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Abstract

This paper presents an approximate analytical model of the dynamics of a tapered fly line during
a standard overhead cast. During casting, the line forms a nonlinear propagating wave that is fre-
quently referred to as a ‘loop’ by fly casters. The geometry of the loop is prescribed by three
distinct parts: a straight bottom segment (attached to a stationary fly rod), a semi-circular
segment that is propagating (i.e. the loop), and a straight top segment that is also propagating,
(i.e. the traveling line). A fly (particle) is attached at the end of the traveling line. A work—energy
balance yields the velocity of the fly as a function of the length of the traveling line. For a
uniform fly line (level line), a closed-form solution is found, while for a tapered fly line, the
solution is obtained by quadrature. A critical loop diameter arises in the analysis, and it deter-
mines whether the final velocity of the fly is greater or lesser than the initial velocity of the
traveling line. The analytical solutions are critically compared against numerical solutions of a
general model for fly line dynamics that relaxes many of the assumptions employed in the ana-
lytical model. The agreement between the two solutions remains close during the loop
propagation phase, provided a significant amount of fly line remains in the traveling line.
However, as the traveling line vanishes and the loop ‘turns over’, the two solutions diverge

abruptly due to the many simplifying assumptions employed in the analytical model.
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Introduction

A significant challenge in the sport of fly fishing is to
cast an artificial ‘fly’ to a feeding fish. To this end, a fly
fisher utilizes a fly rod to cast a weighted fly line that
terminates with a short ‘leader’, and then the fly. The
most commonly used casting style is the standard
overhead cast as illustrated in Figure 1. The sketches
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therein illustrate four main stages of the forward cast
portion of an overhead cast. The first stage starts with
the fly line laid out horizontally behind the caster at
the conclusion of a back cast; see Figure 1(a). The
caster then rotates the fly rod clockwise, accelerates
the fly line, and then abruptly stops the rod as illus-
trated in Figure 1(b). From this point onwards, the
end of the fly line attached to the rod tip remains sta-
tionary and a Joop necessarily forms between the
moving (upper) portion of the fly line and the station-
ary (lower) portion of the fly line; see Figure 1(b).
From the perspective of dynamics, this loop represents
a nonlinear wave that propagates forward as shown in
Figure 1(c) until it reaches the end of the fly line
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Figure 1 The forward cast of an overhead cast. (a) Perfectly laid
out back cast; (b) just after stop of forward cast; (c) loop propaga-
tion; (d) completion of cast (loop turnover).

where the loop turns over. This final turnover occurs
on or near the surface of the water and the cast is
complete.

Realizing such a cast often requires considerable
practice and instruction. Fly casting instructors
emphasize the importance of understanding the
mechanics of the fly rod and fly line as the basis for
improved casting. Our overall understanding of fly
casting mechanics can be sharpened by studying math-
ematical models of loop dynamics. Several previous
studies that have contributed models for loop
dynamics are here reviewed.

Spolek (1986) uses the work—energy principle to
model loop propagation after the loop has fully
formed. The line is composed of three segments: a
straight bottom segment that is attached to a station-
ary rod, a semi-circular segment that is propagating
(i.e. the loop), and a straight top segment that is also
propagating, referred to as the ‘traveling line’. A fly is
attached at the end of the traveling line. Spolek
considers the kinetic energies of the traveling line and
of the fly (but ignores the kinetic energy of the loop),
and the energy dissipated by drag forces acting on the
entire fly line (traveling line and loop) and on the fly.
"To estimate drag, the loop is modelled as a cylinder in
cross-flow. Both level lines and tapered lines are con-
sidered; however, the taper is modelled as an abrupt
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change in line diameter instead of a smooth change.
Application of overall work/energy balance leads to a
numerical solution for the velocity of the fly as a
function of the fly position and the conclusion that
tapered lines and level lines behave qualitatively dif-
ferently. Lingard (1988) proposes an improvement to
Spolek’s drag model and notes that the use of
Morison’s equations for the drag results in a 30%
reduction of the work done by drag on the loop. In the
first part of his study, Robson (1990) deduces an ana-
lytical solution to a model similar to Spolek’s (1986) by
replacing the semi-circular segment (the loop) by a
straight vertical segment of line (i.e. a rectangular
loop). The kinetic energy of the loop is included,
however, the energy dissipated by drag forces on the
traveling line and the fly are ignored as is any taper of
the fly line. He provides a closed-form solution for the
fly velocity as a function of the fly displacement for a
level line and introduces a ‘critical loop diameter’. For
loops smaller than the critical loop, the velocity of the
fly will increase during the cast. Otherwise, the
velocity of the fly will decrease.

