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ARTICLE INFO ABSTRACT

Keywords: The efficient operation of large-scale microalgae cultivation facilities requires continuous awareness of the

Micmalgae ) culture condition. Although many conventional methods can be implemented in the laboratory, this goal can

I;’i:croaigalkbmted‘m’l‘)gy only be accomplished with non-invasive techniques such as spectral imaging based on the measurement of light
ytoplankton

backscattering of the culture surface. Several imaging methods are available, but we argue that developments in
spectral approach will be among the essential breakthroughs for future advanced industrial-scale cultivation of
microalgae.

The spectral methods initially developed for long-range (satellite and airborne) remote sensing of large water
bodies are now increasingly employed for close-range monitoring of phytoplankton in natural ecosystems and
large-scale microalgal cultures in open ponds and in closed photobioreactors. Similarly to high-throughput
phenotyping which is now central to the progress of plant sciences, accelerated breeding, and precision
farming, spectral imaging is gaining attention in microalgal biotechnology. Its power stems from the automated,
rapid, non-invasive collection of large datasets, and the current advances in Machine Learning (ML). Their
benefits include affordability, high information payload, and simplicity.

This review briefly presents imaging methods currently used in microalgal research, then focuses on spectral
imaging. The background and biophysical foundation of remote sensing of communities and artificial mono-
cultures is presented. Then, we elaborate on the methods for extracting relevant information from spectral im-
ages for monitoring of biomass accumulation, culture health, and target metabolites. Special attention was given
to novel, trendy applications of ML to processing images and spectral data for the inference of actionable insights
into the culture condition.

Spectral imaging
Machine learning
Imaging spectroscopy
Phenotyping

1. Introduction species are currently domesticated and commercially cultivated, and the

implementation of microalgae-based wastewater treatment is not com-

In recent years, billions of dollars have been invested in bio-
technologies involving prokaryotic cyanobacteria and eukaryotic algae
(while cyanobacteria are not “true” microalgae, the term microalgae is
used throughout for simplicity) [1,2]. The reason is that the microalgae-
based products (e.g. high-value molecules, bioplastics, biofuels) and
services (e.g. wastewater treatment) have supposedly low carbon foot-
prints and a plethora of other benefits [3-7]. Consequently, commercial
cultivation has intensified, and massive research is ongoing to develop
microalgae-based environmental biotechnologies for bioproduct pro-
duction, wastewater treatment, nutrient recovery, biofuel generation,
and CO, mitigation [2,8]. To date, however, only a few microalgae

mon [2,8]. This is essentially due to numerous biological and engi-
neering challenges that microalgae present for cultivation, resulting in
high capital and/or operational costs [1,5,9,10]. Up-scaled cultivation
of microalgae indeed requires large land areas and is sensitive to envi-
ronmental and operational conditions [1,11,12]. To reach the highest
productivity in terms of the biomass or related bio-products, light sup-
ply, nutrient availability, pH, and temperature are key operational pa-
rameters to optimize during cultivation [2,11]. While light supply and
temperature are difficult to economically control at scale [13], other
parameters can be controlled via online monitoring. The most common
example is pH control via online pH monitoring and dynamic CO,
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injection [11,14].

Significant research is currently ongoing to develop advanced sen-
sors and software to monitor microalgal cultures [15]. It is also expected
that modelling effort, machine learning (ML), and the Internet of things
(IoT) will enable automatic operation control to optimize microalgal
productivity based on environmental conditions, culture conditions, and
selected outputs [3,16]. New technologies have tremendous potential
for monitoring biomass content and physiological status of the culture.
As growth is highly dependent on the conditions experienced by the
cells, it is critical that stresses, generally characterized by a change in
morphology and/or pigments, are identified and mitigated as soon as
possible in order to maintain productivity and prevent the loss of the
culture [2,12,17]. While several instrumental approaches can be
routinely used to monitor the status of a culture [18], automated, rapid,
and non-invasive methods would be preferred. Imaging techniques and
specifically spectral imaging techniques would offer such flexibility and
efficiency [19,20].

This mini-review provides a concise outline of imaging-based ap-
proaches to monitoring of microalgal populations in artificial cultivation
systems. Advantages and drawbacks of these approaches will be dis-
cussed briefly. The review then focuses on the foundations of spectral
imaging and the potential use of this technology in microalgae farming.
The issue of the knowledge-based selection of spectral features and
processing techniques appropriate for different goals of large-scale cul-
ture monitoring is then considered. Finally, cases will be reviewed based
on published reports describing the use of spectral imaging for solving
real-life problems such as contaminant species detection, culture con-
ditions assessment etc. We conclude that spectral imaging in combina-
tion with advanced approaches to the acquisition and processing of
spectral images is a promising direction for monitoring industrial fa-
cilities for the cultivation of microalgae.

Noteworthily, phytoplanktonic organisms (including eukaryotic
algae and prokaryotic cyanobacteria) are driving key biochemical cycles
in aquatic environments but unfortunately can also lead to environ-
mental damages as a result of intensifying anthropogenic eutrophication
[21]. The development of tools such as remote sensing to detect
phytoplankton in water has been ongoing for decades [22-24]. While
further development is still needed for the technology to be applied
globally [22], remote sensing has diverse applications either to char-
acterize phytoplankton communities for biochemical modelling or to
quantify their presence for water quality monitoring or harmful algae
bloom surveillance (the latter being a critical step for bloom prevention/
mitigation [25,26]). While the authors are aware of the use and tech-
nological development in imaging techniques for (global) phyto-
plankton ecological studies, this review focuses on the use of the spectral
imaging for biotechnology.

2. Common methods available to monitor the status of
microalgae cultures

The efficient operation of microalgal cultivation facilities requires
continuous awareness of the culture condition regardless of the scale of
the process. Particularly important parameters include biomass con-
centration, physiological condition (photosynthetic activity), biochem-
ical composition (mostly pigment and lipid content) of the cells, and the
presence of contaminating species [11,18,27,28]. This can be easily
accomplished in cases of small-scale cultivation systems where the
culture samples of limited volume would be representative of the whole
culture. At a certain point during upscaling, especially in the case of
(open) ponds, the single-point sampling approach ceases to yield
comprehensive information about the whole facility so one needs to
balance the sampling coverage and completeness of the information vs.
the cost and labor of sampling and analysis.

Arguably, this problem can be solved with indirect measurements, e.
g. on-line non-invasive sensing of the relevant parameters in situ [15].
The development of these solutions aims to achieve the acceptable (i)

Algal Research 82 (2024) 103649

information payload, (ii) time resolution i.e., measurement frequency,
and (iii) cost of the monitoring. Currently, the most widespread
approach is monitoring of optical properties of the cultures, mainly the
spectral intensity of the signal light back-scattered (reflected) by the
culture [18]. This signal is loaded with valuable information about the
microalgal cell population, although extraction and interpretation of
this information might pose a challenge.

