

Anthony High School Science Courses Syllabi

Teacher: Lorena Salas

Table of Contents

Chemistry Syllabus1	1
Integrated Physics and Chemistry Syllabus (IPC)	4
Physics Syllabus	7

Anthony High School

Teacher: Lorena Salinas

Subject: Chemistry Syllabus

First Semester

1st Nine Weeks

Unit 1: Scientific Practices & Safety

- TEKS: SCI.C.1 (scientific practices), SCI.C.2 (safe practices), SCI.C.3 (equipment and technology)
- Duration: ~2 weeks

Unit 2: Gases & Gas Laws

- TEKS: SCI.C.10A–10C (kinetic molecular theory, gas law relationships, ideal gas law)
- Duration: ~3 weeks

Unit 3: Matter and Energy

- TEKS: SCI.C.5A (classify matter), SCI.C.5B (physical/chemical properties), SCI.C.5C (conservation of mass/energy)
- Duration: ~2 weeks

Unit 4: Atomic Structure & Periodic Table

- TEKS: SCI.C.6A (atomic theory), SCI.C.6B (subatomic particles), SCI.C.7A–7B (periodic table patterns, trends)
- Duration: ~2 weeks

2nd Nine Weeks

Unit 5: Chemical Bonding

- TEKS: SCI.C.7C–7F (ionic, covalent, metallic bonding, Lewis structures, polarity, intermolecular forces)
- Duration: ~4 weeks

Unit 6: Nomenclature & Chemical Formulas

- TEKS: SCI.C.7G–7I (naming compounds, writing formulas, predicting products)
- Duration: ~2 weeks

Unit 7: Chemical Reactions

- TEKS: SCI.C.8A–8C (types of reactions, balancing equations, evidence of chemical change)
- Duration: ~3 weeks

3rd Nine Weeks

Unit 8: The Mole & Stoichiometry

- TEKS: SCI.C.9A–9D (Avogadro's number, molar conversions, stoichiometric calculations, limiting reactants)
- Duration: ~3 weeks

Unit 9: Solutions

- TEKS: SCI.C.11A–11C (solution properties, concentration, colligative properties)
- Duration: ~3 weeks

Unit 10: Thermochemistry

- TEKS: SCI.C.12A–12C (energy changes, calorimetry, enthalpy, heat transfer)
- Duration: ~3 weeks

4th Nine Weeks

Unit 11: Acids & Bases

- TEKS: SCI.C.13A–13C (properties, pH calculations, neutralization)
- Duration: ~3 weeks

Unit 12: Nuclear & Modern Applications

- TEKS: SCI.C.14A–14B (radioactivity, nuclear applications, real-world implications)
- Duration: ~2-3 weeks

Unit 1. Place Value of Whole Numbers and Decimals (10 days)

TEKS: 4.2A - H

Unit 2. Addition and Subtraction of Whole Numbers and Decimals. (7 days)

TEKS: 4.2D, 4.4A, 4.4G, 4.5A, 4.10B, 4.10E

Unit 3. Multiplication of Whole Numbers (8 days)

TEKS: 4.4B, 4.4C, 4.4.D, 4.4G, 4.4H, 4.5A

Unit 4. Division of Whole Numbers (11 days)

TEKS: 4.4E, 4.4F, 4.4G, 4.4H, 4.5A

Anthony High School

Teacher: Lorena Salinas

Subject: Integrated Physics and Chemistry

Syllabus (IPC)

First Semester

1st Nine Weeks (Chemistry Focus)

Unit 1: Scientific Practices & Safety (~1–2 weeks)

- TEKS: IPC.1 (scientific practices), IPC.2 (safe practices), IPC.3 (equipment & technology)
- Focus: Safety procedures, measurement, data collection, dimensional analysis.
- Activities: Safety contract, lab equipment scavenger hunt, metric conversions.

Unit 2: Matter & Energy (~3 weeks)

- TEKS: IPC.5A-C
- Focus: Properties of matter, physical vs. chemical changes, conservation of mass & energy.
- Activities: Density lab, physical vs. chemical change stations.

Unit 3: Atomic Structure & Periodic Table (~3 weeks)

- TEKS: IPC.6A-B, IPC.7A-B
- Focus: Structure of the atom, subatomic particles, periodic table patterns and properties.
- Activities: Flame test lab, periodic table scavenger hunt.

Unit 4: Chemical Bonding & Reactions (~1–2 weeks)

- **TEKS:** IPC.7C-F, IPC.8A-B
- Focus: Types of chemical bonds, compounds, chemical equations, reaction evidence.
- Activities: Bonding models, balancing equations practice, chemical reaction labs.

2nd Nine Weeks (Chemistry Focus)

Unit 5: The Mole & Stoichiometry (Introductory) (~2 weeks)

- TEKS: IPC.9A—C
- Focus: Moles, molar mass, basic conversions, simple reaction ratios.
- Activities: Mole-to-mass practice, simple stoichiometry labs.

Unit 6: Gases & Gas Laws (~2 weeks)

- TEKS: IPC.10A-B
- Focus: Gas behavior, pressure, volume, temperature, simple gas law relationships.
- **Activities:** Balloon gas law lab, syringe pressure demo.

Unit 7: Solutions & Acids/Bases (~3 weeks)

- TEKS: IPC.11A-C, IPC.12A-B
- Focus: Properties of solutions, solubility, pH, neutralization.
- Activities: pH indicator lab, Kool-Aid molarity activity.

