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A B S T R A C T

The efficient operation of large-scale microalgae cultivation facilities requires continuous awareness of the 
culture condition. Although many conventional methods can be implemented in the laboratory, this goal can 
only be accomplished with non-invasive techniques such as spectral imaging based on the measurement of light 
backscattering of the culture surface. Several imaging methods are available, but we argue that developments in 
spectral approach will be among the essential breakthroughs for future advanced industrial-scale cultivation of 
microalgae.

The spectral methods initially developed for long-range (satellite and airborne) remote sensing of large water 
bodies are now increasingly employed for close-range monitoring of phytoplankton in natural ecosystems and 
large-scale microalgal cultures in open ponds and in closed photobioreactors. Similarly to high-throughput 
phenotyping which is now central to the progress of plant sciences, accelerated breeding, and precision 
farming, spectral imaging is gaining attention in microalgal biotechnology. Its power stems from the automated, 
rapid, non-invasive collection of large datasets, and the current advances in Machine Learning (ML). Their 
benefits include affordability, high information payload, and simplicity.

This review briefly presents imaging methods currently used in microalgal research, then focuses on spectral 
imaging. The background and biophysical foundation of remote sensing of communities and artificial mono
cultures is presented. Then, we elaborate on the methods for extracting relevant information from spectral im
ages for monitoring of biomass accumulation, culture health, and target metabolites. Special attention was given 
to novel, trendy applications of ML to processing images and spectral data for the inference of actionable insights 
into the culture condition.

1. Introduction

In recent years, billions of dollars have been invested in bio
technologies involving prokaryotic cyanobacteria and eukaryotic algae 
(while cyanobacteria are not “true” microalgae, the term microalgae is 
used throughout for simplicity) [1,2]. The reason is that the microalgae- 
based products (e.g. high-value molecules, bioplastics, biofuels) and 
services (e.g. wastewater treatment) have supposedly low carbon foot
prints and a plethora of other benefits [3–7]. Consequently, commercial 
cultivation has intensified, and massive research is ongoing to develop 
microalgae-based environmental biotechnologies for bioproduct pro
duction, wastewater treatment, nutrient recovery, biofuel generation, 
and CO2 mitigation [2,8]. To date, however, only a few microalgae 

species are currently domesticated and commercially cultivated, and the 
implementation of microalgae-based wastewater treatment is not com
mon [2,8]. This is essentially due to numerous biological and engi
neering challenges that microalgae present for cultivation, resulting in 
high capital and/or operational costs [1,5,9,10]. Up-scaled cultivation 
of microalgae indeed requires large land areas and is sensitive to envi
ronmental and operational conditions [1,11,12]. To reach the highest 
productivity in terms of the biomass or related bio-products, light sup
ply, nutrient availability, pH, and temperature are key operational pa
rameters to optimize during cultivation [2,11]. While light supply and 
temperature are difficult to economically control at scale [13], other 
parameters can be controlled via online monitoring. The most common 
example is pH control via online pH monitoring and dynamic CO2 
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injection [11,14].
Significant research is currently ongoing to develop advanced sen

sors and software to monitor microalgal cultures [15]. It is also expected 
that modelling effort, machine learning (ML), and the Internet of things 
(IoT) will enable automatic operation control to optimize microalgal 
productivity based on environmental conditions, culture conditions, and 
selected outputs [3,16]. New technologies have tremendous potential 
for monitoring biomass content and physiological status of the culture. 
As growth is highly dependent on the conditions experienced by the 
cells, it is critical that stresses, generally characterized by a change in 
morphology and/or pigments, are identified and mitigated as soon as 
possible in order to maintain productivity and prevent the loss of the 
culture [2,12,17]. While several instrumental approaches can be 
routinely used to monitor the status of a culture [18], automated, rapid, 
and non-invasive methods would be preferred. Imaging techniques and 
specifically spectral imaging techniques would offer such flexibility and 
efficiency [19,20].

This mini-review provides a concise outline of imaging-based ap
proaches to monitoring of microalgal populations in artificial cultivation 
systems. Advantages and drawbacks of these approaches will be dis
cussed briefly. The review then focuses on the foundations of spectral 
imaging and the potential use of this technology in microalgae farming. 
The issue of the knowledge-based selection of spectral features and 
processing techniques appropriate for different goals of large-scale cul
ture monitoring is then considered. Finally, cases will be reviewed based 
on published reports describing the use of spectral imaging for solving 
real-life problems such as contaminant species detection, culture con
ditions assessment etc. We conclude that spectral imaging in combina
tion with advanced approaches to the acquisition and processing of 
spectral images is a promising direction for monitoring industrial fa
cilities for the cultivation of microalgae.

Noteworthily, phytoplanktonic organisms (including eukaryotic 
algae and prokaryotic cyanobacteria) are driving key biochemical cycles 
in aquatic environments but unfortunately can also lead to environ
mental damages as a result of intensifying anthropogenic eutrophication 
[21]. The development of tools such as remote sensing to detect 
phytoplankton in water has been ongoing for decades [22–24]. While 
further development is still needed for the technology to be applied 
globally [22], remote sensing has diverse applications either to char
acterize phytoplankton communities for biochemical modelling or to 
quantify their presence for water quality monitoring or harmful algae 
bloom surveillance (the latter being a critical step for bloom prevention/ 
mitigation [25,26]). While the authors are aware of the use and tech
nological development in imaging techniques for (global) phyto
plankton ecological studies, this review focuses on the use of the spectral 
imaging for biotechnology.

2. Common methods available to monitor the status of 
microalgae cultures

The efficient operation of microalgal cultivation facilities requires 
continuous awareness of the culture condition regardless of the scale of 
the process. Particularly important parameters include biomass con
centration, physiological condition (photosynthetic activity), biochem
ical composition (mostly pigment and lipid content) of the cells, and the 
presence of contaminating species [11,18,27,28]. This can be easily 
accomplished in cases of small-scale cultivation systems where the 
culture samples of limited volume would be representative of the whole 
culture. At a certain point during upscaling, especially in the case of 
(open) ponds, the single-point sampling approach ceases to yield 
comprehensive information about the whole facility so one needs to 
balance the sampling coverage and completeness of the information vs. 
the cost and labor of sampling and analysis.

Arguably, this problem can be solved with indirect measurements, e. 
g. on-line non-invasive sensing of the relevant parameters in situ [15]. 
The development of these solutions aims to achieve the acceptable (i) 

information payload, (ii) time resolution i.e., measurement frequency, 
and (iii) cost of the monitoring. Currently, the most widespread 
approach is monitoring of optical properties of the cultures, mainly the 
spectral intensity of the signal light back-scattered (reflected) by the 
culture [18]. This signal is loaded with valuable information about the 
microalgal cell population, although extraction and interpretation of 
this information might pose a challenge.

