

Journal of Experimental Botany, Vol. 75, No. 22 pp. 7381–7400, 2024 https://doi.org/10.1093/jxb/erae399 Advance Access Publication 20 September 2024

RESEARCH PAPER

A negative feedback regulatory module comprising R3-MYB repressor MYBL2 and R2R3-MYB activator PAP1 fine-tunes high light-induced anthocyanin biosynthesis in Arabidopsis

Minghui Xing^{1,}, Puman Xin^{1,}, Yuetian Wang^{1,}, Chunyan Han^{1,}, Cangbao Lei^{1,}, Weiyi Huang^{1,}, Youpeng Zhang^{1,}, Xiangyu Zhang^{1,}, Kai Cheng^{1,*}, and Xiao Zhang^{1,2,*}

Received 5 May 2024; Editorial decision 16 September 2024; Accepted 19 September 2024

Editor: Matt Jones, University of Glasgow, UK

Abstract

Anthocyanins, a group of flavonoids, play diverse roles in plant growth and environmental adaptation. The biosynthesis and accumulation of anthocyanin are regulated by environmental cues, such as high light. However, the precise mechanism underlying anthocyanin biosynthesis under high light conditions remains largely unclear. Here, we report that the R3-MYB repressor MYB-LIKE 2 (MYBL2) negatively regulates high light-induced anthocyanin biosynthesis in Arabidopsis by repressing two R2R3-MYB activators, PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) and PAP2, which are core components of the MYB-bHLH-WD40 (MBW) complex. We found that MYBL2 interacts with PAP1/2 and reduces their transcriptional activation activities, thus disrupting the expression of key genes involved in anthocyanin biosynthesis, such as *DIHYDROFLAVONOL 4-REDUCTASE* (*DFR*) and *TRANSPARENT TESTA 19* (*TT19*). Additionally, MYBL2 attenuates the transcriptional activation of PAP1 and its own expression, but not that of PAP2. Conversely, PAP1 collaborates with TRANSPARENT TESTA 8 (TT8), a bHLH member of the MBW complex, to activate *MYBL2* transcription when excessive anthocyanins are accumulated. Taken together, our findings reveal a negative feedback regulatory module composed of MYBL2 and PAP1 that fine-tunes high light-induced anthocyanin biosynthesis through modulating MBW complex assembly.

Keywords: Anthocyanin biosynthesis, high light, MBW complex, MYB-LIKE 2, PAP1/MYB75, PAP2/MYB90.

Introduction

Anthocyanins, a large group of plant flavonoids, confer vibrant colors such as blue, red, and purple to flowers, fruits, and other organs, which facilitates seed dispersal by attracting insect and avian pollinators and foragers (Grotewold, 2006; Miller *et al.*, 2011; Petroni and Tonelli, 2011). Anthocyanins play pivotal

roles in bolstering plant defenses against pathogen attacks and abiotic stresses including high light (Rao *et al.*, 2019; Shi *et al.*, 2022), ultraviolet radiation (Bieza and Lois, 2001), drought (Nakabayashi *et al.*, 2014), salinity (Kim *et al.*, 2017; Li *et al.*, 2022), and cold (Xie *et al.*, 2012; Li *et al.*, 2017). Moreover, an

¹ National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China

² School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China

^{*} Correspondence: kchengepi@163.com or xzhang@henu.edu.cn

increasing body of reports has uncovered the beneficial impacts of anthocyanins on human health and their potential application in disease prevention owing to their excellent antioxidant capacity and reactive oxygen species scavenging ability (Petroni et al., 2014; Santos-Buelga et al., 2014).

Over the past few decades, extensive characterization of the anthocyanin biosynthetic pathway has been conducted in various plant species, including Arabidopsis (Carey et al., 2004; Gonzalez et al., 2008), petunia (Petunia hybrida; Quattrocchio et al., 1999; Spelt et al., 2000, 2002; Albert et al., 2011, 2014), maize (Zea mays; Cone et al., 1986; Ludwig et al., 1989), and snapdragon (Antirrhinum majus; Goodrich et al., 1992; Schwinn et al., 2006). The common anthocyanin biosynthetic pathway comprises multiple sequential steps. Initially, p-coumaroyl-CoA is generated from phenylalanine through a series of reactions catalysed by phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, and 4-coumarate-CoA ligase. Subsequently, four early biosynthetic genes (EBGs) encoding chalcone synthase (CHS), chalcone isomerase, flavanone 3-hydroxylase, and flavonoid 3'-hydroxylase facilitate further catalytic processes leading to the production of leucoanthocyanidins such as dihydrokaempferol, dihydroquercetin, and dihydromyricetin. Furthermore, three late biosynthetic genes (LBGs) encoding dihydroflavonol 4-reductase (DFR), anthocyanin synthase/ leucoanthocyanidin dioxygenase (ANS/LDOX), and anthocyanidin 3-O-glucosyltransferase/UDP-glucose:flavonoid 3-O-glucosyltransferase (3GT/UF3GT) mediate the conversion to anthocyanidin-3-O-glucoside. The cyanidins are subsequently modified with glycosyl, acyl, or methyl groups by corresponding transferases to form stable anthocyanins, and are transported into the vacuole by putative anthocyanin transporters like TRANSPARENT TESTA 19 (TT19), thereby conferring diverse colors to plant organs (Kitamura et al., 2004; Koes et al., 2005; Sun et al., 2012).

