut is attached to

Location - Co-ordinates in Plan View

Load Case - Results are for critical load case:

ASCE 7 All heights Case 1 or 2

ASCE 7 Low-rise corner; Case A or B

Drag strut Force - Axial force in transfer element at openings, gaps, or changes in design shear along shearline. + : tension; - : compression.

Based on ASD-factored shearline force (vmax from 4.3.6.4.1.1 for perforated walls)

Strap/Blocking Force - For FTAO walls, force transferred from above and below opening to shearwall pier.

- -> Due to shearline force in the west-to-east or south-to-north direction
- <- Due to shearline force in the east-to-west or north-to-south direction

MWFRS DEFLECTION (rigid wind design)

These deflections are used to determine shearwall stiffness for force distribution

Wall,	W						Bend	ling	Ga	Nails	slip	Shear	Hold	Total
segment	Gp	Dir	Srf	V	b	h	Α	Defl	kips/	Vn	en	Defl	Defl	Defl
				plf	ft	ft	sq.in	in	in	lbs	in	in	in	in
Level 1							-							
Line 1												1		
1-1	1	s->N	ExtS	135.4	23.50	10.00	16.5	.002	13.8	196	.032	.098	0.04	0.14
		N->S	ExtS	131.7	23.50	10.00	16.5	.002	13.8	196	.032	.096	0.04	0.14
Line 2												1		
2-1,2	1	s->N	ExtS	180.0	15.58	10.00	16.5	.004	13.8	196	.032	.131	0.07	0.21
		N->S	ExtS	188.3	15.58	10.00	16.5	.004	13.8	196	.032	.137	0.08	0.22
Line A														
A-2	1	Both	-	-					-	-	-	-		0.25
A-2,1		Both	ExtS	125.7	7.08	9.00	16.5	.004	13.8	196	.032	.082	0.13	0.22
A-2,2		Both	ExtS	125.7	4.83	9.00	16.5	.006	13.8	196	.032	.082	0.20	0.29
Line B														
B-1,1	1	Both	ExtS	107.6	8.92	10.00	16.5	.004	13.8	196	.032	.078	0.10	0.18

legend

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B.

W Gp - Wall design group, refer to Sheathing and Framing Materials tables.

Dir - Force direction.

Srf – Wall surface = Int(erior) or Ext(erior) for perimeter walls, 1 or 2 for interior partitions; Comb = Combined v and Ga for identical materials on each side;

S = Ga from side with stronger shear resistance; $W = 2 \times Ga$ of weaker side.

v – ASD shear force per unit distance on wall segment.

Unblocked walls = v / Cub as per SDPWS 4.3.4.3, Cub = Unblocked factor from 4.3.5.3, shown in the Shear Results table.

Perforated walls = vmax from Eqn. 4.3-9, as per 4.3.4.2.

FTAO walls = Unit shear force in pier beside opening(s).

b - Wall or segment length.

Segmented wall or FTAO wall segments = Width of wall segment between openings.

Perforated wall = Sum of FHS segments, modified as in 4.3.3.4 per 4.3.4.2.

FTAO wall = Length of wall including openings.

h – Wall height.

FTAO piers = Distance from bottom of opening to top of wall; for end segments, results using that distance and the wall height are averaged. Defl – Horizontal shear wall deflection due to given term:

Bending = 8vh^3 / EAb; A = Effective cross sectional area of segment end stud(s), E = stud mod. of elasticity in Framing Materials table

For i studs at one end and j at the other, A = 2 ij / (i + j) x area of one stud, based on Ex. C4.3.4-3

Shear = vh / 1000 Ga; Ga = vw / (vw / Gvtv + 0.75 en), from SDPWS Ex. C4.3.4-1.

vw = ASD sheathing capacity.

Gvtv = Shear stiffness from C4.3.4, shown in Sheathing Materials table.

en = Nail slip from Table C4.2.3D of form aVn^b for WSP, varies linearly to value at capacity for other materials.

Vn = Shear force per nail along panel edge at ASD capacity vw.

Hold – Anchorage system (hold-down) = da x h / beff.

da = Vertical hold-down displacement; refer to Hold-down Displacement table for components.

beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) beff is given in the Shear Wall Dimensions table.

For FTAO walls, hold-down device at end of wall is applied to all segments, as per APA T555.

Total Defl – Deflection from bending + shear + hold-down, as per Eqn. 4.3-2.

For FTAO walls, the average of the values for the segments, as per APA T555.

MWFRS HOLD-DOWN DISPLACEMENT (rigid wind design)

These displacements are used to determine deflections for force distribution

Wall,		Hold-	Tens.	Vert.	Displace	ment	Slip	oage	Shrink	Comp.	Crush	Total	Horz
segment	Dir	down	force	Manuf	Add	da	Vf	da	+Extra	force	da	da	Defl
_			lbs	in	in	in	lbs	in	in	lbs	in	in	in
Level 1													
Line 1													
1-1	S->N	HDU2-SDS	664	.019	.000	0.019	-	_	.068	2544	0.01	0.09	0.04
	N->S	HDU2-SDS	627	.018	.000	0.018	_	_	.068	2507	0.01	0.09	0.04
Line 2													
2-1,2	S->N	HDU2-SDS	1362	.039	.000	0.039	-	_	.068	2609	0.01	0.11	0.07
	N->S	HDU2-SDS	1446	.041	.000	0.041	-	_	.068	2693	0.01	0.12	0.08
Line A													
A-2,1	Both	HDU2-SDS	960	.027	.000	0.027	-	_	.068	1527	0.00	0.10	0.13
A-2,2	Both	HDU2-SDS	1048	.030	.000	0.030	-	_	.068	1434	0.00	0.10	0.20
Line B													
B-1,1	Both	HDU5-SDS	840	.017	.000	0.017	_	_	.068	1553	0.00	0.09	0.10

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B

Dir – Force direction

Tens., Comp. – Accumulated ASD hold-down tension force T and end stud compression force C from overturning, dead and wind uplift loads. da – Vertical displacements due to the following components:

Vert. Displacement - Elongation when slippage calculated separately; displacement when combined elongation/slippage used

Manuf – Using manufacturer's value for anchor bolt length, or no bolt contribution for connector-only elongation

Unless marked with * = (ASD tension force / ASD hold-down capacity) x max ASD elongation or displacement

* - Maximum strength-level elongation or displacement is used. May result in higher than actual displacements for lightly loaded hold-downs, causing the segment to draw less force due to lower than actual stiffness.