In laboratory conditions, the spectra of microalgal cell suspensions
are commonly recorded by measuring the spectral transmittance of the
samples, T(4), which is then represented as optical density or absor-
bance, Abs (4). It can also be corrected for scattering to extract the
spectral contribution of the pigments to the total attenuation of light by
the cell suspension [29]. Notably, absorbance-based culture monitoring
suffers from its limited dynamical range since the conventional spec-
trophotometers cannot reliably measure high optical density values
typical of industrial cultivation systems. Further complications arise
from cell self-shading [29,30]. However, the development of systems
with inline dilution, ultra-high resolution, and broad bandwidth may
solve those problems.

Other measurement methods can be routinely used to monitor a
culture and its status (see summary in Table 1). Various abiotic (tem-
perature, high light, pH, lack of nutrients) and biotic stresses (compe-
tition, viruses, bacteria, zooplankton, insects) can affect microalgae
[28,31-33], and even when needed to trigger the production of certain
molecules (e.g. lipids), these stresses led to a loss of productivity and a
change in the biochemical composition of the cells [34]. Generally,
stresses are characterized by a change in morphology, pigments, and the
biosynthesis of stress-related products (e.g. exopolysaccharides, sec-
ondary carotenoids, reserve lipids [35]). As mentioned above, the dy-
namic nature of microalgae growth during cultivation means that rapid
methods would be the preferred choice to detect an issue as early as
possible during large-scale cultivation. Some of the methods that are
currently available can be relatively simple and cheap, but require
expertise, whereas others are costly and require time investments before
data can be generated (Table 1). Therefore, there is a trade-off between
efficiency and time.

Table 2 presents current imaging technologies that can be used for
qualitative and quantitative detection of microalgae. While the main
advantages of microscopy are the high optical resolution suitable for
detailed observation of cell morphology, cellular structure, pigmenta-
tion, and possibility to use specific methods (e.g. fluorescence) for
detection, this technique can be labor intensive, subjective, have limited
spatial coverage, require significant training (i.e. to become an expert
taxonomist), and is time constrained [39]. By contrast, advanced im-
aging technologies have high spectral resolution (i.e. fine distinction
between similar species at a micro scale), but allow for a faster training
process and can be streamlined with a high frequency of sampling in
time and space [19,49,50,54].

Advanced imaging for microalgae monitoring enables precise mea-
surement of parameters like chlorophyll content or the capture of
spectral signatures linked to biochemical compounds (see example in
Box 1). Consequently, these techniques could facilitate high-throughput
screening for desirable traits, accelerate strain selection, and provide
real-time insights into microalgae cultivation processes. If streamlined,
spectral imaging could help to reduce costs related to microalgae
cultivation [55] by improving the information payload (e.g. measuring
growth as well as the physiological state of a culture) and availability
(providing updates daily or hourly), ultimately helping in preventing the
loss of cultures. In our view, it would be a suitable method for
comprehensive monitoring i.e., to holistically study the desired traits
and the environment of large (open-pond) cultivation facilities.
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Table 1

Summary of the main methodologies used to monitor microalgal biomass and its

physiological status.

Methodology

Description

Example

Dry weight and
optical density

Cell counting

Cell observations

Genetic marker

Biomarker

Imaging techniques

Biomass is the most relevant variable measured
during cultivation because the biomass
generally holds the value for commercial
applications. Standard measurement methods
such as dry weight and optical density are
commonly used to measure the concentration
of the biomass [18,36,37]. While the loss
attributable to endogenous respiration needs to
be considered at high biomass concentrations,
an abrupt loss of biomass would indicate that a
stress is occurring. However, a delayed
recording of a statistically significant biomass
loss during stress could mean that it is too late
for preventive or even for corrective measures.
Cell counting using a haemocytometer is
simple and easy, but this method can be prone
to significant error and discrepancies between
operators. However, combined with cell
staining, this method also allows cell viability
estimation [35]. Cell counting can be
automated with the use of a flow cytometer
[36,381, but this requires prior calibration with
standardized particles. Cell concentration and
morphology can also be measured with flow
cytometry and the use of a specific dye can
allow the measurement of cell viability, which
provides significant physiological information
[39].

Cell observations under an optical microscope
can allow the identification of organisms
present in the culture, morphological changes
and/or the presence of intracellular structures
[40,41]. However, this task can be time
consuming and prone to error without training
[39]. Advanced techniques such as
transmission electron microscopy can also be
useful for investigating morphological changes
[38], but they are time-consuming, require
expensive equipment and expertise.

Genetic markers such as 16S or 185 RNA would
provide an accurate species identification, but
the samples need to be extracted, purified,
sequenced, and identified [39,42,43].
Consequently, time could be an issue. MALDI
TOF could fasten the identification process
[44], however, the availability of extensive
libraries is limited.

Biomarker molecules such as ATP, or DNA (and
DNA degradation products) can provide an
indication of cell lysis if their concentration is
elevated in the cultures [35]. Several assays are
available, but all of them require specific
equipment and can be time consuming.
Pigment composition of phytoplankton and
fatty acids composition have been used to
identify different phytoplankton at the class
level [45]. However, chlorophyll a is the most
common biomarker and the measure of
absorbance generally targets chlorophyll a. As
chlorophyll a is altered or even degraded by
various factors, changes in the chlorophyll
content and its fluorescence by leveraging the
pulse amplitude modulation (PAM) technique
can indicate the occurrence of a stress [33].
While imaging techniques can simply involve
taking an image for further observation,
automated techniques are being used and
developed. For example, the FlowCAM system
measures particle count, size, and morphology
with Flow Imaging Microscopy [46]. Similarly,
zooplankton that are unwanted during
microalgal cultivation have been widely
studied as water quality indicators. ZooScan, a

[36,37]

[40,41]

[39,44]

[33,45]

[46,47]
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Table 1 (continued)

Methodology Description Example

laboratory-based scanner which analyses
zooplankton preserved samples and ZooCAM,
an in-flow imaging system designed for live
zooplankton imaging, have been shown to
successfully classify and quantify zooplankton
(both instruments were shown to be
complementary [47]).