The accurate expression of the biosynthetic genes (also known as structural genes) is crucial for anthocyanin biosynthesis and is tightly regulated by positive and negative regulators. In Arabidopsis, the R2R3-MYB transcription factors (TFs) MYB11, MYB12, and MYB111 activate the expression of EBGs (Stracke et al., 2010), while the MBW transcription activation complex predominantly positively controls the transcription of LBGs and plays a central role in regulating anthocyanin biosynthesis (Borevitz et al., 2000; Koes et al., 2005; Gonzalez et al., 2008). The canonical MBW complex consists of three types of proteins: R2R3-MYB TFs such as MYB75/ PAP1, MYB90/PAP2, MYB113, MYB114, and MYB123/ TT2; bHLH TFs like ENHANCER OF GLABRA3 (EGL3), GLABRA3 (GL3), and TRANSPARENT TESTA 8 (TT8); and a single WD40 protein, TRANSPARENT TESTA GLABRA 1 (TTG1). Among these components, the specificity and activity of the MBW complex towards target genes are mainly determined by the MYB and bHLH proteins, rather than TTG1; however, TTG1 is essential for assembly and function of the MBW complex (Baudry et al., 2004; Ramsay

and Glover, 2005; Gonzalez et al., 2008; Dubos et al., 2010; Jain and Pandey, 2018). Loss-of-function mutations in MBW component genes result in decreased expression of anthocyanin biosynthetic genes and compromised anthocyanin deposition (Gonzalez et al., 2008), while the up-regulation or overexpression of MBW component genes leads to enhanced anthocyanin accumulation (Rowan et al., 2009; S. Li et al., 2016; Lim et al., 2022). Additionally, several negative regulators have been identified that repress anthocyanin biosynthesis by impairing the transcription of these anthocyanin biosynthetic genes. In Arabidopsis, R2R3-MYBs, such as MYB4, MYB7, and MYB32, and R3-MYBs, like CAPRICE (CPC) and MYBL2, have been proposed to compete with PAP1/2 for binding bHLH TFs, thereby interfering with the formation of the MBW complex and suppressing the transcription of anthocyanin biosynthetic genes (Dubos et al., 2008; Matsui et al., 2008; Zhu et al., 2009; Wang et al., 2020). In petunia, the R2R3-MYB protein PhMYB27 functions as a non-canonical component of the MBW complex and a repressor of anthocyanin biosynthesis and accumulation by down-regulating the expression of both the biosynthetic genes and the bHLH TF gene ANTHOCYANIN1 (AN1), which is another crucial MBW component, through its C-terminal EAR motif (Albert et al., 2011, 2014). The R3-MYB TF PhMYBx, a homolog of Arabidopsis CPC, suppresses anthocyanin production by binding to AN1 and disturbing MBW assembly (Albert et al., 2011, 2014). The competitive binding of bHLH proteins between MYB activators and repressors may serve as a balancer of anthocyanin biosynthesis (Albert et al., 2014). Furthermore, emerging evidence indicated that the post-translational (Maier et al., 2013; S. Li et al., 2016; Zheng et al., 2020; H. Zhou et al., 2023) and epigenetic modifications (Fan et al., 2018; Cai et al., 2019; Liao et al., 2022) of both the biosynthetic and regulatory genes provided additional levels of fine regulation of anthocyanin production.