Add – Due to longer anchor bolt length than manufacturer's value, or entire bolt length for connector-only elongation = TL / (Ab x Es)

Ab = bolt cross-sectional area

Es = steel modulus = 29000000 psi

L = Lb - Lh

Lb = Total bolt length shown in Storey Information table

Lh = Manufacturer's anchor bolt length for given displacement/elongation from hold-down database

Slippage - Due to vertical slippage of hold-down fasteners attached to stud(s) when not combined with elongation

Nails = en from SDPWS Table C4.2.3D using values for wood structural panels

Bolts = Vf / (270,000 D^1.5) (NDS 11.3.6); D = bolt diameter, Vf = Tension force T / number of fasteners

Shrink + Extra - Wood shrinkage plus extra displacement due to mis-cuts, gaps, etc.

Shrinkage = 0.002 x (19% fabrication – 10% in-service moisture contents) x Ls

Ls = Length between anchor bolt fasteners subject to perp-to-grain shrinkage; see Story Information table

Crush – Deformation of bottom plate at compression end of wall segment

= 0.02" $\times [r/0.73, r < 0.73; (1 + (r - 0.73)/0.27), 0.73 < r < 1; 2 r^3, r > 1]$

r = fcp / Fcp'; Fcp' = Ct CM Fcp; fcp = C / A, A = cross sectional area of end studs

Total da – Vert. Displacement + Slippage + Shrink + Crush + Extra

Horz Defl – Anchorage deflection term in SDPWS Eqn. C.4.3.4-1 = h / beff x da

h = Wall height. For end segments in FTAO walls, h is the average of the wall height and the distance from the bottom of opening to top of wall beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) h and b are shown in Deflection table, beff in the Shear Wall Dimensions table

Flexible Diaphragm Seismic Design

SEISMIC INFORMATION

Level	Mass	Area	Story Shea	r Fx [lbs]	Shear Resis	tance [lbs]		Diaphragm	Force [lbs	\$]
1	[lbs]	[sq.ft]	E-W	N-S	E-W	N-S	E	-W	ı	N-S
							Fpx	Design	Fpx	Design
1 All	27256 27256	834.3	3264 3264	3264 3264	6915 -	10957 -	4243	4243 -	4243	4243 -

Legend:

Mass – Sum of all generated and input building masses on level = wx in ASCE 7 Eqn. 12.8-12.

Story Shear – Total ASD-factored shear force induced at level x from Eqn. 12.8-11.

Shear Resistance - Lateral design strength of all shear-resisting elements on story, for use in weak story evaluation (4.1.8).

Diaphragm Force – used by Shearwalls only for drag strut forces, as per Exception to 12.10.2.1.

Fpx - Minimum ASD-factored force for diaphragm design from Egns. 12.10-1, -2, and -3.

Design = The greater of the story shear and Fpx + transfer forces from discontinuous shearlines, factored by overstrength (omega) as per 12.10.1.1. Omega = 2.5 as per 12.2-1.

Redundancy Factor p (rho):

E-W 1.30, N-S 1.30

Input by user (overriding calculated value).

Applies to shearwall design, hold-down forces and the drag strut force component based on shearline forces; does not apply to story drift, out-of-plane force, or the diaphragm force Fpx and the drag strut force component based on it.

Vertical Earthquake Load Ev

Ev = 0.2 Sds D; Sds = 1.11; Ev = 0.222 D unfactored; 0.156 D factored; total dead load factor: 0.6 - 0.156 = 0.444 tension, 1.0 + 0.156 = 1.156 compression.

SHEAR RESULTS (flexible seismic design)

V [lbs] Res Rati
4369 - 4369 - - 4369 0.49
4369 - 4369 - - 4369 0.49
4369 - 4369 - - 4369 0.49
4369 - 4369 0.49
4369 - 4369 0.49
4369 0.49
4369 0.49
Pas
V [lbs] Rati
4416 -
4416 -
1986 0.64
1075 0.80
1355 0.64
2500 -
2500 -
2500 0.85

Legend:

W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group.

For Dir – Direction of seismic force along shearline.

v - Design shear force on segment = ASD-factored shear force per unit length of full-height sheathing (FHS)

vmax/vft - Perforated walls: Collector and in-plane anchorage force as per SDPWS eqn. 4.3-9 = V/FHS/Co. FHS is factored for narrow segments as per 4.3.3.4

FTAO walls: Shear force in piers above and below either openings or piers beside opening(s). Aspect ratio factor does not apply to these piers.

V – ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment

Asp/Cub – Unblocked wood structural panel factor Cub from SDPWS 4.3.5.3 or Aspect Ratio factor from 4.3.5.5.1, which for perforated walls is sum bi / FHS from 4.3.5.6 with bi defined in 4.3.3.4. For multi-segment walls, wall row shows Cub and segment rows show Asp. For single-segment walls and perforated walls, value shown is Asp for blocked walls and Cub for unblocked walls.

Int, Ext - Nominal unit shear capacity of interior and exterior sheathing, factored by Table 4.3-1 Note 3 for framing specific gravity and Note 10 for presence of hold-downs. For wall segments, also include unblocked factor Cub and aspect ratio adjustments.

Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-6.

C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using Egns. 4.3-3.-4.

Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co.

V – Total factored shear capacity of shearline, wall or segment.

Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "W" indicates that the wind design criterion was critical in selecting wall.

Notes

Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,1.