Advanced techniques such as spectral imaging  This
are currently being developed in biotechnology =~ review
due to their tremendous potential [20,48-53].
In particular, spectral imaging techniques and
hyperspectral imaging involve spatially
resolved measurements of the spectral
intensity of light backscattered by the
microalgal cultures. These measurements can
be done remotely, so they are especially
suitable for monitoring of large cultivation
facilities. Essentially, this approach resembles
the one used in remote sensing of vegetation or
phytoplankton. It identifies spectral features
sensitive to the content of a pigment or another
trait in question, enhances the accuracy of
microalgae classification based on selected
relevant features, minimizes redundant
information, and is insensitive to other traits of
the studied culture. The reflectance-based
approach retains sensitivity in a broad range of
pigment concentrations; hence it can be used
for monitoring high culture densities.
Importantly, these approaches can be
implemented with the use of UAV-borne
reflectance imaging spectrometers. Both
conventional and advanced imaging can be
automated via modern ML-based algorithms.

Advanced imaging
techniques

3. Advanced imaging techniques
3.1. Multi- and hyperspectral imaging

Depending on the spectral resolution determined by the number of
available spectral channels, their widths, and the overlap between them,
imaging techniques are categorized into “conventional” (RGB), multi-
spectral (3-20 discrete spectral channels) and hyperspectral (ranging
from several dozen to hundreds of continuous spectral channels), each
with a different information payload (Box 1). Spectral image analysis
leaped forward when the rapid progress in cheap computing power,
image sensor hardware, and mathematical methods sparked the boom of
machine learning (ML) [56]. Admittedly, both conventional and
emerging approaches have their strengths and limitations.

In contrast to RGB pictures limited to the visible part of the elec-
tromagnetic spectrum, multi-spectral and hyperspectral imaging record
a broader spectrum and allow the detection of specific features invisible
to the naked eye (Box 1). These advanced imaging techniques are
therefore powerful tools becoming more and more used for various
applications including geology, agriculture, and biotechnologies, to
name a few [23,54,57,58]. In the case of microalgal biotechnology, a
useful parallel can be drawn with plant sciences where tremendous
progress was made by the advent of high-throughput phenotyping—a
comprehensive assessment of diverse traits constituting phenotype, in
large populations of plants [59,60]. For example, hyperspectral imagers
and machine learning techniques such as image processing with Support
Vector Machines (SVMs) and Convolutional Neural Networks (CNNs)
have been successfully developed to characterize phenotypic traits in
plants such as diseases [61-63]. The concept of phenotyping is gaining
attention of researchers in the field of microalgae biotechnology
[48-52], especially for bioprospecting of strains, advanced laboratory
evolution (ALE), and cultivation parameter optimization [64].
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Table 2
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Comparison of potential performance of different imaging methodologies regarding monitoring of microalgae communities and industrial cultures.

Approach  Manual (microscopy)

Parameter

Semi-automated (flow cytometry)

Optical sensing (imaging)

Proximal (close range)” Remote

Distance to the sensor - -

Spatial resolution - _
Time resolution ~1d Arbitrary
Specific performance of  Several samples representative of limited

surveillance culture volume culture volume

Several samples representative of limited

0-100 m 100-6000 m (airborne)-800
km (satellite)

0.1 mm-50 cm 0.5 m-1 km

Arbitrary ~15d

Spot based — up to 0.1 0.1-10 mil. km? per day

km? per day

# Including handheld sensors placed next to the measured object and sensors mounted on airborne devices such as UAVs.

3.2. Integration of deep learning and artificial intelligence for image
analysis

Early approaches to digital image processing were heavily grounded
in brightness and colour manipulation, as well as the creation of hand-
crafted features [96]. These techniques are extremely laborious and
eventually were outpaced by machine learning (ML) algorithms, which
find pertinent features in the data itself. ML algorithms are particularly
well-suited for solving classification and detection problems such as
identifying cells on a microscopic image, but they could also be used for
regression problems such as deriving biochemical parameters from
spectra.

Machine learning techniques fall into two broad categories: “clas-
sical” ML, comprised of algorithms such as Logistic Regression, Decision
Trees, Random Forests (RF), eXtreme Gradient Boost (XGBoost), and
Support Vector Machines (SVM), among others, and deep learning (DL),
which utilizes artificial neural networks (ANNs) with a wide range of
architectures (further details about some of these methods and their
caveats can be found in the Online Supplementary S1). Classical ML
algorithms have better explainability than their deep learning counter-
parts and tend to perform better with low volumes of training data,
while ANN-based methods excel at finding complex, multi-scale patterns
and are indispensable in image analysis. Regardless of the approach,
input data in ML is viewed as a set of features comprising a multi-
dimensional space, and the goal of ML algorithms is to find meaning-
ful relationships between those features. Non-DL techniques are nor-
mally used with semantic features such as pH, turbidity and total
nitrogen (see e.g. [97,98]), whereas ANNs are flexible and especially
valuable in tasks such as object detection or image segmentation
essential e.g. for taxonomic assignment [99].

A specificity of spectral imaging is the highly pronounced curse of
dimensionality, or Hughes phenomenon [100]: Statistical learning be-
comes increasingly inefficient in high-dimensional spaces with collinear
features, which is the case for hyperspectral images. Consequently,
application of deep learning to spectral images requires feature selection
either as a pre-processing step or as a core part of ANN architecture.
Thus, selection of appropriate spectral bands for quantification of the
productivity and/or taxonomic composition either of industrial cultures
(or in natural phytoplankton communities) is of paramount importance
to monitoring via spectral imaging (Box 1). The concept of optical
monitoring is based on the existence of a tight relationship between the
optical properties of the cell suspension and the changes in cell density,
their biochemical and taxonomical composition during balanced growth
and stress acclimation. This is the case e.g. for secondary caroteno-
genesis coordinated with the accumulation of lipids induced by nutrient
deprivation and other stresses [32,101,102].

Finding the relationship between spectral data and biophysical and
chemical characteristics is accomplished either by the traditional semi-
analytical approach when the search for the spectral bands is guided by
the spectroscopy of the phytoplankton cells and/or their constituents
[103] or, in frame of emerging approach, by ML algorithms which can be
completely “unaware” of the spectroscopic properties of the object. The
latter is less relevant for the analysis of spectral images of bulk

microalgal cultures which normally lack morphological features (their
information payload is concentrated in the spectral dimension, [98]).
On the other hand, image analysis with ML is very promising for auto-
mated identification of the target microalgae and contaminant species
with optical microscopy including its microfluidic variant.

For identification of microalgae on microscopic images, segmenta-
tion tasks are the most pertinent; consequently, neural network archi-
tectures such as U-Net [104], Mask R-CNN [105], and, more recently,
ViT [106] and their derivatives are effective. These architectures are
based on intermediate representation of image and its regions as a
compressed feature vector, followed by a “decompression” of said vector
into a label map. So far, these techniques have not been commonly seen
in microalgal research (some examples include [107,108]), but there is
little doubt they will garner wide adoption in years to come.