Notably, the precise feedback regulation of MBW components, particularly MYB and bHLH TFs, plays a critical role in anthocyanin biosynthesis and deposition. In Arabidopsis, the R2R3-MYB protein PAP1 activates the transcription of Trans-Acting SiRNA Gene 4 (TAS4). Elevated TAS4 transcription leads to an increased abundance of TAS4-siR81(-) through the ta-siRNA pathway, which subsequently down-regulates several MYB genes including PAP1, PAP2, and MYB113. A small RNA, miR828, also contributes to the feedback regulation of both PAP1 and TAS4 (Luo et al., 2012). Moreover, PAP1 promotes the transcription of TT8 and R2R3-MYB repressor gene MYB30 (Baudry et al., 2006; Matsui et al., 2008; H. Zhou et al., 2023). Conversely, MYB30 directly represses PAP1 expression and inhibits its activity (H. Zhou et al., 2023). Similarly, TT8 positively regulates the expression of R3-MYB repressor gene MYBL2 as well as its own transcription. As feedback, MYBL2 represses TT8 transcription (Baudry et al., 2006; Matsui et al., 2008; Xu et al., 2013). In petunia, two R2R3-MYB activators, AN2 and AN4, promote

the expression of bHLH component AN1 (Quattrocchio et al., 1998; Spelt et al., 2000). The MBW complex activates the expression of two repressor genes, PhMYB27 and PhMYBx. PhMYB27 negatively regulates AN1 transcription in reverse (Albert et al., 2014). Collectively, these activators, repressors, and MBW components, constitute a flexible regulatory network fine-tuning anthocyanin biosynthesis. The reinforcement and repressive feedback transcriptional regulations may be conserved across different species. However, the intricate details of such regulatory networks still require elucidation even in Arabidopsis.

Anthocyanin biosynthesis is induced by a diverse range of environmental stimuli (Naing and Kim, 2021), including high light (Albert et al., 2009; Rowan et al., 2009; Zheng et al., 2019; Araguirang and Richter, 2022; D. Li et al., 2023), salinity (Li et al., 2022), drought (Nakabayashi et al., 2014; An et al., 2020), temperature (Shao et al., 2007; Yu et al., 2022), and sucrose (Solfanelli et al., 2006). High light is considered as one of the most important triggers of anthocyanin accumulation, which occurs through hierarchical transcriptional regulation of anthocyanin biosynthetic and regulatory genes (Araguirang and Richter, 2022). Under light/high light conditions, the CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1)-SUPPRESSOR OF PHYA-105 (SPA) E3 ubiquitin ligase complex is inhibited by activated photoreceptors such as CRYPTOCHROMES (CRYs), PHYTOCHROMES (PHYs), and UV RESISTANCE LOCUS 8 (UVR8). This inhibition allows the accumulation of ELONGATED HYPOCOTYL 5 (HY5) and PAP1/2 (Maier et al., 2013; Podolec and Ulm, 2018; Bhatia et al., 2021). HY5 directly binds to the promoters of PAP1 and anthocyanin biosynthetic genes, and activates their transcription (Shin et al., 2013). Additionally, HY5 represses MYBL2 expression by directly binding to its promoter and indirectly inducing MYBD and miR858a expression (Nguyen et al., 2015; Wang et al., 2016). This repression leads to the activation of the MBW complex and the subsequent expression of anthocyanin biosynthetic genes, thus promoting anthocyanin accumulation. The induction of anthocyanin biosynthesis and deposition by light has also been reported in other species like apple (Xing et al., 2023) and eggplant (Y. Li et al., 2023b). However, the precise mechanism underlying this process remains largely unclear.

In this study, we discovered a negative feedback regulatory module controlling high light-induced anthocyanin biosynthesis, comprising MYBL2, PAP1, and TT8. MYBL2 interacts with PAP1, repressing its transcriptional activation of both anthocyanin biosynthetic genes and PAP1. Conversely, PAP1 in conjunction with TT8 promotes MYBL2 transcription. This regulatory module acts as a critical switch, ensuring adequate anthocyanin production to mitigate photo-damage caused by high light while preventing excessive anthocyanin accumulation to maintain normal growth and development.

Materials and methods

Plant materials and growth conditions

In the present study, the Columbia (Col-0) ecotype of Arabidopsis was used as the wild-type (WT), and all mutant and transgenic lines were in the Col-0 background. The mybl2 (SALK_126807), MYBL2-overexpression (MYBL2-OE) (Xie et al., 2016), myb75-c (S. Li et al., 2016; Zheng et al., 2019), and pap 1-D (Borevitz et al., 2000) lines have been previously reported. The mybl2 myb75-c and MYBL2-OE pap1-D lines were generated by genetic crossing. All seeds were surface-sterilized using 0.1% (w/v) mercuric chloride (HgCl₂) solution for 5 min, followed by five washes with sterile water. Seeds were then sown on Murashige and Skoog (MS) plates [pH 5.8, containing 2% (w/v) sucrose and 0.6% (w/v) agar], and stratified at 4 °C for 3 d. The plates were transferred to a phytotron at 22 °C under a 16 h light/8 h dark photoperiod, with a photosynthetic photon flux density of 80 µmol photons m⁻² s⁻¹ and 70% relative humidity. After 1 week, seedlings were transplanted into soil pots and grown under identical conditions for further analysis. For the light treatment, 3-week-old plants were subjected to continuous high light (1200 µmol photons m⁻² s⁻¹), growth light (80 μmol photons m⁻² s⁻¹), or darkness $(0 \mu \text{mol photons m}^{-2} \text{ s}^{-1})$ under the same temperature and humidity. The Nicotiana tabacum K326 and N. benthamiana plants used in this study were grown in the same phytotron.