Hold-Down and Compression Design (flexible seismic design)

Level 1	una compro		,	<u>, , , , , , , , , , , , , , , , , , , </u>	Tensile Hold	l-down				
Line-		Locat	ion [ft]	or Coi	mpressive St	ud Force [lbs	sl		Cap	Crit
Wall	Posit'n	X	Ÿ	Shear	Dead	Ev	- Cmb'd	Hold-down	[lbs]	Resp.
Line 1									_	
1-1	L End	-35.75	-23.62	913	705	183	390	HDU2-SDS	3075	0.13
1-1	L End	-35.75	-23.62	913	1175	183	2270	Compression	10312	0.22
1-1	R End	-35.75	-0.37	913	705	183	390	HDU2-SDS	3075	0.13
1-1	R End	-35.75	-0.37	913	1175	183	2270	Compression	10312	0.22
Line 2										
	V Elem	-0.25	-22.21	0	313	49	361	Compression		
2-1	R Op 1	-0.25	-15.71	1384	655	170	899	HDU2-SDS	3075	0.29
2-1	R Op 1	-0.25	-15.71	1384	1092	170	2645	Compression	10312	0.26
2-1	R End	-0.25	-0.37	1384	468	121	1037	HDU2-SDS	3075	0.34
2-1	R End	-0.25	-0.37	1384	779	121	2284	Compression	10312	0.22
Line A										
A-1	L Op 1	-32.12	-23.75	0	796	124	920	Compression		_
A-1	R Op 1	-15.96	-23.75	0	1583	246	1830	Compression	10312	0.18
A-2	L End	-15.87	-23.75	1372			1372	HDU2-SDS	3075	0.45
A-2	L End	-15.87	-23.75	1372			1372	Compression	10312	0.13
A-2	R End	-0.37	-23.75	1372	473	123	1022	HDU2-SDS	3075	0.33
A-2	R End	-0.37	-23.75	1372	788	123	2282	Compression	11601	0.20
Line B										
B-1	L End	-35.62	-0.25	2442	268	69	2244	HDU5-SDS	5645	0.40
B-1	L End	-35.62	-0.25	2442	446	69	2957	Compression	10312	0.29
B-1	L Op 1	-26.96	-0.25	2442	393	102	2151	HDU5-SDS	5645	0.38
B-1	L Op 1	-26.96	-0.25	2442	654	102	3198	Compression	11601	0.28
B-1	R Op 1	-22.54	-0.25	0	208	32	241	Compression		-
B-2	L Op 2	-17.87	-0.25	0	158	25	183	Compression		_
B-2	R Op 2	-14.46	-0.25	0	158	25	183	Compression		_
B-2	L Op 2	-11.12	-0.25	0	404	63	467	Compression		_
1	V Elem	-2.79	-0.25	0	404	63	467	Compression		

Legend:

Line-Wall:

At wall or opening – Shearline and wall number

At vertical element – Shearline

Posit'n – Position of stud pack that hold-down is attached to:

V Elem – Vertical element: column or strengthened studs required where not at wall end or opening

L or R End – At left or right wall end

L or R Op n – At left or right side of opening n

t @ Op n – Uplift force t at opening n from offset opening in perforated wall above, from SDPWS 4.3.6.4.2.1

Location - Co-ordinates in Plan View

Tensile Hold-down or Compressive Stud Force – Upwards force on hold-down at one end of the wall or downward force on bottom plate under studs at the other end, for each force direction. Includes forces transferred from upper levels.

Shear – Overturning component = $V \times h / beff$ from SDPWS Eqn. 4.3-7; $V = box{force on segment, ASD-factored by 0.70; } h = wall height, beff = wall segment length – (tension stud pack width + hold-down anchor bolt offset) – (1/2 compression stud pack width). For perforated walls = <math>V \times h / Co$ sum (bi) from SDPWS Eqn. 4.3-8.

Dead - Dead load resisting component, factored for ASD by 0.60 for tension and 1.0 for compression

Ev – Vertical seismic load effect from ASCE 7 12.4.2.2 = -0.2 Sds x ASD factor x unfactored D = 0.259 SDS x factored D. Refer to Seismic Information table for more details.

Cmb'd – Sum of ASD-factored overturning, dead and vertical seismic forces. May also include the uplift force t from perforated walls from SDPWS 4.3.6.4.2.1 when openings are staggered.

Hold-down - Device model number from hold-down database; "Compression" for bearing of end stud pack on bottom plate

Cap – Hold-downs: Allowable ASD tension load from database; Compression: Allowable ASD bearing force = Ct CM Cb Fcp A; A = cross sectional area of end studs. Refer to Framing materials table for details.

Crit. Resp. - Critical Response = Combined ASD force/Allowable ASD tension load

Notes

HDU2-SDS2.5 for studs with thickness > 0'-3" and depth > 0'-3.5": Uses 6 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

HDU5-SDS2.5 for studs with thickness > 0'-3" and depth > 0'-3.5" : Uses 14 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

Combined force from ASCE 7 2.4.1 load combination 10 = - (0.6D - 0.7Ev + 0.7Eh); Eh (from 12.4.2.1) = - shear overturning force

Refer to the Shear Line Dimensions table for wall height h, effective segment length beff and perforated wall adjusted sum of bi, to the Story Table for joist depth, and to the Shear Results table for perforated factor Co.

Designer is responsible for design of connection from wall to floor or foundation for shear force shown in Shear Results table. Refer to SDPWS 4.3.6.4.3 for foundation anchor bolt requirements.

COLLECTOR FORCES (flexible seismic design)

Level 1		Strut	Strap/B	locking				
Line-	Position on Wall	Location	[ft]	Force	[lbs]	Force [lbs]		
Wall	or Opening	X Y		>	<	>	<	
Line 2								
	Shearline force			2122	2122			
2-1	Right Opening 1	-0.25	-15.83	-715	715			
Line A			İ					
	Shearline force		ĺ	2127	2127			
A-2	Left Wall End	-16.00	-23.75	-1183	1183			
A-2	Left Opening 1	-8.92	-23.75	-856	856			
A-2	Right Opening 1	-5.08	-23.75	-223	223			
A-2	Left Opening 1	-8.92	-23.75			513	513	
A-2	Right Opening 1	-5.08	-23.75			350	350	
Line B								
	Shearline force			2116	2116			
B-1	Left Opening 1	-26.83	-0.25	1585	-1585			

Legend:

Line-Wall - Shearline and wall number

Position...- Side of opening or wall end that drag strut is attached to

Location - Co-ordinates in Plan View

Drag strut Force - Axial force in transfer element at openings, gaps, or changes in design shear along shearline. + : tension; - : compression.

Based on ASD-factored shearline force shown. For SDC C-F, it is the greater of the design shearline force and the diaphragm force Fpx, added to shearline force from story above and to forces transferred from discontinuous shearlines factored by overstrength (omega) as per 12.10.1.1.

Refer to Seismic Information table for diaphragm forces and omega factor.