It is important to emphasize that in all the analyti-
cal models above, the loop is highly idealized. It is
either considered to be a perfect semi-circle or a
rectangle of prescribed dimensions. Moreover, the
line is either level or crudely tapered and drag is
modelled partially or not completely on all segments.
These restrictions together with the fact that the
remainder of the cast is unmodelled, significantly
restrict the utility of these approximations to model
actual fly casting.

A more complete model of an overhead cast is
developed by Gatti & Perkins (2001) and Gatti-Bono
& Perkins (2002) who utilize a continuum model for a
smoothly tapered fly line. The fly line is modelled as a
long elastica that is allowed to undergo arbitrarily
large rotations. The model accounts for fly line
tension (or compression), bending, aerodynamic drag,
and weight, and the formulation allows one to work
directly with the physical parameters of the fly line,
including density and taper information. A numerical
algorithm is presented to solve the resulting initial
two-point, boundary-value problem, and sample
problems are analyzed that highlight the fundamental
features of fly casting dynamics. This model, however,
requires that the motion (path) of the rod tip be pre-
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scribed, and it does not account for the coupled
dynamics of the fly rod. A later study (Gatti, 2002)
presents a numerical model for the dynamics of the
fully coupled fly line/ fly rod system and companion
experimental results. The study by Hendry &
Hubbard (2000) includes a refined finite element
model of a fly rod and the attached fly line as modelled
using truss elements. Key features of the rod dynamics
including the motion of the rod tip are discussed.

In this paper, we will compare the idealized analyti-
cal solutions based on work—energy during loop
propagation, with numerical simulations obtained in
the study by Gatti-Bono & Perkins (2002). In doing so
we will also generalize the analytical solutions to
describe a line with smooth (realistic) taper and drag
on all moving segments. We begin by reviewing the
existing analytical approximations and identify the
extensions considered herein. Solutions for the
extended model are derived and then critically
compared to the results of the (general) numerical
model.

Analytical model

After a brief review of previous analytical models, we
develop a new closed-form solution for a level line,
and a new analytical solution via quadrature for a
tapered line.

Brief review of previous analytical models

Level lines, although seldom used in practice, are a
good first approximation to tapered lines and lead to a
significant simplification of the analytical model.
Solutions for the fly velocity as a function of the fly
displacement are available for level lines; see Lingard
(1988), Robson (1990), and Spolek (1986). These
solutions however omit terms in either the computa-
tion of the kinetic energy or the work done by drag.
Spolek (1986) and Lingard (1988) omit the kinetic
energy of the loop but they do account for the work
done by drag. They both arrive at their final solution
by numerical analysis. Robson (1990) omits the work
done by drag on the fly and the traveling line but does
include the kinetic energy of the loop. He arrives at a
closed-form solution. The analytical approximations
developed in this section include the kinetic energies
of the fly, the traveling line, and the loop, and the
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energy dissipated by drag acting on the fly, the
traveling line, and the loop. Moreover, we arrive at a
closed-form solution for the case of a level line and at
a simple integral solution for the case of a (realisti-
cally) tapered line.

Level fly line

The model of an overhead cast is depicted in Figure 2.
The fly line is divided into three segments: a bottom
straight segment that is attached to a stationary rod
tip, a semi-circular segment of radius R (‘the loop’)
that is propagating to the left, and an upper straight
segment of length /(z), referred to as the traveling line,
that is propagating to the left with velocity v(z). A fly
of radius 7, Mass 71, and drag coefficient C fis attached
to the end of the traveling line.

' I(t)

Traveling line

Semi-circular
loop

N Stationary line

Figure 2 Simplified model of an overhead cast.