Measurement of anthocyanin indexes and contents

In Arabidopsis, 3-week-old WT, mybl2, myb75-c, pap1-D, mybl2 myb75-c, and MYBL2-OE pap1-D plants were subjected to continuous high light or growth light for 24 h. Then the rosette leaves were collected for the determination of anthocyanin indexes and contents. In N. tabacum K326, the full-length coding sequences (CDS) of MYBL2, PAP1, and PAP2 were individually cloned into the pHB-FLAG vector (Su et al., 2023) using the ClonExpress Ultra One Step Cloning kit (C115-02, Vazyme, China). The recombinant MYBL2-FLAG, PAP1-FLAG, and PAP2-FLAG plasmids as well as the empty pHB-FLAG vector (negative control) were transiently expressed in N. tabacum K326 leaves via Agrobacterium tumefaciensmediated transformation. Five days after infiltration, the leaves were collected for imaging and detection of anthocyanin indexes and contents (Bayle et al., 2008).

Anthocyanin content was measured as previously described (Zheng et al., 2019) with minor modifications. In brief, approximately 1 g Arabidopsis rosette leaves or N. tabacum K326 leaves were placed in the extraction buffer [1% (v/v) HCl in methanol] at 4 °C in darkness for 24 h; then the supernatants were collected from the extracts after centrifugation at 12 000 g for 10 min at 4 °C. The absorbances at wavelengths of 530 nm and 657 nm were measured using the Tecan Spark Microplate Reader (Infinite 200 PRO, Tecan, Switzerland), and the relative anthocyanin content was calculated as $(A_{530}-0.25\times A_{657})$ per gram fresh weight. The anthocyanin indexes were assessed using the PlantExplorer XS system (Phenovation B.V., Netherlands) as previously described (Lazarević et al., 2021). At least three independent biological replicates were performed.

Reverse transcription-quantitative PCR analysis

The indicated plant samples were subjected to total RNA isolation using TRIzol reagent (15596-026, Thermo Fisher Scientific, USA) following the manufacturer's instructions. The first-strand cDNAs were synthesized from 1 µg total RNAs using the HiScript III 1st Strand cDNA Synthesis kit (R312-02, Vazyme, China). Reverse transcription-quantitative PCR (RT-qPCR) was conducted on a LightCycler 480 system (Roche, Switzerland) employing the ChamQ Universal SYBR PCR master mix (Q711-03, Vazyme, China). The relative expression levels of each gene were determined by the $2^{-\Delta\Delta C_t}$ method (Schmittgen and Livak, 2008) normalized to that of the UBQ10 reference gene. Another

control gene, *ACTIN2*, displayed a stable expression under all experimental conditions, including high light, growth light, and dark, after normalization to *UBQ10*, and vice versa (Supplementary Fig. S1). The gene-specific primers for RT-qPCR are listed in Supplementary Table S1. At least three biological replicates were performed for the expression analysis of each gene.

Yeast two-hybrid assay

The full-length and truncated CDSs of MYBL2 were amplified and cloned into the pGBKT7 (BD) vector to generate the BD-MYBL2, BD-MYBL2-N (aa 1-34), BD-MYBL2-R3 (aa 35-80), and BD-MYBL2-C (aa 81-196) constructs. The full-length and truncated CDSs of PAP1 and PAP2 were cloned into the pGADT7 (AD) vector to generate the AD-PAP1, AD-PAP1-R2 (aa 1-60), AD-PAP1-R3 (aa 61–111), AD-PAP1-R2R3 (aa 1–111), AD-PAP1-C (aa 112–249), AD-PAP2, AD-PAP2-R2 (aa 1-60), AD-PAP2-R3 (aa 61-111), AD-PAP2-R2R3 (aa 1-111), and AD-PAP2-C (aa 111-250) constructs. The primers are listed in Supplementary Table S1. The yeast two-hybrid (Y2H) assays were carried out following the manufacturer's instructions (Takara Bio, USA). In brief, each pair of constructs was co-transformed into yeast AH109 competent cells and screened on synthetic defined (SD) medium lacking Leu and Trp (SD-L/T) at 30 °C for 3 d. Then the co-transformants were transferred onto SD medium lacking Leu, Trp, and His (SD-L/T/H), and that lacking Leu, Trp, His, and Ade (SD-L/ T/H/A) with a serial dilution $(1\times, 10\times, 100\times, 1000\times)$ and cultured at 30 °C for another 3 d. At least three biological replicates were performed for each pair of proteins/peptides.