For SDC D-F, if horizontal torsional irregularities 2, 3, or 4 are input, or vertical irregularity 4 detected or input, 25% increase from 12.3.3.4 applied. For perforated walls, this force is converted to vmax using 4.3.6.4.1.1.

Strap/Blocking Force - For FTAO walls, force transferred from above and below opening to shearwall pier.

- -> Due to shearline force in the west-to-east or south-to-north direction
- <- Due to shearline force in the east-to-west or north-to-south direction

DEFLECTION (flexible seismic design)

Wall,	W						Bend	ling	Ga	Nails	slip	Shear	Hold	Total
segment	Gp	Dir	Srf	V	b	h	Α	Defl	kips/	Vn	en	Defl	Defl	Defl
				plf	ft	ft	sq.in	in	in	lbs	in	in	in	in
Level 1														
Line 1			l									ĺ		
1-1	1	Both	ExtS	99.2	23.50	10.00	16.5	.001	13.8	196	.032	.072	0.04	0.11
Line 2												Ì		
2-1,2	1	S->N	ExtS	149.6	15.58	10.00	16.5	.003	13.8	196	.032	.108	0.07	0.18
		N->S	ExtS	149.6	15.58	10.00	16.5	.003	13.8	196	.032	.108	0.08	0.19
Line A												l		
A-2	1	Both	-	-					_	-	-	-		0.35
A-2,1		W->E	ExtS	196.1	7.08	9.00	16.5	.006	13.8	196	.032	.128	0.17	0.31
		E->W	ExtS	196.1	7.08	9.00	16.5	.006	13.8	196	.032	.128	0.17	0.30
A-2,2		M->E	ExtS	196.1	4.83	9.00	16.5	.009	13.8	196	.032	.128	0.26	0.39
		E->M	ExtS	196.1	4.83	9.00	16.5	.009	13.8	196	.032	.128	0.27	0.40
Line B														
B-1,1	1	Both	ExtS	260.8	8.92	10.00	16.5	.009	13.8	196	.032	.189	0.16	0.36

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B.

W Gp - Wall design group, refer to Sheathing and Framing Materials tables.

Dir - Force direction.

Srf - Wall surface = Int(erior) or Ext(erior) for perimeter walls, 1 or 2 for interior partitions; Comb = Combined v and Ga for identical materials on each side; S = Ga from side with stronger shear resistance; $W = 2 \times Ga$ of weaker side.

v – Unfactored (strength-level) shear force per unit distance on wall segment = ASD force / 0.70, as per ASCE 7 12.8.6..

Unblocked walls = v / Cub as per SDPWS 4.3.4.3, Cub = Unblocked factor from 4.3.5.3, shown in the Shear Results table.

Perforated walls = vmax from Eqn. 4.3-9, as per 4.3.4.2.

FTAO walls = Unit shear force in pier beside opening(s).

b - Wall or segment length.

Segmented wall or FTAO wall segments = Width of wall segment between openings.

Perforated wall = Sum of FHS segments, modified as in 4.3.3.4 per 4.3.4.2.

FTAO wall = Length of wall including openings.

h - Wall height.

FTAO piers = Distance from bottom of opening to top of wall; for end segments, results using that distance and the wall height are averaged.

Defl - Horizontal shear wall deflection due to given term:

Bending = 8vh^3 / EAb; A = Effective cross sectional area of segment end stud(s), E = stud mod. of elasticity in Framing Materials table

For i studs at one end and j at the other, A = 2ij / (i + j) x area of one stud, based on Ex. C4.3.4-3

Shear = vh / 1000 Ga; Ga = 1.4 vs / (1.4 vs / Gvtv + 0.75 en) from SDPWS Eqn. C4.2.3-3.

vs = ASD sheathing capacity.

Gvtv = Shear stiffness from C4.3.4, shown in Sheathing Materials table.

en = Nail slip from Table C4.2.3D, of form aVn^b for WSP, varies linearly to value at capacity for other materials.

Vn = Strength-level shear force per nail along panel edge at ASD capacity = 1.4 vs.

Hold – Anchorage system (hold-down) = da x h / beff.

da = Vertical hold-down displacement; refer to Hold-down Displacement table for components.

beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width) beff is given in the Shear Wall Dimensions table.

For FTAO walls, hold-down device at end of wall is applied to all segments, as per APA T555.

Total Defl – Deflection from bending + shear + hold-down, as per Eqn. 4.3-2.

For FTAO walls, the average of the values for the segments, as per APA T555.

HOLD-DOWN DISPLACEMENT (flexible seismic design)

Wall,		Hold-	Tens.	Vert.	Displace	ment	Slip	page	Shrink	Comp.	Crush	Total	Horz
segment	Dir	down	force	Manuf	Add	da	Vf	da	+Extra	force	da	da	Defl
•			lbs	in	in	in	lbs	in	in	lbs	in	in	in
Level 1													
Line 1													ĺ
1-1	Both	HDU2-SDS	390	.015	.000	0.015	-	_	.068	2909	0.01	0.09	0.04
Line 2													ĺ
2-1,2	S->N	HDU2-SDS	899	.034	.000	0.034	-	_	.068	2785	0.01	0.11	0.07
	N->S	HDU2-SDS	1037	.040	.000	0.040	_	_	.068	3292	0.01	0.12	0.08
Line A													ĺ
A-2,1	W->E	HDU2-SDS	1508	.058	.000	0.058	-	_	.068	2715	0.01	0.13	0.17
	E->W	HDU2-SDS	1423	.055	.000	0.055	_	_	.068	2404	0.01	0.13	0.17
A-2,2	W->E	HDU2-SDS	1501	.058	.000	0.058	_	_	.068	2254	0.01	0.13	0.26
	E->W	HDU2-SDS	1587	.061	.000	0.061	-	-	.068	2565	0.01	0.14	0.27
Line B													ĺ
B-1,1	W->E	HDU5-SDS	2244	.063	.000	0.063	_	_	.068	3745	0.01	0.14	0.16
	E->W	HDU5-SDS	2151	.060	.000	0.060	_	_	.068	3407	0.01	0.14	0.16

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B

Dir - Force direction

Tens., Comp. – Accumulated ASD hold-down tension force T and strength-level end compression force C from overturning, dead and vertical earthquake loads.