The work-energy balance for the fly and fly line
systems can be written

%mﬂ(t)vz(t) " %mfvz(t) s T@) =T - f W ()du

0

- f OW(uydu — f OW/(w)du (1)
0 0

Here, v(z) is the velocity of the traveling line and the

attached fly;

nd}?
mﬂ(t) = P;Tll(t)

is the mass of the traveling line; p, is the density of the
fly line; d, is the diameter of the fly line; 7z, is the mass
of the fly; T(z) is the kinetic energy of the loop; T} is
the initial kinetic energy of the fly and fly line system;
) VZ(L‘) is the power dissipated by the drag acting on the
traveling line; 61'/1'{(1?) is the power dissipated by the
drag acting on the loop; (WZ(L‘) is the power dissipated
by the drag acting on the fly.

177



Comparison of numerical and analytical solutions for fly casting dynamics 1| C. Gatti-Bono and N. C. Perkins

The velocity components of a point P on the loop is
given by

0
(1) = ——(1 ~cos(0) )
v(t) = @Sin(ﬁ) 3)

Where v (#) is the velocity component in the tangential
direction, v () is the velocity component in the
normal direction, and 6 is the angle defined in
Figure 2. Equations (2)-(3) are used to compute the
quantities (), dW/(®), 61¥(#) and OW/(z), as given in
Appendix A.

Using the results of Appendix A, equation (1) can
be rewritten as:

S MUOWE = T, —fra(u»vs(u)du @

where i
dZ ZdZR
M) = p 1)+ PE m, = ali) + )
S 1
TU®») = —p,Cdal®) +pdR (320, ¥ IZC")
+ %pﬂC fmﬂf (6)
_ ’170‘(1(1‘) . 1) ™)

Here, p, is the density of air; C, is the tangential drag
coefficient of the fly line; C, is the normal drag coeffi-
cient of the fly line; C. is the drag coefficient of the fly;
r,is the effective radius of the fly. Defining the four
constants

md?
a = plTl (8)
_ 7R 4m,
P="7 " pad ®
4p C
A= —4 L 10
pd (10)
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dR

4

Smtoo 1 1
(32 + IZC") + 76}7{1}2 (11)

Cdn

u =2

allows one to simplify (5)—(6) as shown. These results
will now be used to compute the velocity of the fly as
the cast develops. Note from Figure 3 that the
distance x(z) traveled by the fly is

w(t) = L=y = [,-QU-1) = 2(,- 1) (12)

(a)

® r

) ; x(t

Figure 3 Configuration of the fly line (a) at time t =0 's, and (b) at
time t.

Differentiating equation (4) with respect to time,
dividing by v(#) (the loop is propagating so v(z) # 0)
and using the fact that v(t) = &(f) = -2/(2), yields a
nonlinear differential equation in 4z)

MU @) = (zw(t» - ;M’(l(t)))l'z(t) (13)

Equation (13) can be integrated (see Appendix B for
details), and yields the velocity of the fly as a function
of the length of the traveling line

L= \12+xB-w
= v ™) -y 0
v(lt) = ve 0 ( 10 + ﬂ)

Equation (14) differs from that found by Robson
(1990) mainly due to the (decreasing) exponential
factor. This factor arises here due to the inclusion of

(14)
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skin friction (C) that was neglected by Robson (1990).
The exponential factor (drag) also assures that the
velocity of the loop or fly will eventually decrease as
the cast is continually lengthened (/; increases) when
all other parameters are held constant. Thus, a fly
fisher will try to maintain loop speed by developing a
higher line speed v, (rod tip speed) to initially launch
the loop for longer casts. This entire effect is lost if the
model does not include drag.

We now study the limiting case of a level line
without air drag. Conservation of energy now holds
and the constant kinetic energy becomes focused to a
decreasing portion of moving fly line. The fly
therefore accelerates as the cast evolves as confirmed
by the result:

w(I) = vo\j(M) a5)

which follows from (14) upon eliminating the
influence of drag @ = u = 0). If, in addition, we now
eliminate the kinetic energy of the loop and fly, then
B =0 and in this case, the result above shows that the
fly line velocity becomes unbounded at the end of the
cast ({(f) — 0). Thus, this non-physical limit is
avoided by the inclusion of loop and fly kinetic energy.