In laboratory conditions, the spectra of microalgal cell suspensions 
are commonly recorded by measuring the spectral transmittance of the 
samples, T(λ), which is then represented as optical density or absor
bance, Abs (λ). It can also be corrected for scattering to extract the 
spectral contribution of the pigments to the total attenuation of light by 
the cell suspension [29]. Notably, absorbance-based culture monitoring 
suffers from its limited dynamical range since the conventional spec
trophotometers cannot reliably measure high optical density values 
typical of industrial cultivation systems. Further complications arise 
from cell self-shading [29,30]. However, the development of systems 
with inline dilution, ultra-high resolution, and broad bandwidth may 
solve those problems.

Other measurement methods can be routinely used to monitor a 
culture and its status (see summary in Table 1). Various abiotic (tem
perature, high light, pH, lack of nutrients) and biotic stresses (compe
tition, viruses, bacteria, zooplankton, insects) can affect microalgae 
[28,31–33], and even when needed to trigger the production of certain 
molecules (e.g. lipids), these stresses led to a loss of productivity and a 
change in the biochemical composition of the cells [34]. Generally, 
stresses are characterized by a change in morphology, pigments, and the 
biosynthesis of stress-related products (e.g. exopolysaccharides, sec
ondary carotenoids, reserve lipids [35]). As mentioned above, the dy
namic nature of microalgae growth during cultivation means that rapid 
methods would be the preferred choice to detect an issue as early as 
possible during large-scale cultivation. Some of the methods that are 
currently available can be relatively simple and cheap, but require 
expertise, whereas others are costly and require time investments before 
data can be generated (Table 1). Therefore, there is a trade-off between 
efficiency and time.

Table 2 presents current imaging technologies that can be used for 
qualitative and quantitative detection of microalgae. While the main 
advantages of microscopy are the high optical resolution suitable for 
detailed observation of cell morphology, cellular structure, pigmenta
tion, and possibility to use specific methods (e.g. fluorescence) for 
detection, this technique can be labor intensive, subjective, have limited 
spatial coverage, require significant training (i.e. to become an expert 
taxonomist), and is time constrained [39]. By contrast, advanced im
aging technologies have high spectral resolution (i.e. fine distinction 
between similar species at a micro scale), but allow for a faster training 
process and can be streamlined with a high frequency of sampling in 
time and space [19,49,50,54].

Advanced imaging for microalgae monitoring enables precise mea
surement of parameters like chlorophyll content or the capture of 
spectral signatures linked to biochemical compounds (see example in 
Box 1). Consequently, these techniques could facilitate high-throughput 
screening for desirable traits, accelerate strain selection, and provide 
real-time insights into microalgae cultivation processes. If streamlined, 
spectral imaging could help to reduce costs related to microalgae 
cultivation [55] by improving the information payload (e.g. measuring 
growth as well as the physiological state of a culture) and availability 
(providing updates daily or hourly), ultimately helping in preventing the 
loss of cultures. In our view, it would be a suitable method for 
comprehensive monitoring i.e., to holistically study the desired traits 
and the environment of large (open-pond) cultivation facilities.

M. Plouviez et al.                                                                                                                                                                                                                               Algal Research 82 (2024) 103649 

2 



3. Advanced imaging techniques

3.1. Multi- and hyperspectral imaging

Depending on the spectral resolution determined by the number of 
available spectral channels, their widths, and the overlap between them, 
imaging techniques are categorized into “conventional” (RGB), multi
spectral (3–20 discrete spectral channels) and hyperspectral (ranging 
from several dozen to hundreds of continuous spectral channels), each 
with a different information payload (Box 1). Spectral image analysis 
leaped forward when the rapid progress in cheap computing power, 
image sensor hardware, and mathematical methods sparked the boom of 
machine learning (ML) [56]. Admittedly, both conventional and 
emerging approaches have their strengths and limitations.

In contrast to RGB pictures limited to the visible part of the elec
tromagnetic spectrum, multi-spectral and hyperspectral imaging record 
a broader spectrum and allow the detection of specific features invisible 
to the naked eye (Box 1). These advanced imaging techniques are 
therefore powerful tools becoming more and more used for various 
applications including geology, agriculture, and biotechnologies, to 
name a few [23,54,57,58]. In the case of microalgal biotechnology, a 
useful parallel can be drawn with plant sciences where tremendous 
progress was made by the advent of high-throughput phenotyping—a 
comprehensive assessment of diverse traits constituting phenotype, in 
large populations of plants [59,60]. For example, hyperspectral imagers 
and machine learning techniques such as image processing with Support 
Vector Machines (SVMs) and Convolutional Neural Networks (CNNs) 
have been successfully developed to characterize phenotypic traits in 
plants such as diseases [61–63]. The concept of phenotyping is gaining 
attention of researchers in the field of microalgae biotechnology 
[48–52], especially for bioprospecting of strains, advanced laboratory 
evolution (ALE), and cultivation parameter optimization [64].

Table 1 
Summary of the main methodologies used to monitor microalgal biomass and its 
physiological status.

Methodology Description Example

Dry weight and 
optical density

Biomass is the most relevant variable measured 
during cultivation because the biomass 
generally holds the value for commercial 
applications. Standard measurement methods 
such as dry weight and optical density are 
commonly used to measure the concentration 
of the biomass [18,36,37]. While the loss 
attributable to endogenous respiration needs to 
be considered at high biomass concentrations, 
an abrupt loss of biomass would indicate that a 
stress is occurring. However, a delayed 
recording of a statistically significant biomass 
loss during stress could mean that it is too late 
for preventive or even for corrective measures.

[36,37]

Cell counting Cell counting using a haemocytometer is 
simple and easy, but this method can be prone 
to significant error and discrepancies between 
operators. However, combined with cell 
staining, this method also allows cell viability 
estimation [35]. Cell counting can be 
automated with the use of a flow cytometer 
[36,38], but this requires prior calibration with 
standardized particles. Cell concentration and 
morphology can also be measured with flow 
cytometry and the use of a specific dye can 
allow the measurement of cell viability, which 
provides significant physiological information 
[39].

[38]

Cell observations Cell observations under an optical microscope 
can allow the identification of organisms 
present in the culture, morphological changes 
and/or the presence of intracellular structures 
[40,41]. However, this task can be time 
consuming and prone to error without training 
[39]. Advanced techniques such as 
transmission electron microscopy can also be 
useful for investigating morphological changes 
[38], but they are time-consuming, require 
expensive equipment and expertise.

[40,41]

Genetic marker Genetic markers such as 16S or 18S RNA would 
provide an accurate species identification, but 
the samples need to be extracted, purified, 
sequenced, and identified [39,42,43]. 
Consequently, time could be an issue. MALDI 
TOF could fasten the identification process 
[44], however, the availability of extensive 
libraries is limited.