Tens. - ASD-factored force, used for proportion of manufacturer's maximum elongation

Comp. - Strength level force as per ASCE 12.8.6

da - Vertical displacements due to the following components:

Vert. Displacement - Elongation when slippage calculated separately; displacement when combined elongation/slippage used

Manuf - Using manufacturer's value for anchor bolt length, or no bolt contribution for connector-only elongation

Unless marked with * = (ASD tension force / ASD hold-down capacity) x max strength-level elongation or displacement

* - Maximum strength-level elongation or displacement is used. May result in higher than actual displacements for lightly loaded hold-downs, causing the segment to draw less force due to lower than actual stiffness.

Add – Due to longer anchor bolt length than manufacturer's value, or entire bolt length for connector-only elongation = TL / (Ab x Es)

T = Strength level tension force (not shown)

Ab = bolt cross-sectional area

Es = steel modulus = 29000000 psi

L = Lb - Lh

Lb = Total bolt length shown in Storey Information table

Lh = Manufacturer's anchor bolt length for given displacement/elongation from hold-down database

Slippage - Due to vertical slippage of hold-down fasteners attached to stud(s) when not combined with elongation

Nails = en from SDPWS Table C4.2.3D using values for wood structural panels

Bolts = $Vf/(270,000 D^1.5)$ (NDS 11.3.6); D = bolt diameter, Vf = Tension force T/number of fasteners

Shrink + Extra - Wood shrinkage plus extra displacement due to mis-cuts, gaps, etc.

Shrinkage = 0.002 x (19% fabrication – 10% in-service moisture contents) x Ls

Ls = Length between anchor bolt fasteners subject to perp-to-grain shrinkage; see Story Information table

Crush – Deformation of bottom plate at compression end of wall segment

 $= 0.02" \, x \, [r/0.73, \, r < 0.73; \, (1 + (r-0.73)/0.27), \, 0.73 < r < 1; \, 2 \, r^{\land} 3, \, r > 1]$

r = fcp / Fcp'; $Fcp' = Ct \ CM \ Fcp$; fcp = C / A, $A = cross \ sectional \ area \ of \ end \ studs$

Total da - Vert. Displacement + Slippage + Shrink + Crush + Extra

Horz Defl – Anchorage deflection term in SDPWS Eqn. C.4.3.4-1 = h / beff x da

h = Wall height. For end segments in FTAO walls, h is the average of the wall height and the distance from the bottom of opening to top of wall beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width)

h and b are shown in Deflection table, beff in the Shear Wall Dimensions table

25160 SW.wswu May. 9, 2025 15:20:47

Rigid Diaphragm Seismic Design

SEISMIC INFORMATION

Level	Mass	Area	Story Shear Fx [lbs]		Shear Resis	stance [lbs]	Diaphragm Force [lbs]				
	[lbs]	[sq.ft]	E-W	N-S	E-W N-S		E	E-W		N-S	
							Fpx	Design	Fpx	Design	
1 All	27256 27256	834.3 -	3264 3264	3264 3264	6915 -	10957 -	4243 -	4243 -	4243 -	4243	

Legend:

Mass – Sum of all generated and input building masses on level = wx in ASCE 7 Eqn. 12.8-12.

Story Shear – Total ASD-factored shear force induced at level x from Eqn. 12.8-11.

Shear Resistance - Lateral design strength of all shear-resisting elements on story, for use in weak story evaluation (4.1.8).

Diaphragm Force – used by Shearwalls only for drag strut forces, as per Exception to 12.10.2.1.

Fpx - Minimum ASD-factored force for diaphragm design from Egns. 12.10-1, -2, and -3.

Design = The greater of the story shear and Fpx + transfer forces from discontinuous shearlines, factored by overstrength (omega) as per 12.10.1.1. Omega = 3.0 as per 12.2-1.

On at least one level and force direction, a torsional irregularity was detected and torsional amplification factor Ax applied according to 12.8.4.3. Refer to the Torsional Analysis section of the Log File output for the values of Ax.

Redundancy Factor p (rho):

E-W 1.30, N-S 1.30

Input by user (overriding calculated value).

Applies to shearwall design, hold-down forces and the drag strut force component based on shearline forces; does not apply to story drift, out-of-plane force, or the diaphragm force Fpx and the drag strut force component based on it.

Vertical Earthquake Load Ev

Ev = 0.2 Sds D; Sds = 1.11; Ev = 0.222 D unfactored; 0.156 D factored; total dead load factor: 0.6 - 0.156 = 0.444 tension, 1.0 + 0.156 = 1.156 compression.

SHEAR RESULTS (rigid seismic design)

N-S	W	For	ASD 9	Shear Force	[plf]	Asp	-Cub		Allo	wable	Shea	r [plf]		Resp.
Shearlines	Gp	Dir	V	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Co	С	Cmb	V [lbs]	Ratio
Line 1														
Level 1														
Ln1, Lev1	1	Both	102.9	-	2417	-	1.0	-	280	-		280	6588	0.37
Line 2														
Ln2, Lev1	- '	Both	_	_	2236	-	-	-	-	-		-	4369	-
Wall 2-1	1	Both	_	_	2236	-	1.0	-	280	_		-	4369	-
Seg. 1	-	Both	0.0	_	0	-	1.0	-	280	-		280	_	-
Seg. 2	-	Both	143.5	-	2236	-	1.0	-	280	-		280	4369	0.51
E-W	W	For	ASD S	ASD Shear Force [plf]			-Cub		Allowable Shear [plf]					Resp.
Shearlines	Gp	Dir	V	vmax/vft	V [lbs]	Int	Ext	Int	Ext	Co	С	Cmb	V [lbs]	Ratio
Line A														
Level 1														
LnA, Lev1	- '	Both	-	-	2587	-	-	-	-	-		-	4416	-
Wall A-2	1	Both	_	_	2587	-	1.0	-	280	-		-	4416	-
Seg. 1	-	Both	217.1	129.0	1538	-	1.0	-	280	-		280	1986	0.77
Open. 1	-	Both	-	273.8	1049	-	-	-	280	-		280	1075	0.98
Seg. 2	-	Both	217.1	129.0	1049	-	1.0	-	280	-		280	1355	0.77
Line B														
LnB, Lev1	-	Both	-	-	1656	-	-	-	-	-		-	2500	-
Wall B-1	1	Both	-	-	1656	-	1.0	-	280	-		-	2500	-
Seg. 1	-	Both	185.7	-	1656	-	1.0	-	280	-		280	2500	0.66
Seg. 2	-	Both	0.0	-	0	-	1.0	-	280	-		280	-	_

Legend:

W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group.