Equation (14) also provides a means to analyze fun-
damental characteristics of the fly cast with drag,

(a) Case #1: D, /2<R

including the conditions needed for the fly to accelerate
or decelerate as the cast evolves. To this end, compute
the derivative of equation (14) with respect to 4z)

L — B \1/2 428 -
') = voexp(ﬂ,(](t) _ 10)) ( Z((;):‘; ) 2B - w)

(z—(; +/1(/J’—u)) 1 ) (16)

It) + B
and introduce two characteristic diameters D . and
D, ., as follows

T 1 5 1
: Epldl2 - 7,OMC'fJWf- - Tp”Ctdlnlo
min Snz 1
d{=—C —C
pﬂ’(3z TR )
(17)
1
lpldf - —paCfpV;
-5 16 2 ’
s 5m? 1
pﬂdl(?,z Ci + lzcn) (18)

We now analyze three cases that distinguish whether
the fly will accelerate or decelerate during the cast (for
a level line). Examples of these cases are given in

Figure 4.

(b) Case #2:D_/2<R<D . /2

(d) Case #2: D, /2<R<D_/2

6 €

15, 15
14 14.5
13 14
12 ‘ ‘ , 135 ‘
0 2 4 6 8 0 2
(c) Case #2: R=D_/2
@15.5 17,
E
2 15K -
o
o
[0}
> 14.5\/
>
[ : ' . :
14 14
0 2 4 6 8 0 2
30 (e) Case #3: R<D,, /2
Dmin
Dmax
DC
10 : ‘ ‘
0 2 4 6 8

Fly displacement (m)
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_ =0
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©
o
(5]

6 €

Fly displacement (m)

796 Figure 4 Approximate analytical solutions for a

level line for different loop diameters. Remaining
casting parameters are defined in Table 1. (a)
D=2m,b)D = 15m,(c)D = 1.0955 m,
(dD = 0.75m,and () D = 0.05m.
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Table 1 Parameters that characterize a level line equivalent to the
tapered line presented in this paper

Parameter Value Units
Diameter of the level line (@) 1.009 X 10 m
Length of the line () 4.8 m
Density of the line (p) 1.158 X 10° kgm=
Density of air (p,) 1.29 kg m=
Normal drag coefficient of the fly line (@) 1

Tangential drag coefficient of the fly line  (C,) 0.015

Mass of the fly (m) 0.000075 kg
Drag coefficient of the fly (C) 1

Radius of the fly (r) 0.0075 m
Initial velocity (v) 15 ms™

D
Case #1: ;””‘ <R

For a cast that begins with a loop of radius R larger
than D /2, the steps above lead to the conclusion
that the fly decelerates monotonically

i

[ <)
as the cast evolves (as «x increases, or equivalently as /()
decreases). Thus, the energy dissipated by drag fully
overcomes the tendency of the fly to accelerate in the
absence of drag for these ‘large’ loops. Refer to

Figure 4a which illustrates how the fly velocity
decreases as the cast evolves.

D . D
#2. —mm < R < L max
Case > 5

For a loop with radius R between D /2 and D, /2,
the behaviour is no longer monotonic. The fly first
decelerates as the length of the traveling line decreases
and then accelerates when the traveling line becomes
shorter than

1
[ = (1 = 2u).
A 2/1( u)

The final velocity of the fly can either be larger or
smaller than the initial velocity of the traveling line.
The intermediate case, when the initial and the final
velocity are equal, is determined by the root of the
equation
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(19)

;
ln(ogﬁ) -,

1
7 +A(B - w)

Equation (19) can be solved for a critical loop
diameter D _using the definitions of 8, /, and i given by
equations (9)—(11). For loop diameters smaller than
the critical loop diameter, the final fly velocity will be
larger than the initial traveling line velocity. For loop
diameters larger than the critical loop diameter, the
final fly velocity will be smaller than the initial
traveling line velocity. Example of these behaviors are
illustrated in Figures 4 (b), (c), (d).

D .
Case #3: R < %

For a cast that begins with a loop radius smaller than
D /2, the steps above lead to the conclusion that the
fly accelerates monotonically

dv

(o>
as the cast evolves. Thus, the tendency of the fly to
accelerate in the absence of drag overcomes the
energy lost by drag for these ‘small’ loops. Refer to
Figure 4(e).