[39,44]

Biomarker Biomarker molecules such as ATP, or DNA (and 
DNA degradation products) can provide an 
indication of cell lysis if their concentration is 
elevated in the cultures [35]. Several assays are 
available, but all of them require specific 
equipment and can be time consuming. 
Pigment composition of phytoplankton and 
fatty acids composition have been used to 
identify different phytoplankton at the class 
level [45]. However, chlorophyll a is the most 
common biomarker and the measure of 
absorbance generally targets chlorophyll a. As 
chlorophyll a is altered or even degraded by 
various factors, changes in the chlorophyll 
content and its fluorescence by leveraging the 
pulse amplitude modulation (PAM) technique 
can indicate the occurrence of a stress [33].

[33,45]

Imaging techniques While imaging techniques can simply involve 
taking an image for further observation, 
automated techniques are being used and 
developed. For example, the FlowCAM system 
measures particle count, size, and morphology 
with Flow Imaging Microscopy [46]. Similarly, 
zooplankton that are unwanted during 
microalgal cultivation have been widely 
studied as water quality indicators. ZooScan, a 

[46,47]

Table 1 (continued )

Methodology Description Example

laboratory-based scanner which analyses 
zooplankton preserved samples and ZooCAM, 
an in-flow imaging system designed for live 
zooplankton imaging, have been shown to 
successfully classify and quantify zooplankton 
(both instruments were shown to be 
complementary [47]).

Advanced imaging 
techniques

Advanced techniques such as spectral imaging 
are currently being developed in biotechnology 
due to their tremendous potential [20,48–53]. 
In particular, spectral imaging techniques and 
hyperspectral imaging involve spatially 
resolved measurements of the spectral 
intensity of light backscattered by the 
microalgal cultures. These measurements can 
be done remotely, so they are especially 
suitable for monitoring of large cultivation 
facilities. Essentially, this approach resembles 
the one used in remote sensing of vegetation or 
phytoplankton. It identifies spectral features 
sensitive to the content of a pigment or another 
trait in question, enhances the accuracy of 
microalgae classification based on selected 
relevant features, minimizes redundant 
information, and is insensitive to other traits of 
the studied culture. The reflectance-based 
approach retains sensitivity in a broad range of 
pigment concentrations; hence it can be used 
for monitoring high culture densities. 
Importantly, these approaches can be 
implemented with the use of UAV-borne 
reflectance imaging spectrometers. Both 
conventional and advanced imaging can be 
automated via modern ML-based algorithms.

This 
review
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3.2. Integration of deep learning and artificial intelligence for image 
analysis

Early approaches to digital image processing were heavily grounded 
in brightness and colour manipulation, as well as the creation of hand- 
crafted features [96]. These techniques are extremely laborious and 
eventually were outpaced by machine learning (ML) algorithms, which 
find pertinent features in the data itself. ML algorithms are particularly 
well-suited for solving classification and detection problems such as 
identifying cells on a microscopic image, but they could also be used for 
regression problems such as deriving biochemical parameters from 
spectra.

Machine learning techniques fall into two broad categories: “clas
sical” ML, comprised of algorithms such as Logistic Regression, Decision 
Trees, Random Forests (RF), eXtreme Gradient Boost (XGBoost), and 
Support Vector Machines (SVM), among others, and deep learning (DL), 
which utilizes artificial neural networks (ANNs) with a wide range of 
architectures (further details about some of these methods and their 
caveats can be found in the Online Supplementary S1). Classical ML 
algorithms have better explainability than their deep learning counter
parts and tend to perform better with low volumes of training data, 
while ANN-based methods excel at finding complex, multi-scale patterns 
and are indispensable in image analysis. Regardless of the approach, 
input data in ML is viewed as a set of features comprising a multi- 
dimensional space, and the goal of ML algorithms is to find meaning
ful relationships between those features. Non-DL techniques are nor
mally used with semantic features such as pH, turbidity and total 
nitrogen (see e.g. [97,98]), whereas ANNs are flexible and especially 
valuable in tasks such as object detection or image segmentation 
essential e.g. for taxonomic assignment [99].

A specificity of spectral imaging is the highly pronounced curse of 
dimensionality, or Hughes phenomenon [100]: Statistical learning be
comes increasingly inefficient in high-dimensional spaces with collinear 
features, which is the case for hyperspectral images. Consequently, 
application of deep learning to spectral images requires feature selection 
either as a pre-processing step or as a core part of ANN architecture. 
Thus, selection of appropriate spectral bands for quantification of the 
productivity and/or taxonomic composition either of industrial cultures 
(or in natural phytoplankton communities) is of paramount importance 
to monitoring via spectral imaging (Box 1). The concept of optical 
monitoring is based on the existence of a tight relationship between the 
optical properties of the cell suspension and the changes in cell density, 
their biochemical and taxonomical composition during balanced growth 
and stress acclimation. This is the case e.g. for secondary caroteno
genesis coordinated with the accumulation of lipids induced by nutrient 
deprivation and other stresses [32,101,102].

Finding the relationship between spectral data and biophysical and 
chemical characteristics is accomplished either by the traditional semi- 
analytical approach when the search for the spectral bands is guided by 
the spectroscopy of the phytoplankton cells and/or their constituents 
[103] or, in frame of emerging approach, by ML algorithms which can be 
completely “unaware” of the spectroscopic properties of the object. The 
latter is less relevant for the analysis of spectral images of bulk 

microalgal cultures which normally lack morphological features (their 
information payload is concentrated in the spectral dimension, [98]). 
On the other hand, image analysis with ML is very promising for auto
mated identification of the target microalgae and contaminant species 
with optical microscopy including its microfluidic variant.

For identification of microalgae on microscopic images, segmenta
tion tasks are the most pertinent; consequently, neural network archi
tectures such as U-Net [104], Mask R-CNN [105], and, more recently, 
ViT [106] and their derivatives are effective. These architectures are 
based on intermediate representation of image and its regions as a 
compressed feature vector, followed by a “decompression” of said vector 
into a label map. So far, these techniques have not been commonly seen 
in microalgal research (some examples include [107,108]), but there is 
little doubt they will garner wide adoption in years to come.

Optimization of input features using deep learning algorithms re
mains a hot area of research. In particular, it combines supervised and 
unsupervised approaches to identify the most informative spectral 
ranges and perform band selection using Deep Belief Networks (DBNs) 
[109]. Alternatively, [110] used high-level CNN features to achieve 
explainability in band selection, while [111,112] leveraged the atten
tion mechanism in CNNs for the same purpose. While extensive, this sub- 
field of research presently yields more questions than answers. Still, 
without dimensionality reduction deep learning methods fail to gener
alize well [113].

Recent studies have also shown the potential for hyperspectral im
aging in vivo: thus, [114] demonstrated deriving highly accurate and 
granular benthic maps from underwater hyperspectral imagery. In this 
study, the classification model performed well with F1 (i.e. the harmonic 
mean of precision and recall) scores of 80 % ± 5 % with either 11 or 43 
target labels, referring to either taxonomic units or substrate classes. 
Remarkably, the performance difference between ANN-based approach 
and RF classifier operating on preprocessed data was found to be minor, 
and ANN performance was substantially dependent on the size of the 
training set (~7–10 % improvement as the training set grew from ~1 
million to ~6 million unique pixels).