For Dir – Direction of seismic force along shearline.

v - Design shear force on segment = ASD-factored shear force per unit length of full-height sheathing (FHS)

vmax/vft - Perforated walls: Collector and in-plane anchorage force as per SDPWS eqn. 4.3-9 = V/FHS/Co. FHS is factored for narrow segments as per 4.3.3.4

FTAO walls: Shear force in piers above and below either openings or piers beside opening(s). Aspect ratio factor does not apply to these piers.

V – ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment

Asp/Cub – Unblocked wood structural panel factor Cub from SDPWS 4.3.5.3 or Aspect Ratio factor from 4.3.5.5.1, which for perforated walls is sum bi / FHS from 4.3.5.6 with bi defined in 4.3.3.4. For multi-segment walls, wall row shows Cub and segment rows show Asp. For single-segment walls and perforated walls, value shown is Asp for blocked walls and Cub for unblocked walls.

Int, Ext - Nominal unit shear capacity of interior and exterior sheathing, factored by Table 4.3-1 Note 3 for framing specific gravity and Note 10 for presence of hold-downs. For wall segments, also include unblocked factor Cub and aspect ratio adjustments.

Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-6.

C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using Egns. 4.3-3.-4.

Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co.

V – Total factored shear capacity of shearline, wall or segment.

Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "W" indicates that the wind design criterion was critical in selecting wall.

Notes

Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,1.

Hold-Down and Compression Design (rigid seismic design)

Level 1	-			_	Tensile Hold	-down				
Line-		Locat	ion [ft]	or Cor	npressive Stu	id Force [lbs	s]		Cap	Crit
Wall	Posit'n	X	Ý	Shear	Dead	Ev	Cmb'd	Hold-down	[lbs]	Resp.
Line 1										
1-1	L End	-35.75	-23.62	1040	705	183	517	HDU2-SDS	3075	0.17
1-1	L End	-35.75	-23.62	1040	1175	183	2397	Compression	10312	0.23
1-1	R End	-35.75	-0.37	1040	705	183	517	HDU2-SDS	3075	0.17
1-1	R End	-35.75	-0.37	1040	1175	183	2397	Compression	10312	0.23
Line 2										
2-1	R Op 1	-0.25	-15.71	1458	468	121	1112	HDU2-SDS	3075	0.36
2-1	R Op 1	-0.25	-15.71	1458	779	121	2359	Compression	10312	0.23
2-1	R End	-0.25	-0.37	1458	468	121	1112	HDU2-SDS	3075	0.36
2-1	R End	-0.25	-0.37	1458	779	121	2359	Compression	10312	0.23
Line A										
A-2	L End	-15.87	-23.75	1669	473	123	1319	HDU2-SDS	3075	0.43
A-2	L End	-15.87	-23.75	1669	788	123	2579	Compression	10312	0.25
A-2	R End	-0.37	-23.75	1669	473	123	1319	HDU2-SDS	3075	0.43
A-2	R End	-0.37	-23.75	1669	788	123	2579	Compression	11601	0.22
Line B										
B-1	L End	-35.62	-0.25	1911	268	69	1713	HDU5-SDS	5645	0.30
B-1	L End	-35.62	-0.25	1911	446	69	2426	Compression	10312	0.24
B-1	L Op 1	-26.96	-0.25	1911	268	69	1713	HDU5-SDS	5645	0.30
B-1	L Op 1	-26.96	-0.25	1911	446	69	2426	Compression	11601	0.21

Legend:

Line-Wall:

At wall or opening - Shearline and wall number

At vertical element - Shearline

Posit'n – Position of stud pack that hold-down is attached to:

V Elem – Vertical element: column or strengthened studs required where not at wall end or opening

L or R End - At left or right wall end

L or R Op n – At left or right side of opening n

t @ Op n – Uplift force t at opening n from offset opening in perforated wall above, from SDPWS 4.3.6.4.2.1

Location – Co-ordinates in Plan View

Tensile Hold-down or Compressive Stud Force – Upwards force on hold-down at one end of the wall or downward force on bottom plate under studs at the other end, for each force direction. Includes forces transferred from upper levels.

Shear – Overturning component = $V \times h / beff$ from SDPWS Eqn. 4.3-7; $V = box{force on segment}$, V

Dead - Dead load resisting component, factored for ASD by 0.60 for tension and 1.0 for compression

Ev – Vertical seismic load effect from ASCE 7 12.4.2.2 = -0.2 Sds x ASD factor x unfactored D = 0.259 SDS x factored D. Refer to Seismic Information table for more details.

Cmb'd – Sum of ASD-factored overturning, dead and vertical seismic forces. May also include the uplift force t from perforated walls from SDPWS 4.3.6.4.2.1 when openings are staggered.

Hold-down - Device model number from hold-down database; "Compression" for bearing of end stud pack on bottom plate

Cap – Hold-downs: Allowable ASD tension load from database; Compression: Allowable ASD bearing force = Ct CM Cb Fcp A; A = cross sectional area of end studs. Refer to Framing materials table for details.

Crit. Resp. - Critical Response = Combined ASD force/Allowable ASD tension load

Notes:

 $\label{eq:hdu2-SDS2.5} HDU2-SDS2.5 for study with thickness > 0'-3" and depth > 0'-3.5" : Uses 6 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.$

HDU5-SDS2.5 for studs with thickness > 0'-3" and depth > 0'-3.5": Uses 14 1/4" x 2.5" SDS heavy-duty screws; 5/8" anchor bolt.

Combined force from ASCE 7 2.4.1 load combination 10 = - (0.6D - 0.7Ev + 0.7Eh); Eh (from 12.4.2.1) = - shear overturning force

Refer to the Shear Line Dimensions table for wall height h, effective segment length beff and perforated wall adjusted sum of bi, to the Story Table for joist depth, and to the Shear Results table for perforated factor Co.

Designer is responsible for design of connection from wall to floor or foundation for shear force shown in Shear Results table. Refer to SDPWS 4.3.6.4.3 for foundation anchor bolt requirements.