Bimolecular fluorescence complementation assay

The full-length CDSs of MYBL2, PAP1, and PAP2 were amplified and cloned into the pXY106-nYFP and pXY104-cYFP vectors (Y. Zhou et al., 2023) to generate the MYBL2-nYFP, MYBL2-cYFP, PAP1-nYFP, PAP1-cYFP, PAP2-nYFP, and PAP2-cYFP constructs. The primers are listed in Supplementary Table S1. Bimolecular fluorescence complementation (BiFC) assays were conducted as previously described (Waadt et al., 2008). The different combinations of nYFP- and cYFP-fused proteins, along with the nuclear localization marker H2B-mCherry, were co-expressed in N. benthamiana leaves via A. tumefaciens-mediated transformation. Three days after infiltration, yellow fluorescent protein (YFP; excitation 514 nm and emission 549 nm) and mCherry (excitation 561 nm and emission 609 nm) fluorescence signals were detected and imaged using a laser confocal microscope (Zeiss, LSM980, Germany). At least three biological replicates were performed for each pair of proteins/peptides.

Dual-luciferase reporter assay

The promoter sequences of *PAP1*, *PAP2*, *DFR*, *TT19*, and *MYBL2* were amplified from Arabidopsis genomic DNA and individually cloned into the upstream of the firefly luciferase reporter gene in pGreen II 0800-LUC to generate the reporter constructs (Hellens *et al.*, 2005). The empty pHB-FLAG vector and the recombinant pHB-MYBL2-FLAG, pHB-PAP1-FLAG, pHB-PAP2-FLAG, and pHB-TT8-FLAG plasmids were used as the effectors. The different combinations of effectors and reporters were co-expressed in *N. benthamiana* leaves via *A. tumefaciens*-mediated transformation. Three days after infiltration, the leaves were collected for LUC imaging using an *in vivo* imaging system (Tanon 5200 Multi, Tanon, China), or for dual-luciferase reporter assays employing the Dual-Luciferase Reporter Gene Assay kit (11402ES60, Yeasen, China) following the manufacturer's instructions. The activities of firefly (LUC) and *Renilla* (REN) luciferases were determined by the Tecan Spark microplate reader. The LUC/REN ratios were used to represent

the transcription activities of reporters. At least three biological replicates were performed for each combination of effectors and reporters.

β-Glucuronidase reporter assay

The promoter sequences of *PAP1*, *PAP2*, *DFR*, and *TT19* were cloned into the pBI121 vector to generate the reporter constructs. The same effectors from the dual-luciferase assays were used in transient β -glucuronidase (*GUS*) reporter assays. Combinations of effectors and reporters were coexpressed in *N. benthamiana* leaves for 3 d. The transcription activities of the reporters were indicated by measuring the relative *GUS* expression normalized to the *NPT II* reference gene using RT-qPCR analysis (*Gu et al.*, 2019; Rahamkulov and Bakhsh, 2020). At least three biological replicates were performed for each combination of effectors and reporters.

Statistical analysis

Data represent means \pm standard deviation (SD) of three biological replicates. Statistical significance was determined using Student's *t*-test (the asterisks indicate statistically significant differences, $\star P < 0.05$ and $\star \star P < 0.01$) or one-way ANOVA with Duncan's tests (different letters indicate significant differences at P < 0.05).

Accession numbers

Sequence data described in this article can be accessed through the Arabidopsis Genome Initiative or GenBank/EMBL database under the following accession numbers: *DFR*, AT5G42800; *LDOX*, AT4G22880; *UF3GT*, AT5G54060; *TT19*, AT5G17220; *PAP1*, AT1G56650; *PAP2*, AT1G66390; *TT8*, AT4G09820; *MYBL2*, AT1G71030; *UBQ10*, AT4G05320; *ACTIN2*, AT3G18780.