Despite their power, ML-based image analyses have limitations. The 
most important is that these approaches seldom take into account actual 
optical properties of the culture (spectral absorption and back- 
scattering) and function essentially as a “black box”. Multiple authors 
have outlined the dire need in creating large, open annotated datasets 
for training and validation of ML algorithms [115–117]. This issue is 
further exacerbated in the case of spectral imaging, as there may be 
substantial variations in the spectrometer hardware, including vastly 
different numbers of spectral channels and resolution, both spectral and 
spatial, as well as other study parameters [118]. Neural network models 
do not provide information on the relationship between the spectral 
features distribution and system variables. As such, one cannot predict 
the target parameters (e.g., cell concentration) for different experi
mental conditions, and would have to repeat the entire set of proced
ures, from experiment to neural network learning, to predict the target 
parameter(s) if the experimental conditions are changed. This means 
that considerable efforts are still needed to develop broad methods to be 
used for commercial cultivation. At present, combining handcrafted 

Table 2 
Comparison of potential performance of different imaging methodologies regarding monitoring of microalgae communities and industrial cultures.

Approach Manual (microscopy) Semi-automated (flow cytometry) Optical sensing (imaging)

Parameter Proximal (close range)a Remote

Distance to the sensor – – 0–100 m 100–6000 m (airborne)–800 
km (satellite)

Spatial resolution – – 0.1 mm–50 cm 0.5 m–1 km
Time resolution ~1 d Arbitrary Arbitrary ~15 d
Specific performance of 

surveillance
Several samples representative of limited 
culture volume

Several samples representative of limited 
culture volume

Spot based − up to 0.1 
km2 per day

0.1–10 mil. km2 per day

a Including handheld sensors placed next to the measured object and sensors mounted on airborne devices such as UAVs.
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Box 1
Fundamentals of imaging data acquisition and processing

The mid-20th-century introduction of satellite technology marked a significant milestone, enabling large-scale environmental monitoring 
[57,65]. As technology progressed, airborne remote sensing emerged as a valuable complement to satellite observations [66–68]. Aircraft 
equipped with sensors offered higher spatial resolution and greater flexibility in data collection, especially beneficial for specialized applications 
like agriculture, forestry, and disaster response, which require detailed and timely information [69,70]. In recent years, proximal sensors have 
gained prominence, offering extremely high spatial resolution near the target area/system [71,72]. Currently, we are witnessing a bidirectional 
flow in platforms, with advancements in technology revitalizing the appeal of high-resolution satellite remote sensing [73–76]. Given the array 
of available options, it becomes crucial to categorize the essential steps associated with imaging acquisition and analysis as follows:

B1. Scale

The first step in utilizing imaging data is to define the acquisition scale distinctly. Whether through satellites or proximal sensing, the choice 
depends on the application and the specific research question being addressed, each offering distinct advantages, as shown in Fig 1.1.

Fig 1.1. The figure illustrates four different scales at which microalgae imaging can occur. The appropriate scale is selected based on the 
application and research question.

B2. Sensing technology

At different scales, various sensing technologies are available. Conventional colour sensor cameras are restricted to the 400–700 nm visible 
range, with three colour sensors (blue, green, and red) used to estimate the true colour of each pixel from an image [77,78]. Advanced mul
tispectral cameras/sensors allow measuring the reflected light in the visible to near-infrared spectral range in discrete bands (Fig 1.2), revealing 
more distinct characteristics of a particular system. Increasing the number of channels being measured allow to determine the spectral profile of 
the system. A spectral imaging system produces a two-dimensional spatial array of vectors that represents the spectrum at each pixel location. 
The resulting three-dimensional dataset contains two spatial dimensions and one spectral dimension known as the data cube or hypercube. The 
third dimension stores the full spectral range, usually within 370–2500 nm, which comprises deep blue, blue, green, red, near infrared, and short 
wave infrared spectral regions [79,80]. It should also be noted that the operational spectral range is dependent on the semiconductor material 
used in the sensor, and imagers with wide spectral ranges leverage several detectors, increasing both capital and operational costs. For the 
visible and near-infrared range up to about 1100 nm, silicon-based sensors are used near-universally [81], while infrared detectors are more 
varied, common choices include germanium (Ge), indium gallium arsenide (In1-xGaxAs), and mercury cadmium telluride (MCT, HgxCd1-xTe), 
among others. These infrared sensors typically cover ranges of 900–1700 nm and beyond [82].

Spectral imaging has been instrumental for the development of advanced vegetation indices, growth indices, and environmental indices [54]. 
With hyperspectral data, one can generate spectral libraries of different plants and their surroundings to identify advanced traits of similar plants 
and, arguably, other photosynthetic organisms, at different locations, enabling generalizability in phenotyping [83,84]. However, both 
acquisition and processing of spectral images may prove to be challenging. While different sensor platforms — drone, airborne, satellite — have 
issues specific to their viewing geometry, the respective data processing pipelines are largely universal [85]. Below we give a brief overview of 
the required steps.
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Fig 1.2. a) shows the range of the electromagnetic spectrum covered in (passive) optical remote sensing. b) depicts the difference between the 
contiguous spectrum of hyperspectral versus discrete bands in multispectral and RGB sensors.

B3. Pre-processing of data

RGB, multispectral, or hyperspectral images are versatile and useful tools for obtaining both qualitative and quantitative information. However, 
data acquired from remote sensing platforms are not readily available for analysis, as it is not a reflectance product — i.e. it is expressed in terms 
of sensor units, not physical quantities. Factors such as sensor noise (including bias and offset), atmospheric conditions, viewing and illumi
nation geometry, the contribution from background reflected radiation, and platform movements (roll, yaw, and pitch) [86,87], can all distort 
the measured radiation intensity. Thus, before utilizing remote and satellite sensing data, it is important to perform data pre-processing to 
remove these artifacts.

Depending on the application and goals, numerous pre-processing steps are available. We have outlined some of the standard pre-processing 
steps (Table 1.1) and discussed each type of correction below:

Radiometric calibration: Sensor-recorded data is referred to as Digital Number (DN), which is an electronic signal dependent on the radio
metric resolution of the sensor. Each sensor requires calibration for its gain and offset for converting raw sensor measurements into radiance 
products, enabling accurate and reliable interpretation of the data (Fig. 1.3). Radiometric calibration is often performed using radiometric 
calibration parameters provided with the sensor. Reflectance standard measurements could be needed in the field (Table 1.1 and [86,88,89]).