COLLECTOR FORCES (rigid seismic design)

Level 1				Drag	Strut	Strap/B	locking
Line-	Position on Wall	Location	[ft]	Force	[lbs]	Force	[lbs]
Wall	or Opening	X	Υ	>	<	>	<
Line 2							
İ	Shearline force			2236	2236		
2-1	Right Opening 1	-0.25	-15.83	-753	753		
Line A							
İ	Shearline force		ľ	2587	2587		
A-2	Left Wall End	-16.00	-23.75	-1439	1439		
A-2	Left Opening 1	-8.92	-23.75	-1041	1041		
A-2	Right Opening 1	-5.08	-23.75	-271	271		
A-2	Left Opening 1	-8.92	-23.75			624	624
A-2	Right Opening 1	-5.08	-23.75			426	426
Line B							
Ì	Shearline force		Í	1656	1656		
B-1	Left Opening 1	-26.83	-0.25	1240	-1240		

Legend:

Line-Wall - Shearline and wall number

Position...- Side of opening or wall end that drag strut is attached to

Location - Co-ordinates in Plan View

Drag strut Force - Axial force in transfer element at openings, gaps, or changes in design shear along shearline. + : tension; - : compression.

Based on ASD-factored shearline force shown. For SDC C-F, it is the greater of the design shearline force and the diaphragm force Fpx, added to shearline force from story above and to forces transferred from discontinuous shearlines factored by overstrength (omega) as per 12.10.1.1.

Refer to Seismic Information table for diaphragm forces and omega factor.

For SDC D-F, if horizontal torsional irregularities 1a or 1b are detected, or if other horizontal irregularities are input, or if vertical irregularity 4 detected or input, 25% increase from 12.3.3.4 applied.

For perforated walls, this force is converted to vmax using 4.3.6.4.1.1.

Strap/Blocking Force - For FTAO walls, force transferred from above and below opening to shearwall pier.

- -> Due to shearline force in the west-to-east or south-to-north direction
- <- Due to shearline force in the east-to-west or north-to-south direction

DEFLECTION (rigid seismic design)

Wall,	W						Bend	ding	Ga	Nails	slip	Shear	Hold	Total
segment	Gp	Dir	Srf	v	b	h	Α	Defl	kips/	Vn	en	Defl	Defl	Defl
-	•			plf	ft	ft	sq.in	in	in	lbs	in	in	in	in
Level 1							-							
Line 1			ĺ											
1-1	1	Both	ExtS	113.0	23.50	10.00	16.5	.001	13.8	196	.032	.082	0.04	0.12
Line 2														
2-1,2	1	Both	ExtS	157.7	15.58	10.00	16.5	.003	13.8	196	.032	.114	0.08	0.19
Line A														
A-2	1	Both	- 1	-						-	-	-		0.41
A-2,1		Both	ExtS	238.6	7.08	9.00	16.5	.008	13.8	196	.032	.156	0.19	0.36
A-2,2		Both	ExtS	238.6	4.83	9.00	16.5	.011	13.8	196	.032	.156	0.29	0.46
Line B														
B-1,1	1	Both	ExtS	204.1	8.92	10.00	16.5	.007	13.8	196	.032	.148	0.14	0.30

Legend:

Wall, segment – Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B.

W Gp – Wall design group, refer to Sheathing and Framing Materials tables.

Dir - Force direction.

Srf - Wall surface = Int(erior) or Ext(erior) for perimeter walls, 1 or 2 for interior partitions; Comb = Combined v and Ga for identical materials on each side; S = Ga from side with stronger shear resistance; $W = 2 \times Ga$ of weaker side.

v – Unfactored (strength-level) shear force per unit distance on wall segment = ASD force / 0.70, as per ASCE 7 12.8.6,.

Unblocked walls = v / Cub as per SDPWS 4.3.4.3, Cub = Unblocked factor from 4.3.5.3, shown in the Shear Results table.

Perforated walls = vmax from Eqn. 4.3-9, as per 4.3.4.2.

FTAO walls = Unit shear force in pier beside opening(s).

b - Wall or segment length.

Segmented wall or FTAO wall segments = Width of wall segment between openings.

Perforated wall = Sum of FHS segments, modified as in 4.3.3.4 per 4.3.4.2.

FTAO wall = Length of wall including openings.

h – Wall height.

FTAO piers = Distance from bottom of opening to top of wall; for end segments, results using that distance and the wall height are averaged. Defl – Horizontal shear wall deflection due to given term:

Bending = $8vh^3$ / EAb; A = Effective cross sectional area of segment end stud(s), E = stud mod. of elasticity in Framing Materials table For i studs at one end and j at the other, A = 2 ij / (i + j) x area of one stud, based on Ex. C4.3.4-3

Shear = vh / 1000 Ga; Ga = 1.4 vs / (1.4 vs / Gvtv + 0.75 en) from SDPWS Eqn. C4.2.3-3.

vs = ASD sheathing capacity.

Gvtv = Shear stiffness from C4.3.4, shown in Sheathing Materials table.

en = Nail slip from Table C4.2.3D, of form aVn^b for WSP, varies linearly to value at capacity for other materials.

Vn = Strength-level shear force per nail along panel edge at ASD capacity = 1.4 vs.

 $Hold - Anchorage system (hold-down) = da \times h / beff.$

da = Vertical hold-down displacement; refer to Hold-down Displacement table for components.

beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width)

beff is given in the Shear Wall Dimensions table.

For FTAO walls, hold-down device at end of wall is applied to all segments, as per APA T555.

Total Defl – Deflection from bending + shear + hold-down, as per Eqn. 4.3-2.

For FTAO walls, the average of the values for the segments, as per APA T555.