Optimization of input features using deep learning algorithms re-
mains a hot area of research. In particular, it combines supervised and
unsupervised approaches to identify the most informative spectral
ranges and perform band selection using Deep Belief Networks (DBNs)
[109]. Alternatively, [110] used high-level CNN features to achieve
explainability in band selection, while [111,112] leveraged the atten-
tion mechanism in CNNs for the same purpose. While extensive, this sub-
field of research presently yields more questions than answers. Still,
without dimensionality reduction deep learning methods fail to gener-
alize well [113].

Recent studies have also shown the potential for hyperspectral im-
aging in vivo: thus, [114] demonstrated deriving highly accurate and
granular benthic maps from underwater hyperspectral imagery. In this
study, the classification model performed well with F; (i.e. the harmonic
mean of precision and recall) scores of 80 % + 5 % with either 11 or 43
target labels, referring to either taxonomic units or substrate classes.
Remarkably, the performance difference between ANN-based approach
and RF classifier operating on preprocessed data was found to be minor,
and ANN performance was substantially dependent on the size of the
training set (~7-10 % improvement as the training set grew from ~1
million to ~6 million unique pixels).

Despite their power, ML-based image analyses have limitations. The
most important is that these approaches seldom take into account actual
optical properties of the culture (spectral absorption and back-
scattering) and function essentially as a “black box”. Multiple authors
have outlined the dire need in creating large, open annotated datasets
for training and validation of ML algorithms [115-117]. This issue is
further exacerbated in the case of spectral imaging, as there may be
substantial variations in the spectrometer hardware, including vastly
different numbers of spectral channels and resolution, both spectral and
spatial, as well as other study parameters [118]. Neural network models
do not provide information on the relationship between the spectral
features distribution and system variables. As such, one cannot predict
the target parameters (e.g., cell concentration) for different experi-
mental conditions, and would have to repeat the entire set of proced-
ures, from experiment to neural network learning, to predict the target
parameter(s) if the experimental conditions are changed. This means
that considerable efforts are still needed to develop broad methods to be
used for commercial cultivation. At present, combining handcrafted
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Box 1
Fundamentals of imaging data acquisition and processing

The mid-20"-century introduction of satellite technology marked a significant milestone, enabling large-scale environmental monitoring
[57,65]. As technology progressed, airborne remote sensing emerged as a valuable complement to satellite observations [66-68]. Aircraft
equipped with sensors offered higher spatial resolution and greater flexibility in data collection, especially beneficial for specialized applications
like agriculture, forestry, and disaster response, which require detailed and timely information [69,70]. In recent years, proximal sensors have
gained prominence, offering extremely high spatial resolution near the target area/system [71,72]. Currently, we are witnessing a bidirectional
flow in platforms, with advancements in technology revitalizing the appeal of high-resolution satellite remote sensing [73-76]. Given the array
of available options, it becomes crucial to categorize the essential steps associated with imaging acquisition and analysis as follows:

B1. Scale

The first step in utilizing imaging data is to define the acquisition scale distinctly. Whether through satellites or proximal sensing, the choice
depends on the application and the specific research question being addressed, each offering distinct advantages, as shown in Fig 1.1.

Fig 1.1. The figure illustrates four different scales at which microalgae imaging can occur. The appropriate scale is selected based on the
application and research question.
Satellite

Plane

-
(o) Advantages

* Global coverage

UAVs « Consistenc
y
g Ad\.lantages . * Cost-effective
y * High-spatial resolution R
(~0.5t01.0 m) * Awide range of sensors
- N - Limitations
* Rapid data acquisition . .
ey + Spatial resolution
* Flexibility: onzdomand * Weather dependency (cloud cover)
y Advantages + Dynamic monitoring . P Yy
4 « Cost-effective {limitations Temporal coverage
; * Good for small areas + Cost (can be high)
" * High-resolution imaging + Weather dependency (cloud cove
Lab/Fine-scale , : " r dependency (cloud cover)
/ * Suitable for detailed analyses .+ | imjted coverage (farms-scale to regional
/ . * Usually, RGB or multispectral scale)
4 Limitations
/ * Weather sensitivity

* Limited endurance

Advantages  Payload capacity

* High-spatial resolution

* Cellular-level insights are possible

* Fluorescence imaging

« Suitable for detailed analyses

« Integration with other technologies/sensors
Limitations

* Limited field of view

« Time consuming

* Cost

B2. Sensing technology

At different scales, various sensing technologies are available. Conventional colour sensor cameras are restricted to the 400-700 nm visible
range, with three colour sensors (blue, green, and red) used to estimate the true colour of each pixel from an image [77,78]. Advanced mul-
tispectral cameras/sensors allow measuring the reflected light in the visible to near-infrared spectral range in discrete bands (Fig 1.2), revealing
more distinct characteristics of a particular system. Increasing the number of channels being measured allow to determine the spectral profile of
the system. A spectral imaging system produces a two-dimensional spatial array of vectors that represents the spectrum at each pixel location.
The resulting three-dimensional dataset contains two spatial dimensions and one spectral dimension known as the data cube or hypercube. The
third dimension stores the full spectral range, usually within 370-2500 nm, which comprises deep blue, blue, green, red, near infrared, and short
wave infrared spectral regions [79,80]. It should also be noted that the operational spectral range is dependent on the semiconductor material
used in the sensor, and imagers with wide spectral ranges leverage several detectors, increasing both capital and operational costs. For the
visible and near-infrared range up to about 1100 nm, silicon-based sensors are used near-universally [81], while infrared detectors are more
varied, common choices include germanium (Ge), indium gallium arsenide (In; xGaAs), and mercury cadmium telluride (MCT, Hg,Cd; xTe),
among others. These infrared sensors typically cover ranges of 900-1700 nm and beyond [82].

Spectral imaging has been instrumental for the development of advanced vegetation indices, growth indices, and environmental indices [54].
With hyperspectral data, one can generate spectral libraries of different plants and their surroundings to identify advanced traits of similar plants
and, arguably, other photosynthetic organisms, at different locations, enabling generalizability in phenotyping [83,84]. However, both
acquisition and processing of spectral images may prove to be challenging. While different sensor platforms — drone, airborne, satellite — have
issues specific to their viewing geometry, the respective data processing pipelines are largely universal [85]. Below we give a brief overview of
the required steps.
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Fig 1.2. a) shows the range of the electromagnetic spectrum covered in (passive) optical remote sensing. b) depicts the difference between the
contiguous spectrum of hyperspectral versus discrete bands in multispectral and RGB sensors.
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B3. Pre-processing of data

RGB, multispectral, or hyperspectral images are versatile and useful tools for obtaining both qualitative and quantitative information. However,
data acquired from remote sensing platforms are not readily available for analysis, as it is not a reflectance product — i.e. it is expressed in terms
of sensor units, not physical quantities. Factors such as sensor noise (including bias and offset), atmospheric conditions, viewing and illumi-
nation geometry, the contribution from background reflected radiation, and platform movements (roll, yaw, and pitch) [86,87], can all distort
the measured radiation intensity. Thus, before utilizing remote and satellite sensing data, it is important to perform data pre-processing to
remove these artifacts.