Results

MYBL2 and PAP1 antagonistically regulate high light-induced anthocyanin accumulation

MYBL2 and PAP1 have been characterized as negative and positive regulators of anthocyanin biosynthesis and accumulation, respectively (Dubos et al., 2008; Gonzalez et al., 2008; Matsui et al., 2008; Rowan et al., 2009). To investigate the effects of MYBL2 and PAP1 on high light-induced anthocyanin biosynthesis, the wild-type Col-0 (WT), mybl2 (a loss-of-function mutant of MYBL2), and pap 1-D (a dominant gain-of-function mutant of PAP1) plants were subjected to continuous growth light and high light irradiations for 24 h. Under both illumination conditions, mybl2 and pap1-D plants displayed more pronounced pigmentation compared with WT plants, and pap 1-D plants exhibited higher pigmentation than mybl2 plants (Fig. 1A). The anthocyanin indexes in *mybl2* and *pap1-D* plants were also significantly higher than that in WT plants under both light conditions (Fig. 1B). Specifically, the anthocyanin indexes in mybl2 and pap1-D plants were 1.13- and 2.82-fold that in WT plants under growth light, and 1.45- and 1.99-fold under high light, respectively. Similarly, the relative anthocyanin contents in both mutants were significantly higher than that of WT plants (Fig. 1C). Moreover, mybl2 plants showed a greater increase in anthocyanin accumulation than WT and pap1-D

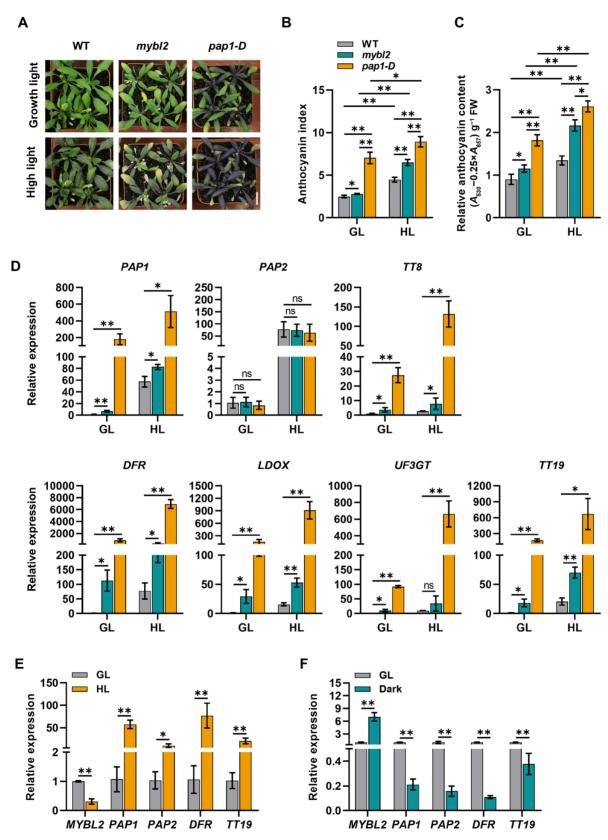


Fig. 1. Antagonistic regulation of anthocyanin biosynthesis under high light by MYBL2 and PAP1. (A) Phenotypes of 3-week-old wild type (WT, Col-0), mybl2, and pap1-D plants under continuous growth light (80 µmol photons m⁻² s⁻¹) and high light (1200 µmol photons m⁻² s⁻¹) for 24 h. Bar: 2 cm. (B, C) Anthocyanin index (B) and relative anthocyanin content (C) of 3-week-old WT, mybl2, and pap1-D plants under continuous growth light and high light for

24 h. The values are means ±SD of three biological replicates, and each replicate contains 8–10 plants. (D) Relative expression of selective anthocyanin biosynthetic and regulatory genes in indicated plants treated with continuous growth light and high light for 3 h. The expression level of each gene in WT plants under growth light was set as 1. (E, F) Relative expression of MYBL2, PAP1, PAP2, DFR, and TT19 in WT plants transferred from growth light to high light (E) and dark (F) for 3 h. The expression level of each gene in WT plants under growth light was set as 1. For RT-qPCR assays (D–F), UBQ10 was used as the reference gene. The values are means ±SD of three biological replicates. Asterisks indicate significant differences determined by Student's t-test (ns, not significant; *P<0.05, **P<0.01). GL, growth light; HL, high light.

plants when transplanted from growth light to high light, along with more dramatic elevation of anthocyanin index and content, in line with the repressive effect of MYBL2 on high light-induced anthocyanin biosynthesis (Fig. 1A–C). Additionally, all plants exhibited enhanced levels of anthocyanin accumulation, and significantly elevated anthocyanin indexes and contents under high light (Fig. 1A–C). These findings confirm the promotion effect of high light on anthocyanin production and the opposite roles of MYBL2 and PAP1 on high light-induced anthocyanin accumulation.