Atmospheric correction: For passive remote sensing, where solar energy is the source of light when solar radiation propagates through the 
atmosphere, radiation is scattered and absorbed by the Earth’s atmosphere. This effect is generally depicted in the radiance plot, where the 
absorption effect is apparent (Fig 1.3). Because atmospheric conditions vary significantly in space and time, it is critical to remove the atmo
spheric effect to prevent significant deviation in reflectance output. For instance, when conducting time-series analysis or monitoring changes 
over time, atmospheric correction ensures consistency in the reflectance values, allowing for more accurate analysis. Noteworthily, under 
laboratory conditions or with the use of sensors mounted on UAVs, atmospheric correction is generally not needed provided a reflectance 
standard is imaged simultaneously and/or a controlled light source is used. This adds to the value of close range sensing, since atmospheric 
correction is much harder to perform accurately than sensor-specific radiometric/geometric corrections [86,89].
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Fig 1.3 Radiometric calibration and atmospheric correction components are shown for in-field conditions.

Geometric correction: Geometric correction aims to correct for the artifacts created by platform movements (roll, yaw, and pitch) that cause 
objects to “stretch”.

After performing the standard calibration and correction processes the next tasks are to perform image enhancement and noise reduction. This is 
subject to the purpose of the enhancement, the sensor signal-to-noise ratio, and imaging conditions. Thus, this processing step is not always 
needed. There are several tools and coding platforms available to perform these tasks [90,91].
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Table 1.1. Summary of the pre-processing steps needed for each type of sensors in proximal and remote sensing (● = required; ○ = optional; 
empty cell = not required). Image enhancement and noise reduction are optional steps for all type of sensors.

Acquisition Sensor type

Pre-processing step

Radiometric calibration Geometric correction Atmospheric correction

Proximal (close range)
RGB ●
Multispectral ●
Hyperspectral ●

Remote (long range)
RGB ● ● ○

Multispectral ● ● ●
Hyperspectral ● ● ●

B4. Data analyses

Feature extraction and machine learning (see also the Online Supplementary S1) are generally employed to create spectral libraries and reveal 
various characteristics of a system. This is further discussed below in relation to microalgae biotechnology.

B5. Case study — Non-destructive assessment of microalgae samples through proximal sensing

Hyperspectral imaging measures the reflectance of light from sample surfaces. With high spectral resolution, from visible to shortwave infrared 
(SWIR), the reflectance properties of photosynthetic organisms can reveal much about chemistry of their biomass [19,56,84]. Once calibration 
models are developed, hyperspectral analysis allows for non-destructive measurement of pigments, nutrient content, water status, and chemical 
composition.

The potential of hyperspectral for monitoring biomass concentration or growth phases has been demonstrated during several studies (Table 3). 
As another example, we used a case scenario of P-depleted vs P-replete microalgae. As microalgae can store P, their potential use for P removal 
from waste is currently of significant interest. This has been reviewed by others and was therefore used as an example [40,41,92]. The green alga 
Chlamydomonas reinhardtii grown for 5 days on low P medium were subsequently supplied with different P concentration (0, 20 and 40 mg-P ⋅ 
L–1) and the spectral signatures of each culture was measured 20 h after P supplementation.

Data acquisition

Spectral measurements of C. reinhardtii cultures supplemented different concentration of phosphorus (0, 20 and 40 mg-P L–1) were collected 
using an hyperspectral probe—ASD FieldSpec Pro (Analytical Spectra Devices, Inc., Boulder, CO, USA)—mounted on a stand, ensuring that the 
microalgae samples were positioned at a distance of 2 cm from the ASD probe. The ASD measures the Vis-NIR range (350–2500 nm), with a full- 
width half maximum of 3 nm in the Vis and 10 nm in the NIR, and an output of 1 nm spectral resolution.

Data pre-processing

In this case scenario, proximal sensing was used, the spectral data therefore do not require extensive pre-processing in comparison to hyper
spectral from remote sensing as mentioned above. However, the ASD spectra were affected in reflectance values at the splice of the three sensors 
at 1000 and 1800 nm of the spectroradiometer. Consequently, an ASD splice correction was implemented using the ViewSpec Pro software 
which is based on the method described by [93].

Results and further processing

The reflectance of each culture is depicted in Fig 1.4 below, covering the VNIR region (<1000 nm) and SWIR region (>1000 nm), with a spectral 
resolution of 1 nm. While the three cultures visually appeared similar and all had an optical density of ~0.4 at 683 nm, they could be differ
entiated in their spectral signatures. Specifically, the higher the P supplied, the higher the reflectance. Because the differences in spectra were 
not related to biomass concentration, the clear difference between the spectra suggests a change in the biochemical composition of the 
microalgae when transitioning from P-depleted to P-replete conditions. Microalgae are known to have different biochemistry and to store 
significant amount of P as polyP during such transition [41,94,95]. Consequently, the spectral difference observed could be related to a change 
in biochemical composition of the cells including the accumulation of polyP. Critically, our study is preliminary, more samples (i.e. 5–10 
samples per concentration) and analyses would be required. Further analysis including feature extraction and machine learning could then be 
employed to develop model to predict the P status of the cells and to reveal various characteristics related to P supply in microalgae.

Fig. 1.4. Spectral measurements of C. reinhardtii cultures supplied different concentrations of P (0, 20 and 40 mg-P ⋅ L-1) in the spectral range of 
350–1400 nm. Data represent the mean ± standard deviation from 10 ASD measurements.
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Table 3 
Table summary of the studies that developed and used conventional and spectral imaging to measure growth and physiological state as well to detect contaminants in 
suspended microalgal cultures.

Cultivation system Organism Sensed parameters Imaging equipment Processing algorithm Ref.

RGB/monochrome
500 mL flask A consortium (Desmodesmus sp., 

Scenedesmus sp., Dictyosphaerium 
sp., and Klebsormidium sp.)

Biomass concentration 
(g-DCW⋅L− 1)

Smartphone dual camera RGB to Luminance conversion and 
calibration vs. DW

[128]

Concentric tube airlift 
photobioreactor 
(5.45 L)

Synechococcus sp. PCC6301 Biomass concentration 
(OD600)

RGB (24-bit true colour, 320 × 240 
pixels)

Light Distribution Image analysis vs. 
feedforward neural network with a 
backpropagation learning

[131]

Stirred tank Chlorella sorokiniana Light distribution in the 
vessel

Digital camera (COOLPIX S3100, 
Nikon)

Decomposition (brightness 
extraction)

[132]

Flasks (3 L) Chlorella vulgaris KCTC AG10032, 
Botryococcus braunii UTEX 572, 
and Ettlia sp. YC001

Biomass concentration 
(g-DCW⋅L− 1)

CCD camera (Sony NEX-7 with 100 
mm F2.8 lens; Sony Corporation, 
Japan)

RGB colour/grayscale analysis [36]

Panel 
photobioreactor 
(720 mL)

Rhodobacter capsulatus DSM 1710 Biomass concentration 
(OD660 and g-DCW⋅L− 1) 
and distribution in 
photobioreactor

Microsoft Webcam SCB-0340 N RGB colour/grayscale analysis [133]