Depending on the application and goals, numerous pre-processing steps are available. We have outlined some of the standard pre-processing
steps (Table 1.1) and discussed each type of correction below:

Radiometric calibration: Sensor-recorded data is referred to as Digital Number (DN), which is an electronic signal dependent on the radio-
metric resolution of the sensor. Each sensor requires calibration for its gain and offset for converting raw sensor measurements into radiance
products, enabling accurate and reliable interpretation of the data (Fig. 1.3). Radiometric calibration is often performed using radiometric
calibration parameters provided with the sensor. Reflectance standard measurements could be needed in the field (Table 1.1 and [86,88,89]).

Atmospheric correction: For passive remote sensing, where solar energy is the source of light when solar radiation propagates through the
atmosphere, radiation is scattered and absorbed by the Earth’s atmosphere. This effect is generally depicted in the radiance plot, where the
absorption effect is apparent (Fig 1.3). Because atmospheric conditions vary significantly in space and time, it is critical to remove the atmo-
spheric effect to prevent significant deviation in reflectance output. For instance, when conducting time-series analysis or monitoring changes
over time, atmospheric correction ensures consistency in the reflectance values, allowing for more accurate analysis. Noteworthily, under
laboratory conditions or with the use of sensors mounted on UAVs, atmospheric correction is generally not needed provided a reflectance
standard is imaged simultaneously and/or a controlled light source is used. This adds to the value of close range sensing, since atmospheric
correction is much harder to perform accurately than sensor-specific radiometric/geometric corrections [86,89].
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Fig 1.3 Radiometric calibration and atmospheric correction components are shown for in-field conditions.
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Geometric correction: Geometric correction aims to correct for the artifacts created by platform movements (roll, yaw, and pitch) that cause
objects to “stretch”.

After performing the standard calibration and correction processes the next tasks are to perform image enhancement and noise reduction. This is
subject to the purpose of the enhancement, the sensor signal-to-noise ratio, and imaging conditions. Thus, this processing step is not always
needed. There are several tools and coding platforms available to perform these tasks [90,91].
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Table 1.1. Summary of the pre-processing steps needed for each type of sensors in proximal and remote sensing (@ = required; o = optional;
empty cell = not required). Image enhancement and noise reduction are optional steps for all type of sensors.

Pre-processing step

Acquisition Sensor type Radiometric calibration Geometric correction Atmospheric correction
RGB ([ ]
Proximal (close range) Multispectral [
Hyperspectral [ ]
RGB ) () °
Remote (long range) Multispectral [ [ )
Hyperspectral [} [} )

B4. Data analyses

Feature extraction and machine learning (see also the Online Supplementary S1) are generally employed to create spectral libraries and reveal
various characteristics of a system. This is further discussed below in relation to microalgae biotechnology.

B5. Case study — Non-destructive assessment of microalgae samples through proximal sensing

Hyperspectral imaging measures the reflectance of light from sample surfaces. With high spectral resolution, from visible to shortwave infrared
(SWIR), the reflectance properties of photosynthetic organisms can reveal much about chemistry of their biomass [19,56,84]. Once calibration
models are developed, hyperspectral analysis allows for non-destructive measurement of pigments, nutrient content, water status, and chemical
composition.

The potential of hyperspectral for monitoring biomass concentration or growth phases has been demonstrated during several studies (Table 3).
As another example, we used a case scenario of P-depleted vs P-replete microalgae. As microalgae can store P, their potential use for P removal
from waste is currently of significant interest. This has been reviewed by others and was therefore used as an example [40,41,92]. The green alga
Chlamydomonas reinhardtii grown for 5 days on low P medium were subsequently supplied with different P concentration (0, 20 and 40 mg-P -
L7!) and the spectral signatures of each culture was measured 20 h after P supplementation.

Data acquisition

Spectral measurements of C. reinhardtii cultures supplemented different concentration of phosphorus (0, 20 and 40 mg-P L) were collected
using an hyperspectral probe—ASD FieldSpec Pro (Analytical Spectra Devices, Inc., Boulder, CO, USA)—mounted on a stand, ensuring that the
microalgae samples were positioned at a distance of 2 cm from the ASD probe. The ASD measures the Vis-NIR range (350-2500 nm), with a full-
width half maximum of 3 nm in the Vis and 10 nm in the NIR, and an output of 1 nm spectral resolution.

Data pre-processing

In this case scenario, proximal sensing was used, the spectral data therefore do not require extensive pre-processing in comparison to hyper-
spectral from remote sensing as mentioned above. However, the ASD spectra were affected in reflectance values at the splice of the three sensors
at 1000 and 1800 nm of the spectroradiometer. Consequently, an ASD splice correction was implemented using the ViewSpec Pro software
which is based on the method described by [93].

Results and further processing

The reflectance of each culture is depicted in Fig 1.4 below, covering the VNIR region (<1000 nm) and SWIR region (>1000 nm), with a spectral
resolution of 1 nm. While the three cultures visually appeared similar and all had an optical density of ~0.4 at 683 nm, they could be differ-
entiated in their spectral signatures. Specifically, the higher the P supplied, the higher the reflectance. Because the differences in spectra were
not related to biomass concentration, the clear difference between the spectra suggests a change in the biochemical composition of the
microalgae when transitioning from P-depleted to P-replete conditions. Microalgae are known to have different biochemistry and to store
significant amount of P as polyP during such transition [41,94,95]. Consequently, the spectral difference observed could be related to a change
in biochemical composition of the cells including the accumulation of polyP. Critically, our study is preliminary, more samples (i.e. 5-10
samples per concentration) and analyses would be required. Further analysis including feature extraction and machine learning could then be
employed to develop model to predict the P status of the cells and to reveal various characteristics related to P supply in microalgae.

Fig. 1.4. Spectral measurements of C. reinhardtii cultures supplied different concentrations of P (0, 20 and 40 mg-P - L'!) in the spectral range of
350-1400 nm. Data represent the mean =+ standard deviation from 10 ASD measurements.
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Table summary of the studies that developed and used conventional and spectral imaging to measure growth and physiological state as well to detect contaminants in

suspended microalgal cultures.