HOLD-DOWN DISPLACEMENT (rigid seismic design)

Hold- Tens. Vert. Displacement		ment	Slippage		Shrink	Comp.	Crush	Total	Horz			
Dir	down	force	Manuf	Add	da	Vf	da	+Extra	force	da	da	Defl
		lbs	in	in	in	lbs	in	in	lbs	in	in	in
		1						i i				
Both	HDU2-SDS	517	.020	.000	0.020	-	-	.068	3049	0.01	0.10	0.04
Both	HDU2-SDS	1112	.043	.000	0.043	-	-	.068	2867	0.01	0.12	0.08
Both	HDU2-SDS	1868	.072	.000	0.072	-	-	.068	2800	0.01	0.15	0.19
Both	HDU2-SDS	1953	.075	.000	0.075	-	-	.068	2656	0.01	0.15	0.29
		1										
Both	HDU5-SDS	1713	.048	.000	0.048	_	_	.068	2823	0.01	0.12	0.14
	Both Both Both Both	Dir down Both HDU2-SDS Both HDU2-SDS Both HDU2-SDS	Dir down force lbs Both HDU2-SDS 517 Both HDU2-SDS 1112 Both HDU2-SDS 1868 Both HDU2-SDS 1953	Dir down lbs force lbs Manuf in Both HDU2-SDS 517 .020 Both HDU2-SDS 1112 .043 Both HDU2-SDS 1868 .072 Both HDU2-SDS 1953 .075	Dir down force lbs Manuf in Add in Both HDU2-SDS 517 .020 .000 Both HDU2-SDS 1112 .043 .000 Both HDU2-SDS 1868 .072 .000 Both HDU2-SDS 1953 .075 .000	Dir down force Ibs Manuf in Add in da in Both HDU2-SDS 517 .020 .000 0.020 Both HDU2-SDS 1112 .043 .000 0.043 Both HDU2-SDS 1868 .072 .000 0.072 Both HDU2-SDS 1953 .075 .000 0.075	Dir down force lbs Manuf in Add in da in Vf lbs Both HDU2-SDS 517 .020 .000 0.020 - Both HDU2-SDS 1112 .043 .000 0.043 - Both HDU2-SDS 1868 .072 .000 0.072 - Both HDU2-SDS 1953 .075 .000 0.075 -	Dir down force Ibs Manuf in Add in da in Vf Ibs da in Both HDU2-SDS 517 .020 .000 0.020 - - Both HDU2-SDS 1112 .043 .000 0.043 - - Both HDU2-SDS 1868 .072 .000 0.072 - - Both HDU2-SDS 1953 .075 .000 0.075 - -	Dir down force lbs Manuf in Add in da in Vf lbs da in +Extra in Both HDU2-SDS 517 .020 .000 0.020 - - - .068 Both HDU2-SDS 1112 .043 .000 0.043 - - .068 Both HDU2-SDS 1868 .072 .000 0.072 - - .068 Both HDU2-SDS 1953 .075 .000 0.075 - - .068	Dir down force Ibs Manuf in Add in da in Vf Ibs da in +Extra force in Both HDU2-SDS 517 .020 .000 0.020 - - - .068 3049 Both HDU2-SDS 1112 .043 .000 0.043 - - .068 2867 Both HDU2-SDS 1868 .072 .000 0.072 - - .068 2800 Both HDU2-SDS 1953 .075 .000 0.075 - - .068 2656	Dir down force lbs Manuf in Add in da in Vf in da in +Extra in force lbs da in Both HDU2-SDS 517 .020 .000 0.020 - - .068 3049 0.01 Both HDU2-SDS 1112 .043 .000 0.043 - - .068 2867 0.01 Both HDU2-SDS 1868 .072 .000 0.072 - - .068 2800 0.01 Both HDU2-SDS 1953 .075 .000 0.075 - - .068 2656 0.01	Dir down force lbs Manuf in Add in da in +Extra in force lbs da in Both HDU2-SDS 517 .020 .000 0.020 - - .068 3049 0.01 0.10 Both HDU2-SDS 1112 .043 .000 0.043 - - .068 2867 0.01 0.12 Both HDU2-SDS 1868 .072 .000 0.072 - - .068 2800 0.01 0.15 Both HDU2-SDS 1953 .075 .000 0.075 - - .068 2656 0.01 0.15

Legend.

Wall, segment - Wall and segment between openings, e.g. B-3,2 = second segment on Wall 3 on Shearline B

Dir - Force direction

Tens., Comp. – Accumulated ASD hold-down tension force T and strength-level end compression force C from overturning, dead and vertical earthquake

Tens. – ASD-factored force, used for proportion of manufacturer's maximum elongation

Comp. – Strength level force as per ASCE 12.8.6

da - Vertical displacements due to the following components:

Vert. Displacement - Elongation when slippage calculated separately; displacement when combined elongation/slippage used

Manuf – Using manufacturer's value for anchor bolt length, or no bolt contribution for connector-only elongation

Unless marked with * = (ASD tension force / ASD hold-down capacity) x max strength-level elongation or displacement * - Maximum strength-level elongation or displacement is used. May result in higher than actual displacements for lightly loaded hold-downs, causing the segment to draw less force due to lower than actual stiffness.

Add – Due to longer anchor bolt length than manufacturer's value, or entire bolt length for connector-only elongation = TL / (Ab x Es)

T = Strength level tension force (not shown)

Ab = bolt cross-sectional area

Es = steel modulus = 29000000 psi

L = Lb - Lh

Lb = Total bolt length shown in Storey Information table

Lh = Manufacturer's anchor bolt length for given displacement/elongation from hold-down database

Slippage - Due to vertical slippage of hold-down fasteners attached to stud(s) when not combined with elongation

Nails = en from SDPWS Table C4.2.3D using values for wood structural panels

Bolts = $Vf/(270,000 D^{1.5})$ (NDS 11.3.6); D = bolt diameter, Vf = Tension force T/ number of fasteners

Shrink + Extra - Wood shrinkage plus extra displacement due to mis-cuts, gaps, etc.

Shrinkage = 0.002 x (19% fabrication – 10% in-service moisture contents) x Ls

Ls = Length between anchor bolt fasteners subject to perp-to-grain shrinkage; see Story Information table

Crush – Deformation of bottom plate at compression end of wall segment

= 0.02" $\times [r/0.73, r < 0.73; (1 + (r - 0.73)/0.27), 0.73 < r < 1; 2 r^3, r > 1]$

r = fcp / Fcp'; Fcp' = Ct CM Fcp; fcp = C / A, A = cross sectional area of end studs

Total da - Vert. Displacement + Slippage + Shrink + Crush + Extra

Horz Defl – Anchorage deflection term in SDPWS Eqn. C.4.3.4-1 = h / beff x da

h = Wall height. For end segments in FTAO walls, h is the average of the wall height and the distance from the bottom of opening to top of wall beff = Effective wall segment length = b - (tension stud pack width + hold-down anchor bolt offset) - (1/2 compression stud pack width)

h and b are shown in Deflection table, beff in the Shear Wall Dimensions table