Erlenmeyer flask (1 L) Isochrysis galbana (clone T-ISO) Cell number Canon SD750 with 35–105 mm 
Canon Zoom lens

RGB/HIS analysis [134]

Draught tube (1.5 L) Chlorella sp. ATCC 14854 Lumostatic growth 
regime control

Canon 450D RGB colour/grayscale analysis [135]

Three types of PBR 
(cylindrical, 5 L; 
panel, 80 L; bag, 
400 L)

Chlorella vulgaris Biomass concentration 
(g-DCW⋅L− 1)

Smartphone camera (Sony IMX214) RGB colour/grayscale analysis 
(mean, median or mode)

[55]

nsa Planktothrix agardhii CCNP 1305 Morphological change YenCam HD camera (Yenway 
Microscopes)

Three different network 
architectures (AlexNet, 3ConvLayer 
and 2ConvLayer), four different 
optimizers (Adam, Adagrad, 
RMSProp and SDG) and five 
different image segmentations 
methods tested (Canny Edge 
Detection, Morphological Filter, HP 
filter, GrabCut and Watershed)

[31]

Spectral
Bottles (2 L) Chlorella sp. UTEX 2168, 

Anabaena variabilis ATCC 29413- 
U

Biomass concentration 
(g-DCW⋅L− 1), invasive 
species, culture health

RGB webcam (Logitech, Pro 9000) RGB as tri-band multispectral 
simulation

[48]

Flasks (0.25 L) Microcystis sp. CCAC 3504 B, 
Synechococcus sp. CCAC 2944 B, 
Cryptomonas ovata CCAC 0064, 
Peridinium cinctum CCAC 0102 B, 
Desmodesmus maximus CCAC 3524 
B

Culture growth SpecimIQ frame-based imaging 
hyperspectrometer

Ratio and difference spectral indices 
for NIR and RE: A/B, A/(A + B) or 
(A − B)/(A + B)

[51]

Flasks (0.25 L) CCAC 3504 B Microcystis sp., 
CCAC 2944 B Synechococcus sp., 
CCAC 0064 Cryptomonas ovata, 
CCAC 0102 B Peridinium cinctum, 
and CCAC 3524 B Desmodesmus 
maximus

Contaminant presence, 
biomass concentration 
(g-DCW⋅L− 1)

SpecimIQ frame-based imaging 
hyperspectrometer

Per-pixel (per-spectrum) processing 
of hyperspectral reflectance images 
with CNN

[50,53]

Flask (0.2 L) Nostoc sp., Scenedesmus 
almeriensis, Spirulina platensis and 
Chorella vulgaris

Biomass composition Minolta CM-3500d colorimeter Normalized relative light absorption 
(for each absorbance band per 
sample) input to ANN

[136]

Beaker (0.25 L) Chlorella sorokiniana (CCAP No. 
211/8 K)

Biomass concentration 
(g-DCW⋅L− 1)

Particle Track 400 Chord length distribution data 
processed with support vector 
regression and random forest 
regression modelling

[137]

ns Chlamydomonas reinhardtii Biomass concentration 
(cell⋅mL− 1)

Miniature spectrometer USB6500pro Fluorescence spectrum (1 nm 
between 660 and 760 nm) input to 
ANN

[138]

Harvested cells 1 mL 
in Eppendorf tube

Chlorella vulgaris (CV 211-11b) Cell viability Sysmex CyFlow Space flow 
cytometer, mounted with blue laser 
(488 nm), FSC, SSC detectors and 
three fluorescence channels (FL1: 
536/40, FL2: 590/50 and FL3: 675/ 
30 nm).

Clustering processing to segregate 
the three cell populations (active 
cells, non-viable cells and debris)

[38]

ns Chlorella vulgaris and Scenedesmus 
almeriensis

Biomass classification FlowCAM that combines flow 
cytometry, microscopy, and 
fluorescence detection techniques.

FlowCAM outputs images fed to 
ANN

[139]

ns Phaeocystis, Chlamydomonas and 
Chaetoceros

Biomass classification, 
identification, and 
growth

A transmission hyperspectral 
microscopic imager system is 
mounted on a traditional microscope 
(RX50, SOPTOP, China)

ns [52]

(continued on next page)
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features such as spectral indices with the power of deep learning is the 
most promising approach for achieving robustness and overcoming this 
generalization bottleneck. In a similar vein, hybrid approaches incor
porating physical considerations (e.g. noise equivalence [119] maybe 
used in the future to achieve better predictability and generalization of 
deep learning methods [120].

4. Advanced imaging in microalgal biotechnology research

The use of advanced (i.e. spectral) imaging techniques to detect or 
identify phytoplankton is not new and has been widely used for 
ecological studies [23]. For instance, satellite remote sensing has been 
widely applied to determine phytoplankton community structures via 
several missions [24,25,58,121,122]. While earlier methods focus on 
identifying dominant group, newer approaches try to identify groups 
with similar ecological roles (referred as phytoplankton functional 
types). These newer approaches use algorithms that retrieve phyto
plankton size classes, size composition, or particle size distribution from 
the satellite data [24]. Please refer to [23], for an excellent review and 
guide on the different type of algorithm used in the field. Noteworthy, 
the taxa-specific algorithms that have been developed are currently not 
applicable globally and they can lack uniqueness [22]. Differentiating 
taxa can indeed be difficult when dominant species share similar 
pigment features [58]. As recommended by [22], the continuity of 
global missions with the development of algorithm will improve the 
versatility and accuracy of the data. Critically, the same need would 
apply to the field of microalgal biotechnology.

A similar approach to the one described above could be applied to 
cultivation at scale but utilizing sensors mounted on UAVs flying at low 
altitude. As summarized by Havlik, Lindner, Scheper and Reardon 
[123], the expansion of the proximal sensing of microalgae cultures was 
warranted by remarkable progress in the miniaturization and afford
ability of optical sensors becoming increasingly versatile, connectable, 
and adaptable. Although, proximal sensing refers to the collection of 
data from sensors that are positioned close to the objects, the definition 
of “close” is somewhat arbitrary and varies between authors. For 
example, while Mulder et al. [124] refers to the use of handheld devices 
for “proximal sensing”, Sanaeifar et al. [125] includes UAVs flying at 
low altitudes (<10 m from the object) in that category. Key differences, 
however, lie in operational parameters - spatial resolution, revisit time, 
and dependence on weather conditions (Table 2). In contrast to remote 
sensing platforms, proximal sensors can be deployed at arbitrary times 
and allow for capturing fine details, but that comes at a cost to the data 
acquisition rate. However, being close to the objects, atmospheric in
terferences and other platform-related perturbations are less of an issue. 
That is, proximal data acquisition and processing is simpler than 
airborne remote platforms (e.g. planes, satellites) because fewer 
correction steps are needed (Box 1). However, microalgal suspensions 
are optically complex systems represented by particles (cells) consisting 
of diverse components (superficial structures, organelles, and cell sub
compartments) with different refraction indices. Overlapping spectra 
and strong absorption of light by the pigments also add complexity. In 
remote sensing of vegetation, this complexity was overcome by devel
opment of efficient algorithms for retrieval of pigment content and 

composition from reflectance spectra, creating vegetation indices 
[126,127]. As described in Section 3.2, these algorithms are at the 
foundation of the quantitative interpretation of hyperspectral images.