Cultivation system Organism Sensed parameters Imaging equipment Processing algorithm Ref.
RGB/monochrome
500 mL flask A consortium (Desmodesmus sp., Biomass concentration Smartphone dual camera RGB to Luminance conversion and [128]
Scenedesmus sp., Dictyosphaerium (g-DCW-L 1) calibration vs. DW
sp., and Klebsormidium sp.)
Concentric tube airlift ~ Synechococcus sp. PCC6301 Biomass concentration RGB (24-bit true colour, 320 x 240 Light Distribution Image analysis vs. ~ [131]
photobioreactor (ODgo0) pixels) feedforward neural network with a
(5.45L) backpropagation learning
Stirred tank Chlorella sorokiniana Light distribution in the Digital camera (COOLPIX S3100, Decomposition (brightness [132]
vessel Nikon) extraction)
Flasks (3 L) Chlorella vulgaris KCTC AG10032, Biomass concentration CCD camera (Sony NEX-7 with 100 RGB colour/grayscale analysis [36]
Botryococcus braunii UTEX 572, (g-DCW»L’l) mm F2.8 lens; Sony Corporation,
and Ettlia sp. YC001 Japan)
Panel Rhodobacter capsulatus DSM 1710 Biomass concentration Microsoft Webcam SCB-0340 N RGB colour/grayscale analysis [133]
photobioreactor (ODggo and g-DCW-L™1)
(720 mL) and distribution in
photobioreactor
Erlenmeyer flask (1 L)  Isochrysis galbana (clone T-ISO) Cell number Canon SD750 with 35-105 mm RGB/HIS analysis [134]
Canon Zoom lens
Draught tube (1.5 L) Chlorella sp. ATCC 14854 Lumostatic growth Canon 450D RGB colour/grayscale analysis [135]
regime control
Three types of PBR Chlorella vulgaris Biomass concentration Smartphone camera (Sony IMX214) RGB colour/grayscale analysis [55]
(cylindrical, 5 L; (g-DCW-L’l) (mean, median or mode)
panel, 80 L; bag,
400 L)
ns” Planktothrix agardhii CCNP 1305 Morphological change YenCam HD camera (Yenway Three different network [31]
Microscopes) architectures (AlexNet, 3ConvLayer
and 2ConvLayer), four different
optimizers (Adam, Adagrad,
RMSProp and SDG) and five
different image segmentations
methods tested (Canny Edge
Detection, Morphological Filter, HP
filter, GrabCut and Watershed)
Spectral
Bottles (2 L) Chlorella sp. UTEX 2168, Biomass concentration RGB webcam (Logitech, Pro 9000) RGB as tri-band multispectral [48]
Anabaena variabilis ATCC 29413- (g-DCW-L’l), invasive simulation
U species, culture health
Flasks (0.25 L) Microcystis sp. CCAC 3504 B, Culture growth SpecimIQ frame-based imaging Ratio and difference spectral indices [51]
Synechococcus sp. CCAC 2944 B, hyperspectrometer for NIR and RE: A/B, A/(A + B) or
Cryptomonas ovata CCAC 0064, (A — B)/(A +B)
Peridinium cinctum CCAC 0102 B,
Desmodesmus maximus CCAC 3524
B
Flasks (0.25 L) CCAC 3504 B Microcystis sp., Contaminant presence, SpecimIQ frame-based imaging Per-pixel (per-spectrum) processing [50,53]
CCAC 2944 B Synechococcus sp., biomass concentration hyperspectrometer of hyperspectral reflectance images
CCAC 0064 Cryptomonas ovata, (g-DCW-L’l) with CNN
CCAC 0102 B Peridinium cinctum,
and CCAC 3524 B Desmodesmus
maximus
Flask (0.2 L) Nostoc sp., Scenedesmus Biomass composition Minolta CM-3500d colorimeter Normalized relative light absorption [136]
almeriensis, Spirulina platensis and (for each absorbance band per
Chorella vulgaris sample) input to ANN
Beaker (0.25 L) Chlorella sorokiniana (CCAP No. Biomass concentration Particle Track 400 Chord length distribution data [137]
211/8 K) (g-DCW-L 1) processed with support vector
regression and random forest
regression modelling
ns Chlamydomonas reinhardtii Biomass concentration Miniature spectrometer USB6500pro  Fluorescence spectrum (1 nm [138]
(cell-mL™1) between 660 and 760 nm) input to
ANN
Harvested cells 1 mL Chlorella vulgaris (CV 211-11b) Cell viability Sysmex CyFlow Space flow Clustering processing to segregate [38]
in Eppendorf tube cytometer, mounted with blue laser the three cell populations (active
(488 nm), FSC, SSC detectors and cells, non-viable cells and debris)
three fluorescence channels (FL1:
536/40, FL2: 590/50 and FL3: 675/
30 nm).
ns Chlorella vulgaris and Scenedesmus ~ Biomass classification FlowCAM that combines flow FlowCAM outputs images fed to [139]
almeriensis cytometry, microscopy, and ANN
fluorescence detection techniques.
ns Phaeocystis, Chlamydomonas and Biomass classification, A transmission hyperspectral ns [52]

Chaetoceros

identification, and
growth

microscopic imager system is
mounted on a traditional microscope
(RX50, SOPTOP, China)

(continued on next page)
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Cultivation system Organism Sensed parameters

6-Well plates Chlamydomonas reinhardtii TiO, nanoparticle effect

on culture performance
2.5Lto 11 m® PBRs Biomass concentration,
growth phase and
chlorosis

Synechocystis sp. and mixed
cultures

Imaging equipment Processing algorithm Ref.
SeedReporter (PhenoVation B.V., Vegetation indices NDVI, ARI, CI [129]
Wageningen, The Netherlands) with

a CCD-chip

Sensor mounted on a Pika L camera Spectronon software from Resonon [140]

system from Resonon with in-built library with image
processing tools such as support
vector machine and hyperspectral

vegetation indices

# ns—not specified.

features such as spectral indices with the power of deep learning is the
most promising approach for achieving robustness and overcoming this
generalization bottleneck. In a similar vein, hybrid approaches incor-
porating physical considerations (e.g. noise equivalence [119] maybe
used in the future to achieve better predictability and generalization of
deep learning methods [120].