Unit 8: Introduction to Motion (~2 weeks)

- TEKS: IPC.5C, IPC.13A-B
- Focus: Speed, velocity, acceleration, graphing motion.
- Activities: Motion graph lab with carts or sensors.

3rd Nine Weeks (Physics Focus)

Unit 9: Forces & Newton's Laws (~3 weeks)

- TEKS: IPC.13C-D
- Focus: Net force, Newton's three laws, friction, balanced vs. unbalanced forces.
- Activities: Force and motion carts lab, friction testing activity.

Unit 10: Work, Power, and Energy (~3 weeks)

- TEKS: IPC.14A–C
- Focus: Work-energy theorem, kinetic & potential energy, conservation of energy, power.
- **Activities:** Pendulum energy lab, energy skate park simulation.

Unit 11: Waves & Sound (~3 weeks)

- TEKS: IPC.15A-C
- Focus: Properties of waves, sound frequency, resonance, Doppler effect.
- Activities: Slinky wave lab, sound resonance tube experiment.

4th Nine Weeks (Physics Focus)

Unit 12: Light & Optics (~3 weeks)

- TEKS: IPC.16A-B
- Focus: Wave vs. particle models of light, reflection, refraction, image formation.
- Activities: Lens/mirror lab, refraction index demo.

Unit 13: Electricity & Magnetism (~3 weeks)

- TEKS: IPC.17A-C
- Focus: Static electricity, circuits, Ohm's law, electromagnetism.
- Activities: Circuit building lab, electromagnet design project.

Unit 14: Nuclear & Modern Applications (~2 weeks)

- TEKS: IPC.18A–B
- Focus: Nuclear reactions, radiation, real-world applications.
- Activities: Half-life simulation, case study on nuclear energy.

Anthony High School

Teacher: Lorena Salinas

Subject: Physics Syllabus

First Semester

1st Nine Weeks

Unit 1: Scientific Practices & Safety (~1–2 weeks)

- **TEKS:** P.1 (scientific practices), P.2 (safe lab practices), P.3 (equipment & technology).
- Focus: Lab safety, SI units, dimensional analysis, error and uncertainty in measurement.
- Activities: Safety contracts, measurement & uncertainty lab.

Unit 2: Motion in One Dimension (Kinematics) (~4 weeks)

- TEKS: P.5C (distance, displacement, speed, velocity, acceleration in 1-D).
- Focus: Position-time and velocity-time graphs, constant vs. accelerated motion, free fall.
- Activities: Motion graphing with sensors, free fall lab.

Unit 3: Motion in Two Dimensions (~5 weeks)

- TEKS: P.5D (projectile motion, 2-D vectors).
- Focus: Vector addition, relative motion, horizontal and vertical motion independence.
- Activities: Projectile motion lab with launchers, vector addition using force tables.

2nd Nine Weeks

Unit 4: Forces and Newton's Laws (~2 weeks)

- TEKS: P.5A–B (net force, Newton's laws, dynamics).
- Focus: Inertia, F=ma, action-reaction, friction, tension, normal force.
- Activities: Newton's 2nd law lab with carts, friction investigation.

Unit 5: Work, Energy & Power (~3 weeks)

- **TEKS:** P.6A–C (work, energy conservation, power).
- Focus: Work-energy theorem, kinetic & potential energy, mechanical energy conservation.
- Activities: Energy skate park simulation, pendulum lab.

Unit 6: Momentum & Collisions (~2 weeks)

- **TEKS:** P.7A–C (impulse, momentum conservation, collisions).
- Focus: Elastic vs. inelastic collisions, impulse-momentum theorem.
- Activities: Collision carts lab, egg drop impulse challenge.

Unit 7: Circular Motion & Gravitation (~2 weeks)

- TEKS: P.5E (uniform circular motion, centripetal force, universal gravitation).
- Focus: Newton's law of gravitation, orbital motion, satellites.
- Activities: Centripetal force lab with whirling stopper, orbital motion simulations.

3rd Nine Weeks

Unit 8: Harmonic Motion & Waves (~2 weeks)

- **TEKS:** P.8A–C (simple harmonic motion, mechanical waves, wave properties).
- Focus: Springs, pendulums, frequency, wavelength, speed, interference.
- Activities: Slinky wave lab, pendulum period investigation.

Unit 9: Sound (~2 weeks)

- TEKS: P.8D (properties of sound waves).
- Focus: Frequency, pitch, resonance, Doppler effect.
- Activities: Sound wave resonance tube lab, Doppler effect demo.

Unit 10: Light & Optics (~3 weeks)

- **TEKS:** P.9A–C (properties of light, reflection/refraction, image formation).
- Focus: Mirrors, lenses, optical instruments.
- Activities: Refraction through lenses lab, mirror image tracing.

4th Nine Weeks

Unit 11: Electricity (~3 weeks)

- **TEKS:** P.10A–C (electric charge, Ohm's law, circuits).
- Focus: Static electricity, current, resistance, simple circuits, power.
- Activities: Circuit building with resistors, Ohm's law lab.

Unit 12: Magnetism & Electromagnetism (~2 weeks)

- TEKS: P.10D (magnetic fields, electromagnetic induction).
- Focus: Relationship between electricity and magnetism, motors, generators.
- Activities: Build an electromagnet, Faraday's induction demo.

Unit 13: Modern Physics & Applications (~2 weeks)

- **TEKS:** P.11A–B (quantum theory, nuclear physics, applications).
- Focus: Atomic models, photoelectric effect, nuclear energy, particle physics basics.
- Activities: Nuclear decay simulations, case study on medical imaging.