While the amount of spectral information which would be necessary 
and sufficient for the retrieval of valuable information about microalgae 
culture is vigorously debated until now [58], evidence accumulated so 
far suggests that routine tasks such as pigment (chlorophyll) retrieval 
can be accomplished efficiently with multispectral data [48,128]. More 
complicated tasks such as distinguishing phycobilins of cyanobacteria 
and peridinin of dinoflagellates with strong overlap of their spectra are 
better solved with extensive hyperspectral datasets.

Nevertheless, as can be seen in Table 3, conventional and advanced 
imaging methods have been developed for monitoring of laboratory 
cultures from biomass quantification to the evaluation of the physio
logical status of the cells. For example, multispectral imaging was used 
to detect physiological changes in phytoplankton incubated with TiO2 
nanoparticles [129]. In the study of Adejimi et al. [49], hyperspectral 
transmittance spectroscopy was used to estimate cellular concentration 
(detection limit of 104 cells⋅mL− 1) and to differentiate between species. 
However, the team showed the need to test different algorithm for better 
performance with the SVM-classification algorithm that provided both 
quantitatively and qualitatively better predictions than the PLS- 
discriminant and single-wavelength regression algorithm. The devel
opment of ML techniques and algorithms is of paramount importance for 
extracting valuable information from advanced imaging techniques (as 
described in Section 3). While imaging methods are now increasingly 
employed in surveillance of large-scale industrial cultivation systems 
[130], more datasets are needed for validation and to create spectral 
databases that can be broadly used (similarly to ecological studies or 
plant sciences).

5. Index-based approach for processing microalgal culture 
spectral images

Hyperspectral vegetation indices (VIs) are widely used in agriculture 
and plant phenotyping to estimate for e.g. crop performance or plant 
traits [51,53,54]. The VIs are calculated as ratios or combinations of 
functions involving vegetative reflectance at different wavebands 
selected from different regions of the electromagnetic spectrum (e.g. the 
visible 400–700 nm; near infrared 700–1000 nm and shortwave infrared 
1000–2500 nm). More than 500 hyperspectral VIs have been developed 
for plants [54], consequently, much can be learnt from this field.

The relationship of the amount of pigment-containing phytoplankton 
biomass vs. radiation absorption and hence with the amount of light 
backscattered in the direction of the detector is rapidly saturated in the 
spectral regions located near the maxima of pigment absorption spectra 
[141]. Therefore, there are non-linear changes of reflectance (back- 
scattering) with the pigment content [142,143]. On the contrary, back- 
scattering in the bands aside from the main maxima of pigment ab
sorption spectrum are linearly related with pigment and/or biomass 
content of the culture. Therefore, wavelengths on the slope(s) e.g. on the 
long-wave Chl absorption maximum (so-called “red edge” region) are 
suggested for monitoring of dense cultures and vice versa (for moni
toring of diluted cultures) [142,144,145]. Salmi, Eskelinen, Leppänen 

Table 3 (continued )

Cultivation system Organism Sensed parameters Imaging equipment Processing algorithm Ref.

6-Well plates Chlamydomonas reinhardtii TiO2 nanoparticle effect 
on culture performance

SeedReporter (PhenoVation B.V., 
Wageningen, The Netherlands) with 
a CCD-chip

Vegetation indices NDVI, ARI, CI [129]

2.5 L to 11 m3 PBRs Synechocystis sp. and mixed 
cultures

Biomass concentration, 
growth phase and 
chlorosis

Sensor mounted on a Pika L camera 
system from Resonon

Spectronon software from Resonon 
with in-built library with image 
processing tools such as support 
vector machine and hyperspectral 
vegetation indices

[140]

a ns—not specified.
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and Pölönen [51] described a simple imaging setup and information 
extraction based on vegetation indices that could be used to monitor 
algal cultures. Consequently, spectral bands close to the red edge region 
i.e. the region of rapid change in the reflectance of vegetation in the 
near-infrared range of the electromagnetic spectrum, could potentially 
be used for microalgae as in higher plant. While efficient for biomass 
quantification or identification, the use of index in the red edge region 
may fail at identifying subtle patterns of the spectrum under specific 
conditions (e.g. stresses conditions triggering a change in pigments).

Different index may have to be developed for microalgae cultivation 
for the production of metabolites because of significant changes in 
pigments content. Stresses such as deprivation of nutrients, exposure to 
high light intensity as well as increased salinity are frequently used in 
biotechnology for the induction of the accumulation of carbon-rich re
serves (starch and lipids) and/or valuable secondary carotenoids 
[3,32–34,146]. These stress responses trigger characteristic changes in 
the optical properties of microalgal cultures [102], mostly comprised by 
a decline of the absorption in the red region of the spectrum due to a 
decline in Chl content and an increase of the absorption in the blue- 
green region of the spectrum related to the accumulation of secondary 
carotenoids [146]. Therefore, an increase in the ratio of absorbance in 
the blue region to that in the red region can be used for monitoring of the 
buildup of valuable metabolites in the cultures of microalgae such as 
Lobosphaera incisa [147,148], Nannochloropsis sp. [32], Dunaliella salina 
[149], or H. pluvialis [101]. This approach would also allow to non- 
invasively quantify neutral reserve lipids whose biosynthesis is tightly 
linked to the biosynthesis of secondary carotenoids in stressed micro
algae [150].

Timely detection of overstressing and subsequent damages to the 
cultures, which are likely to occur during outdoor cultivation, is 
important for taking efficient corrective actions. As in higher plants, 
excessive stress manifests itself by a synchronous bleaching of photo
synthetic pigments (chlorophylls and primary carotenoids) [32,151]. In 
contrast to accumulation of Car in the course of stress response, the 
damage becomes apparent on the spectra as a synchronous decline of the 
absorbance in the red and blue regions.

Arguably, the knowledge outlined above could be used for extraction 
of quantitative information from the spectral images of microalgae 
cultures. To date, only a handful of methods have been developed for 
microalgae [51]. This is possibly related to the lack of comprehensive 
insights into the crucial features in terms of wavelength and their cor
relations with various biophysical and biophysiological attributes. This 
knowledge is critically needed to understand which spectral bands are 
significant for distinct microalgal characteristics.