To elucidate the underlying mechanism, we detected the transcription levels of anthocyanin biosynthesis-related genes. We observed a significantly increased expression of the anthocyanin regulatory genes *PAP1* and *TT8*, as well as the anthocyanin biosynthetic genes *DFR*, *LDOX*, *UF3GT*, and *TT19* in *mybl2* and *pap1-D* plants compared with WT plants under both light conditions (Fig. 1D). Notably, there were no significant differences in *PAP2* expression among *mybl2*, *pap1-D*, or WT plants under either light condition (Fig. 1D). Intriguingly, *TT8* and four anthocyanin biosynthetic genes, *DFR*, *LDOX*, *UF3GT*, and *TT19*, have been reported as the targets of PAP1 (Baudry *et al.*, 2006; Rowan *et al.*, 2009). These results suggest an antagonistic regulation between MYBL2 and PAP1 on the expression of *PAP1* itself and its target genes.

We then investigated the expression alterations of MYBL2, PAP1, PAP2, and the PAP1/2 targets DFR and TT19 under high light and dark conditions. Compared with growth light, high light exposure repressed MYBL2 expression while enhancing the transcription of PAP1, PAP2, DFR, and TT19. Conversely, dark treatment had the opposite effect (Fig. 1E, F). Collectively, these results indicate that MYBL2 and PAP1 antagonistically regulate high light-induced anthocyanin accumulation through opposite modulation of anthocyanin biosynthetic and regulatory genes.

MYBL2 represses high light-induced anthocyanin biosynthesis in a PAP1-dependent manner

To elucidate the genetic relationship between MYBL2 and PAP1 in high light-induced anthocyanin biosynthesis, we generated homozygous *mybl2 myb75-c* and *MYBL2-OE pap1-D* lines by crossing *mybl2* with *myb75-c* (a recessive mutant of *PAP1*) and crossing *MYBL2*-overexpression (*MYBL2-OE*) with *pap1-D*, respectively. Under growth light, only *pap1-D* plants exhibited conspicuous anthocyanin accumulation on

the abaxial side (Fig. 2A). However, under high light, both *mybl2* and *pap1-D* plants displayed more pronounced pigmentation, while *myb75-c* plants accumulated fewer anthocyanins than WT, consistent with their respective roles. Furthermore, anthocyanin accumulation was nearly abolished in *mybl2 myb75-c* plants, and anthocyanin deposition in *pap1-D* plants was significantly reduced by the overexpression of *MYBL2* in *MYBL2-OE pap1-D* plants (Fig. 2A). The anthocyanin indexes and content confirm these observations under both light conditions (Fig. 2B, C). These results indicate that the repression of high light-induced anthocyanin biosynthesis by MYBL2 depends on PAP1 function.

To further validate this finding, we evaluated the transcript levels of *DFR* and *TT19*. Despite the overall up-regulation induced by high light, *DFR* and *TT19* showed higher expression levels in *mybl2* and *pap1-D* but decreased levels in *myb75-c* compared with WT. The transcription levels of *DFR* and *TT19* were markedly down-regulated in *mybl2 myb75-c* and *MYBL2-OE pap1-D* plants compared with those in *mybl2* and *pap1-D*, respectively (Fig. 2D, E). However, there were no significant differences observed in *PAP2* transcription levels among these plants (Supplementary Fig. S2). In summary, our findings demonstrate that MYBL2 negatively regulates high light-induced anthocyanin accumulation presumably through the repression of PAP1 function.

MYBL2 interacts with PAP1 and PAP2

MYBL2 has been reported to disrupt the formation of the MBW complex by competitively binding to bHLH proteins such as TT8, GL3, and EGL3 (Dubos et al., 2008; Matsui et al., 2008). Our findings suggest that the repressive effect of MYBL2 on high light-induced anthocyanin accumulation relies on PAP1 function (Figs 1, 2). To investigate the potential interaction between MYBL2 and PAP1, as well as its homolog PAP2, we conducted Y2H assays. We observed the growth of yeast cells harboring both BD-MYBL2 and AD-PAP1 or AD-PAP2 in selective medium, along with the positive control (Fig. 3A), indicating the interactions between MYBL2 and PAP1/2 in vitro. Additionally, we performed BiFC assays to validate these interactions. Co-expression of MYBL2 with either PAP1 or PAP2, fused to complementary halves of YFP, resulted in robust fluorescence signals in N. benthamiana leaves, which co-localized with the H2B-mCherry nuclear marker (Fig. 3B). This result confirms the interactions between MYBL2 and PAP1/2 in vivo.