"Table 1 lists the casting parameters used to obtain
the results shown in Figure 4. The reader should note
that the cast is rather short and that the tangential
drag coefficient is set artificially low (C, = 0.015) in
order to achieve Case #3. Even under these condi-
tions, D . = 8cm and forming such a ‘tight’ loop
would be very challenging. The casting parameters for
a longer cast or one with a reasonable tangential drag
coefficient would likely lead to D, , < 0 rendering
Case #3 simply unachievable. Thus, we suggest that
under normal casting conditions, the goal of a good
caster is to form a loop corresponding to Case #2 and
preferably with a radius

sz’n R Dc
)

in order to yield a net increase in fly velocity. Any loop
radius larger than D /2 would necessarily lead to a net
decrease in fly velocity.

Sports Engineering (2003) 6, 175-186 © 2003 isea



C. Gatti-Bono and N. C. Perkins 1 Comparison of numerical and analytical solutions for fly casting dynamics

Tapered fly line

Tapered lines are designed to weight the line for
proper casting, and to enhance loop propagation and
loop turnover. Tapered lines will be modelled in this
section using a linearly varying line diameter over a
portion of the line, as is achieved in practice. Figure 5
is a schematic of a typical linear taper that makes a
smooth transition between the smaller diameter ‘tip’
section (diameter d) to the larger diameter ‘belly’
section (diameter ;). The length of the tip section and
the (front) taper section are /, and Ly respectively. The
method to obtain the fly velocity as a function of the
length of the traveling line /(z) is very similar to that
used in Section 2, and only the important results will
be given in this Section. A detailed derivation can be
found in Gatti (2002).

Belly ' Taper

Figure 5 Schematic of a tapered line.

The work energy balance for a tapered line is

%mtl(t)vz(t) " %mva(t) YT = T, - j OW/ (u)du

0

- f W (uydu — J‘ OW(u)du (20)
0 0

The integration of equation (20) recognizes three
cases, depending on the position of the taper as illus-
trated in Figure 6. In particular, the integration
progresses from the case where the taper is wholly
within the traveling line, then partially within the
traveling line and partially within the loop, and finally,
wholly within the loop. The terms in equation (20) are
detailed in Appendix C, and using these results,
equation (20) can be rewritten as:

t

IMUD)0) = T, f T @) @,

0

i € {1,2,3} 21)
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Case #1:/,+ 1, </({t)

i Taper

Case #2: [, </t) </ +],

‘Taperi

Figure 6 Three generic positions of the taper. (a) Taper wholly
within traveling line, (b) taper partly within traveling line, (c) taper
wholly within loop.

where
2T
M) = m,, (1) + vzl(i:)t) s m,
~ ) + B) 22)
U/
oW, Ty oW
LAY = g+ v -
ia.
= S0 + ) 23)

and a, 8, A, and u, are given in Appendix C.
The fly velocity is then given by

l - 172 + 2By — 1y
v(l0) = vyexp@, (o) — 10»(1(3) +ﬂél) o

for 1+ 1, < I(9) 24)
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RO )

v(l(1)) = v(/, + lﬁ)exp(J M) i

1t+lﬁ

L+ +
\j(ﬁ%) for/, < i) < 1, + |, (25)

3

T T

for (t) < I 6)

and solution can be obtained by simple quadrature.
Example results will be presented in the following
Section.

Comparison with the numerical model

The analytical approximations presented above will
now be compared with the numerical solutions
obtained using the more general model presented
in Gatti-Bono & Perkins (2002) and Gatti (2002). The
line considered in this comparison is a double-tapered
5 weight floating line (D'T-5-F) having the taper prop-
erties given in Table 2. The parameters used for the
numerical simulation are summarized in Table 3 in
reference to the discussion in Gatti-Bono & Perkins
(2002).

Figure 7 illustrates the computed horizontal
component of the fly velocity as a function of the dis-

30
25
I+ 1 <I(t) < IQ@) < l+ g 1(t) <1,

20+
@
E
> 15F
‘©
ke ~
2 10}
2
[

5t .