6. Challenges

One of the main challenges related to spectral imaging techniques is 
the limited accuracy of target parameters estimation. Thus, in satellite- 
based remote imaging of phytoplankton the acceptable accuracy is ±35 
%. This is clearly insufficient for biotechnology purposes where preci
sion of ±5–10 % is required. In principle, this level of accuracy is 
achievable with the currently available “close-range” spectral indexes 
initially developed for processing of “point-based” spectral references 
[18]. Nevertheless, each proposed imaging method must be validated in 
terms of accuracy in a specific cultivation setup where it is intended to 
be used. This validation should span the whole range of culture growing 
stages from inoculation to harvest and the widest possible range of 
weather (ambient illumination) conditions to avoid the interference 
from the variation of incident solar radiation.

Another challenge is that ratio-based spectral indexes using fixed 
narrow-band reflectance are prone to errors due to optical complexity of 
the water containing diverse microalgal cells, especially when the cell 
density becomes relatively high and potentially experiencing stresses. 
Currently, detailed knowledge is almost lacking on the relation between 
microalgae spectral features and various biophysical and 

biophysiological attributes in mass cultivation facilities. Considering 
that publicly available datasets are limited (many datasets are kept 
private due to the substantial value and/or corporate restrictions of the 
collected data), the need for further spectral data and the creation of 
libraries has been raised by several authors [51,53,140].

Finally, one of the key challenge unspecific to the field of research is 
that different data processing method/algorithms of spectral data pro
vides significant errors on parameters estimations [152]. Therefore, 
more sophisticated ML techniques are likely required to get most from 
spectral data. This is especially true when the changes in culture con
ditions and/or biomass composition manifest themselves as slight 
changes in spectral curve shape, frequently on the background of 
various interferences, making it hard to capture with a direct e.g. VI- 
based approach.

Despite all power behind conventional and ML-based imaging algo
rithms, they are “hardcoded” for specific species/cultivation back
ground (as can be seen in Table 3, models have been developed for a 
handful of species and mostly on Chlorella). Changes in any of the pa
rameters pushing the measured optical properties of the culture beyond 
the range encompassed by the initial training of the model will likely 
invalidate the results obtained from it. On one hand, this entails the 
hurdle of re-calibration and repeated training of the spectral image 
processing algorithms after significant changes in the cultivation con
ditions and/or composition of the industrially grown microalgae. On the 
other hand, the failure of a model might be employed as a useful alarm e. 
g. of contamination or grazer attack.

Of separate concern is generalization of the ML-based approach. It is 
well known that huge amounts of data are required to train ML models. 
Nevertheless, hyperspectral imaging providing large spectral datasets 
(hundred thousand and millions of spectra per image) has the potential 
to cope with this problem. One downside of this approach is the lack of 
standardization: Images acquired by different hyperspectral imagers are 
not directly comparable, which hinders data collection. Robust features 
such as VIs or biochemistry-informed spectral band selection are 
essential for building spectral databases for use in microalgal biotech
nology. Still, significant work is needed to develop robust, scalable, and 
generalizable approaches for automated processing of spectral images 
with ML algorithms.

7. Conclusions and outlook

There is a growing consensus that scaling-up of the cultivation fa
cilities in microalgal biotechnology will require a comprehensive 
monitoring approach which will give exhaustive information about the 
culture condition with sufficient resolution in time and space. It is clear 
now that this goal is not achievable with conventional wet lab methods, 
although they will undoubtedly remain as an important reference and 
benchmark e.g. in assessment of biochemical composition of the biomass 
and to generate input data for ML algorithms. Processing of remotely 
sensed spectral images for extraction of quantitative information about 
the cultivated microalgae has emerged as a promising alternative from 
the field of “classical” remote sensing of Earth. It became even more 
attractive after advent of efficient but affordable sensors and powerful 
ML-based algorithms for automated spectral data processing eliminating 
the need of an expert for routine acquisition and interpretation of the 
results (although it is required at the stage of the method development). 
Numerous studies confirmed the potential of spectral imaging applica
tion to lab- and pilot-scale cultures. The recent boom of UAVs makes 
possible the close-range monitoring of growing facilities, making UAVs 
the preferred choice for biotechnological applications.

At the same time, we need a deeper understanding of the microalgal 
culture optical properties and their changes during growth, stress- 
induced biosynthesis of the target metabolites as well as during the 
damage due to overstressing, contamination, and grazer feeding. It is 
needed particularly for validation of new models for spectral data pro
cessing and to provide a “sanity check” for advanced ML-based 
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approaches likely to be developed in the nearest future. Of special 
importance is the ability for detecting of the shifts in the taxonomical 
structure of the culture evident of contamination, grazing, stresses etc. 
Solving this problem will likely require more efficient ML approaches for 
spectral data treatment, but promising results have been already 
achieved.

There is a need for further research and development to improve the 
usability, robustness, and precision of the spectral imaging for moni
toring of large-scale microalgal cultures. Thus, an effort is needed to 
ensure that the rapid technical progress in the hardware and data for
mats would not undermine the compatibility of new datasets with pre
viously acquired ones so that all the data will remain accessible for 
training of the algorithms and retrospective analysis. The practitioners 
would welcome the development of dedicated systems for automated 
proximal sensing of large cultivation facilities with UAVs. Ideally, these 
systems should be capable of seamless integration into the current IT 
platforms used for the operation and control of the microalgae cultiva
tion facilities.

Finally, extensive testing and implementation of the advanced im
aging techniques for automated monitoring of large-scale microalgal 
cultivation facilities is required for further improvement of this meth
odology. It will also fuel the interest of the researchers to achieve further 
progress in this area and lift the current limitation related with basic 
understanding of the microalgal culture optics and efficient extraction of 
spatially resolved information from its images. Anyway, it is highly 
likely that the advanced imaging will constitute a core technology in the 
future of large-scale microalgae culture monitoring.
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[55] J.L. Salgueiro, L. Pérez, Á. Sanchez, Á. Cancela, C. Míguez, Microalgal biomass 
quantification from the non-invasive technique of image processing through 
red–green–blue (RGB) analysis, Journal of Applied Phycology 34 (2022) 
871–881.

[56] S. Arya, K.S. Sandhu, J. Singh, S. Kumar, Deep learning: as the new frontier in 
high-throughput plant phenotyping, Euphytica 218 (2020) 47.

[57] A.F.H. Goetz, Three decades of hyperspectral remote sensing of the Earth: a 
personal view, Remote Sens. Environ. 113 (2009) S5–S16.

[58] N. Pahlevan, B. Smith, C. Binding, D. Gurlin, L. Li, M. Bresciani, C. Giardino, 
Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland 
and nearshore coastal waters, Remote Sens. Environ. 253 (2021) e112200.

[59] D. Ye, L. Wu, X. Li, T.O. Atoba, W. Wu, H. Weng, A synthetic review of various 
dimensions of non-destructive plant stress phenotyping, Plants 12 (2023) 1698.

[60] A. Zavafer, H. Bates, C. Mancilla, P.J. Ralph, Phenomics: conceptualization and 
importance for plant physiology, Trends Plant Sci. 28 (2023) 1004–1013.
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