4. Advanced imaging in microalgal biotechnology research

The use of advanced (i.e. spectral) imaging techniques to detect or
identify phytoplankton is not new and has been widely used for
ecological studies [23]. For instance, satellite remote sensing has been
widely applied to determine phytoplankton community structures via
several missions [24,25,58,121,122]. While earlier methods focus on
identifying dominant group, newer approaches try to identify groups
with similar ecological roles (referred as phytoplankton functional
types). These newer approaches use algorithms that retrieve phyto-
plankton size classes, size composition, or particle size distribution from
the satellite data [24]. Please refer to [23], for an excellent review and
guide on the different type of algorithm used in the field. Noteworthy,
the taxa-specific algorithms that have been developed are currently not
applicable globally and they can lack uniqueness [22]. Differentiating
taxa can indeed be difficult when dominant species share similar
pigment features [58]. As recommended by [22], the continuity of
global missions with the development of algorithm will improve the
versatility and accuracy of the data. Critically, the same need would
apply to the field of microalgal biotechnology.

A similar approach to the one described above could be applied to
cultivation at scale but utilizing sensors mounted on UAVs flying at low
altitude. As summarized by Havlik, Lindner, Scheper and Reardon
[123], the expansion of the proximal sensing of microalgae cultures was
warranted by remarkable progress in the miniaturization and afford-
ability of optical sensors becoming increasingly versatile, connectable,
and adaptable. Although, proximal sensing refers to the collection of
data from sensors that are positioned close to the objects, the definition
of “close” is somewhat arbitrary and varies between authors. For
example, while Mulder et al. [124] refers to the use of handheld devices
for “proximal sensing”, Sanaeifar et al. [125] includes UAVs flying at
low altitudes (<10 m from the object) in that category. Key differences,
however, lie in operational parameters - spatial resolution, revisit time,
and dependence on weather conditions (Table 2). In contrast to remote
sensing platforms, proximal sensors can be deployed at arbitrary times
and allow for capturing fine details, but that comes at a cost to the data
acquisition rate. However, being close to the objects, atmospheric in-
terferences and other platform-related perturbations are less of an issue.
That is, proximal data acquisition and processing is simpler than
airborne remote platforms (e.g. planes, satellites) because fewer
correction steps are needed (Box 1). However, microalgal suspensions
are optically complex systems represented by particles (cells) consisting
of diverse components (superficial structures, organelles, and cell sub-
compartments) with different refraction indices. Overlapping spectra
and strong absorption of light by the pigments also add complexity. In
remote sensing of vegetation, this complexity was overcome by devel-
opment of efficient algorithms for retrieval of pigment content and

composition from reflectance spectra, creating vegetation indices
[126,127]. As described in Section 3.2, these algorithms are at the
foundation of the quantitative interpretation of hyperspectral images.

While the amount of spectral information which would be necessary
and sufficient for the retrieval of valuable information about microalgae
culture is vigorously debated until now [58], evidence accumulated so
far suggests that routine tasks such as pigment (chlorophyll) retrieval
can be accomplished efficiently with multispectral data [48,128]. More
complicated tasks such as distinguishing phycobilins of cyanobacteria
and peridinin of dinoflagellates with strong overlap of their spectra are
better solved with extensive hyperspectral datasets.

Nevertheless, as can be seen in Table 3, conventional and advanced
imaging methods have been developed for monitoring of laboratory
cultures from biomass quantification to the evaluation of the physio-
logical status of the cells. For example, multispectral imaging was used
to detect physiological changes in phytoplankton incubated with TiO,
nanoparticles [129]. In the study of Adejimi et al. [49], hyperspectral
transmittance spectroscopy was used to estimate cellular concentration
(detection limit of 10* cells-mL ™) and to differentiate between species.
However, the team showed the need to test different algorithm for better
performance with the SVM-classification algorithm that provided both
quantitatively and qualitatively better predictions than the PLS-
discriminant and single-wavelength regression algorithm. The devel-
opment of ML techniques and algorithms is of paramount importance for
extracting valuable information from advanced imaging techniques (as
described in Section 3). While imaging methods are now increasingly
employed in surveillance of large-scale industrial cultivation systems
[130], more datasets are needed for validation and to create spectral
databases that can be broadly used (similarly to ecological studies or
plant sciences).

5. Index-based approach for processing microalgal culture
spectral images

Hyperspectral vegetation indices (VIs) are widely used in agriculture
and plant phenotyping to estimate for e.g. crop performance or plant
traits [51,53,54]. The VIs are calculated as ratios or combinations of
functions involving vegetative reflectance at different wavebands
selected from different regions of the electromagnetic spectrum (e.g. the
visible 400-700 nm; near infrared 700-1000 nm and shortwave infrared
1000-2500 nm). More than 500 hyperspectral VIs have been developed
for plants [54], consequently, much can be learnt from this field.

The relationship of the amount of pigment-containing phytoplankton
biomass vs. radiation absorption and hence with the amount of light
backscattered in the direction of the detector is rapidly saturated in the
spectral regions located near the maxima of pigment absorption spectra
[141]. Therefore, there are non-linear changes of reflectance (back-
scattering) with the pigment content [142,143]. On the contrary, back-
scattering in the bands aside from the main maxima of pigment ab-
sorption spectrum are linearly related with pigment and/or biomass
content of the culture. Therefore, wavelengths on the slope(s) e.g. on the
long-wave Chl absorption maximum (so-called “red edge” region) are
suggested for monitoring of dense cultures and vice versa (for moni-
toring of diluted cultures) [142,144,145]. Salmi, Eskelinen, Leppanen
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and Polonen [51] described a simple imaging setup and information
extraction based on vegetation indices that could be used to monitor
algal cultures. Consequently, spectral bands close to the red edge region
i.e. the region of rapid change in the reflectance of vegetation in the
near-infrared range of the electromagnetic spectrum, could potentially
be used for microalgae as in higher plant. While efficient for biomass
quantification or identification, the use of index in the red edge region
may fail at identifying subtle patterns of the spectrum under specific
conditions (e.g. stresses conditions triggering a change in pigments).

Different index may have to be developed for microalgae cultivation
for the production of metabolites because of significant changes in
pigments content. Stresses such as deprivation of nutrients, exposure to
high light intensity as well as increased salinity are frequently used in
biotechnology for the induction of the accumulation of carbon-rich re-
serves (starch and lipids) and/or valuable secondary carotenoids
[3,32-34,146]. These stress responses trigger characteristic changes in
the optical properties of microalgal cultures [102], mostly comprised by
a decline of the absorption in the red region of the spectrum due to a
decline in Chl content and an increase of the absorption in the blue-
green region of the spectrum related to the accumulation of secondary
carotenoids [146]. Therefore, an increase in the ratio of absorbance in
the blue region to that in the red region can be used for monitoring of the
buildup of valuable metabolites in the cultures of microalgae such as
Lobosphaera incisa [147,148], Nannochloropsis sp. [32], Dunaliella salina
[149], or H. pluvialis [101]. This approach would also allow to non-
invasively quantify neutral reserve lipids whose biosynthesis is tightly
linked to the biosynthesis of secondary carotenoids in stressed micro-
algae [150].