0} Level line . ‘5

— Tapered Line
— Numerical solution
5 ! ! ! L L L
0 1 2 3 4 5 6 7 8

Fly displacement (m)

Figure 7 Comparison of numerical simulation (—) and approximate
analytical solutions for a level line (...) and a tapered line (.-.-.).
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Table 2 Taper table for line DT-5-F

Section name Length of the section Diameter of the section

(in m) (in m)
Tip 0.152 0.889 X 103
Front taper 1.78 -
Belly 23.88 1.041 X 10°°
Front taper 1.78 -
Tip 0.152 0.889 X 10°®

Table 3 Data for the numerical model of fly casting; refer to Gatti-
Bono & Perkins (2002)

Parameter Symbol Value Units
Young’s modulus E 100 N m=
Length of the line / 5 m
Density of the line P, 1158 X 10°  kgm=
Density of air P, 1.29 kg m=
Normal drag coefficient of the fly line  C, 1

Tangential drag coefficient of the fly line C, 0.075

Coarse time step AL, 0.0075 S

Fine time step AL, 0.0002 ]
Spatial step AS 0.0033 m
Prescribed error Ae 0.05

Mass of the fly m, 0.000075 kg
Drag coefficient of the fly C 1

Radius of the fly r, 0.0075 m
Diameter of equivalent level line a 1.009 X 10° m

placement of the fly. In this example, R = 0.3625 m is
the chosen loop radius. This value of R would corre-
spond to Case #2 in Section 2.2 if the fly line were Jevel
instead of tapered. The diameter of the equivalent line
is taken to be the (spatial) average of the same length
of tapered line and thus the level and tapered lines
have equivalent mass and length. The parameters
®D,,, D,., D, [) discussed in Section 2.2 for this
equivalent level line are given in Table 4. Note that for
this cast:

D

c <R< Dmﬂx
2

and a net decrease in fly velocity is expected. The
dotted curve is the analytical solution for the equiva-
lent level line, the dash-dotted line is the analytical
solution for the tapered line, and the solid line is the
numerical simulation. First, it is interesting to note
that the analytical solutions for a tapered line and for a
level line are very similar. In the study by Spolek
(1986), the graphs showed a significant difference

Sports Engineering (2003) 6, 175-186 © 2003 isea
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Table 4 Parameters that characterize a level line equivalent to the
tapered line presented in this paper

Parameter Value Units
D, -3.425 m
o 0.909 m
D, —0.038 m
I, 0.1559 m

between the behaviours of a level and of a tapered line,
especially at the end of the cast. The discrepancy
between the results found by Spolek (1986) and the
results here can be ascribed to the different models for
the tapered line, as well as the fact that the kinetic
energy of the loop is not accounted for by Spolek
(1986). The numerical simulation compares very well
to the analytical solutions in the first region where the
taper is wholly within the traveling line (lﬁ +1.<1(1)).
However, as soon as part of the taper enters the loop
(<) <1+ 1), the numerical simulation and the ana-
lytical solutions diverge. In particular, the numerical
solution shows that the fly velocity generally decreases
but not monotonically. Moreover, the final horizontal
velocity decreases rapidly during loop turnover and
this is not captured in the approximate solutions. The
major reason for this divergence is that the analytical
model makes considerably more simplifying assump-
tions that are not made in the numerical solution.
These include assuming a perfectly circular loop, a
constant loop diameter (that is also prescribed), a pre-
scribed (straight) path of the traveling line, and a
stationary (lower) part of the fly line. Overall, these
assumptions prevent the analytical solutions from
accurately describing the physics of the loop turnover
as the taper enters the loop (/,< /() </ + lﬁ) and where
the taper lies wholly within the loop (/(z) < /).

Summary and conclusion

This paper presents an analytical approach to
modelling loop propagation for a fly cast and a critical
comparison with a numerical solution. For the analyt-
ical solution, the geometry of the loop and all the
other portions of the fly line are prescribed in advance.
A work-energy balance relates the velocity of the fly
to the length of traveling line. A critical loop diameter,

© 2003 isea Sports Engineering (2003) 6, 175-186

that depends on the density and geometry of the fly
line and the fly line air drag is identified. This loop
diameter determines whether the final velocity of the
fly will be greater or lesser than its initial velocity. The
numerical solution is critically compared to the analyt-
ical solutions. When the taper is in the traveling line
(the loop propagation phase), the agreement between
the two solutions is very good (within 10%). However,
as soon as the taper enters the loop, the two solutions
diverge because of the many simplifying assumptions
made in the analytical model. In particular, the analyt-
ical model should not be used to study final loop
turnover.