Timely detection of overstressing and subsequent damages to the
cultures, which are likely to occur during outdoor cultivation, is
important for taking efficient corrective actions. As in higher plants,
excessive stress manifests itself by a synchronous bleaching of photo-
synthetic pigments (chlorophylls and primary carotenoids) [32,151]. In
contrast to accumulation of Car in the course of stress response, the
damage becomes apparent on the spectra as a synchronous decline of the
absorbance in the red and blue regions.

Arguably, the knowledge outlined above could be used for extraction
of quantitative information from the spectral images of microalgae
cultures. To date, only a handful of methods have been developed for
microalgae [51]. This is possibly related to the lack of comprehensive
insights into the crucial features in terms of wavelength and their cor-
relations with various biophysical and biophysiological attributes. This
knowledge is critically needed to understand which spectral bands are
significant for distinct microalgal characteristics.

6. Challenges

One of the main challenges related to spectral imaging techniques is
the limited accuracy of target parameters estimation. Thus, in satellite-
based remote imaging of phytoplankton the acceptable accuracy is +35
%. This is clearly insufficient for biotechnology purposes where preci-
sion of £5-10 % is required. In principle, this level of accuracy is
achievable with the currently available “close-range” spectral indexes
initially developed for processing of “point-based” spectral references
[18]. Nevertheless, each proposed imaging method must be validated in
terms of accuracy in a specific cultivation setup where it is intended to
be used. This validation should span the whole range of culture growing
stages from inoculation to harvest and the widest possible range of
weather (ambient illumination) conditions to avoid the interference
from the variation of incident solar radiation.

Another challenge is that ratio-based spectral indexes using fixed
narrow-band reflectance are prone to errors due to optical complexity of
the water containing diverse microalgal cells, especially when the cell
density becomes relatively high and potentially experiencing stresses.
Currently, detailed knowledge is almost lacking on the relation between
microalgae spectral features and various biophysical and
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biophysiological attributes in mass cultivation facilities. Considering
that publicly available datasets are limited (many datasets are kept
private due to the substantial value and/or corporate restrictions of the
collected data), the need for further spectral data and the creation of
libraries has been raised by several authors [51,53,140].

Finally, one of the key challenge unspecific to the field of research is
that different data processing method/algorithms of spectral data pro-
vides significant errors on parameters estimations [152]. Therefore,
more sophisticated ML techniques are likely required to get most from
spectral data. This is especially true when the changes in culture con-
ditions and/or biomass composition manifest themselves as slight
changes in spectral curve shape, frequently on the background of
various interferences, making it hard to capture with a direct e.g. VI-
based approach.

Despite all power behind conventional and ML-based imaging algo-
rithms, they are “hardcoded” for specific species/cultivation back-
ground (as can be seen in Table 3, models have been developed for a
handful of species and mostly on Chlorella). Changes in any of the pa-
rameters pushing the measured optical properties of the culture beyond
the range encompassed by the initial training of the model will likely
invalidate the results obtained from it. On one hand, this entails the
hurdle of re-calibration and repeated training of the spectral image
processing algorithms after significant changes in the cultivation con-
ditions and/or composition of the industrially grown microalgae. On the
other hand, the failure of a model might be employed as a useful alarm e.
g. of contamination or grazer attack.

Of separate concern is generalization of the ML-based approach. It is
well known that huge amounts of data are required to train ML models.
Nevertheless, hyperspectral imaging providing large spectral datasets
(hundred thousand and millions of spectra per image) has the potential
to cope with this problem. One downside of this approach is the lack of
standardization: Images acquired by different hyperspectral imagers are
not directly comparable, which hinders data collection. Robust features
such as VIs or biochemistry-informed spectral band selection are
essential for building spectral databases for use in microalgal biotech-
nology. Still, significant work is needed to develop robust, scalable, and
generalizable approaches for automated processing of spectral images
with ML algorithms.

7. Conclusions and outlook

There is a growing consensus that scaling-up of the cultivation fa-
cilities in microalgal biotechnology will require a comprehensive
monitoring approach which will give exhaustive information about the
culture condition with sufficient resolution in time and space. It is clear
now that this goal is not achievable with conventional wet lab methods,
although they will undoubtedly remain as an important reference and
benchmark e.g. in assessment of biochemical composition of the biomass
and to generate input data for ML algorithms. Processing of remotely
sensed spectral images for extraction of quantitative information about
the cultivated microalgae has emerged as a promising alternative from
the field of “classical” remote sensing of Earth. It became even more
attractive after advent of efficient but affordable sensors and powerful
ML-based algorithms for automated spectral data processing eliminating
the need of an expert for routine acquisition and interpretation of the
results (although it is required at the stage of the method development).
Numerous studies confirmed the potential of spectral imaging applica-
tion to lab- and pilot-scale cultures. The recent boom of UAVs makes
possible the close-range monitoring of growing facilities, making UAVs
the preferred choice for biotechnological applications.

At the same time, we need a deeper understanding of the microalgal
culture optical properties and their changes during growth, stress-
induced biosynthesis of the target metabolites as well as during the
damage due to overstressing, contamination, and grazer feeding. It is
needed particularly for validation of new models for spectral data pro-
cessing and to provide a “sanity check” for advanced ML-based
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approaches likely to be developed in the nearest future. Of special
importance is the ability for detecting of the shifts in the taxonomical
structure of the culture evident of contamination, grazing, stresses etc.
Solving this problem will likely require more efficient ML approaches for
spectral data treatment, but promising results have been already
achieved.

There is a need for further research and development to improve the
usability, robustness, and precision of the spectral imaging for moni-
toring of large-scale microalgal cultures. Thus, an effort is needed to
ensure that the rapid technical progress in the hardware and data for-
mats would not undermine the compatibility of new datasets with pre-
viously acquired ones so that all the data will remain accessible for
training of the algorithms and retrospective analysis. The practitioners
would welcome the development of dedicated systems for automated
proximal sensing of large cultivation facilities with UAVs. Ideally, these
systems should be capable of seamless integration into the current IT
platforms used for the operation and control of the microalgae cultiva-
tion facilities.

Finally, extensive testing and implementation of the advanced im-
aging techniques for automated monitoring of large-scale microalgal
cultivation facilities is required for further improvement of this meth-
odology. It will also fuel the interest of the researchers to achieve further
progress in this area and lift the current limitation related with basic
understanding of the microalgal culture optics and efficient extraction of
spatially resolved information from its images. Anyway, it is highly
likely that the advanced imaging will constitute a core technology in the
future of large-scale microalgae culture monitoring.
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