Appendix A: level line

1 p,m*d?Ro(r)

T(t) = 5 5 27)
Where R is the loop radius defined in Figure 2.
W) = =p,Cdml)y () (28)

where p is the density of air and C, the tangential drag
coefficient of the fly line.
Following Lingard [5],

SIE) = de(S”ZC N IC)U3(t) 29)
! a’l 32 t 12"
Where C is the normal drag coefficient of the fly line.
. 1 "
oW (1) = 7pﬂC o 7o (2) (30)

where 7, is the radius of the fly and C, the drag coeffi-
cient of the fly.

Appendix B: on the integration of (13)

Replacing M(/(¢)), T'(/(z)), and M'(/(z)) by their expres-
sions as functions of «, f, A and u, equation (13)
becomes

a(l(t) . ﬁ) it = (al(l(t) u) - %a 2(t) G1)

The change of variables I@) = 2()) yields

.l'(t) _ dz _ dz dl _ zdﬁ
dt dl dt dl

(32)
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and equation (31) can be rewritten

(l(t) + ﬁ)z‘z - ()l(l(t) fu) - ;)zz (33)

Since the fly is propagating, /() and therefore z are

not equal to zero, and we can divide equation (33) by z
d 1

0+ 8)% - a0y +p) - & <28 -0 G4

Equation (34) is solved by separating variables and
then integrating between / and /() to give

In% AU -1) - (L >+ (B -u)
It) +p
ln( Y ) 35)
Equation (14) follows
v(l(t)) = v, -l (l?o; ﬁﬁ )1/2 e (36)
t) +

Appendix C: tapered line

Let d, d,, [, and [, be the design parameters of the

tapered fly line shown in Figure 5. Then,

M e = p (dzz s d200) -1, - 1)

p,wd; R o
8 i

+ %(d}f +d? + dtdb)) +

= a,(@ +B,) G7)
A
L) = %p”CtJT (d/(t) - (5 + lt)(dh —dt))
S 1 )
* PR ( 32 126) PG
) (39)
d, -
m, (@ = (dZZ(t) +d ’(l(t) 1)?
ﬁ
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_ 2 A
1t
Let ¢ be the angle depicted in Figure 6(b). Then
1 +1 -1
i a4 o ® (40)
7.0 = 22D 2ot 4 (69 + o 6sin)
A 481; y — &) 0P + ¢ P
~3RLA(d,~ d) Q + p* — 2cos(p)) + 3mlid?
(41)
L1 d,—d\(Ar) - 1) |
oW, - 2pﬂC;r(d/(t)+ ( r )( 5 v(2)
(42)
siir = LRC 48, - R, - d
h T 576l ( @, -d)
(24g0 — 27sin(p) + sin(3g0)))v3(t) (43)

pRC,
1]521

+

(ISOndl - R@, - dt)(299 + 90>

—270cos(p) — 27cos(2p) + Zcos(3<p)))v3(t) (44)

Let ¢ and 9 be the angles depicted in Figure 6(c).
Then

)
Y=t (45)
!
¢ =p+k (46)
prv®( .. ol .
TU(0) = g (6R @, ~ d){sin@) - sin(p))
i
~ 6R,d (d, - d)cos@p) + 6RLd(d, ~ d)cos(p)
~ I5(d, - d)(d, + 2d) - 3Ral’(&} - &%)
+ 3Rnlf2idi) 47)
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oW, = %pﬂc,ﬂd,l(t)v%t) (48)
5 _ PRC,
oW = 5= i (24lﬁ(db+dt) + R, - d)

(z 7(sin(<p) - sin(w)) +sin(3y) - sin(<p)))v3t

p,TRC,
11527,

+

(ISORdbnlﬁ - 901;,(db —-d)+R(d,—-d)
(2 70(cos(p) — (cos(yp)) + 27(cos¢p) — cos(2y))

+ 2(cos(3¢p) — 005(31/)))) - 180R/,a(d, - d) V(1)
(49)

The power dissipated by drag acting on the fly
remains as given by equation (30).
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