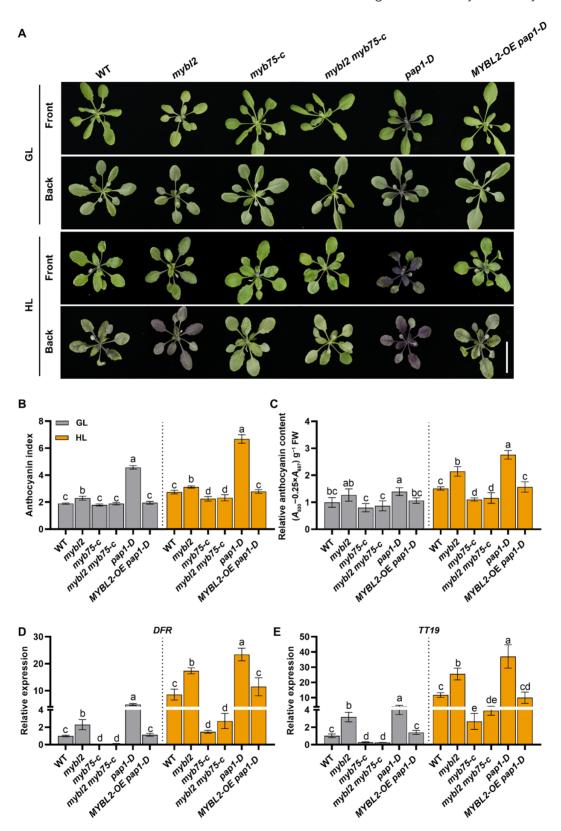
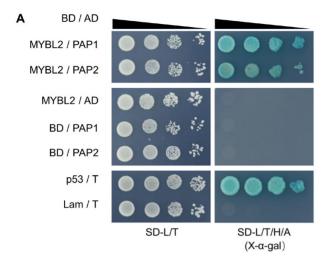


Fig. 2. Repression of high light-induced anthocyanin biosynthesis by MYBL2 is dependent on PAP1. (A) Phenotypes of 3-week-old wild type (WT, Col-0), mybl2, myb75-c, mybl2 myb75-c, pap1-D, and MYBL2-OE pap1-D plants under continuous growth light (80 µmol photons m⁻² s⁻¹) and high light (1200 µmol photons m⁻² s⁻¹) for 24 h. Bars: 2 cm. (B, C) Anthocyanin index (B) and relative anthocyanin content (C) of indicated plants under continuous growth light and high light for 24 h. The values are means ±SD of three biological replicates, and each replicate contains 8-10 plants. (D, E) Relative

expression of DFR (D) and TT19 (E) in indicated plants under growth light and high light for 3 h. The expression levels of DFR (D) and TT19 (E) in WT plants under growth light were set as 1. UBQ10 was used as the reference gene. The values are means ±SD of three biological replicates. Identical letters indicate no significant differences (P≥0.05), while different letters indicate significant differences (P<0.05) among corresponding groups, as determined by one-way ANOVA with Duncan's test. GL. growth light: HL. high light.

To further identify the specific domains responsible for these interactions, we performed Y2H assays using truncated forms of MYBL2 (N-terminus, R3, and C-terminus) and PAP1/2 (R2, R3, R2R3, and C-terminus) (Fig. 4A). The R3 and C-terminal regions of MYBL2 interacted with PAP1, while only the C-terminus interacted with PAP2, suggesting that the C-terminus plays a crucial role in protein interactions with MYBL2 (Fig. 4B). Moreover, we observed weaker interactions between the R2R3 domains of PAP1/2 and MYBL2 (Fig. 4C), indicating that the R2R3 domains of PAP1/2 are indispensable for their interactions with MYBL2.

MYBL2 represses the transcriptional activation activities of PAP1 and PAP2


PAP1 and PAP2 are core R2R3-MYB components of the canonical MBW complex, which predominately regulates anthocyanin biosynthesis (Gonzalez et al., 2008; Starkevič et al., 2015, 2020). To investigate the impact of MYBL2-PAP1/2 interactions on anthocyanin biosynthesis, we transiently expressed PAP1 and PAP2 individually or in combination with MYBL2 in N. tabacum K326 leaves. Our results showed that either PAP1 or PAP2 alone could induce anthocyanin production (Fig. 5A). However, no discernible pigmentation was observed in leaf sections infiltrated with MYBL2 or the empty vector (EV). Co-expression of MYBL2 with PAP1 or PAP2 markedly suppressed pigmentation and reduced anthocyanin content compared with expression of PAP1 or PAP2 alone (Fig. 5A, B). These results, together with the genetic interaction data (Fig. 2), indicate that MYBL2 represses the promotive effects of PAP1 and PAP2 on anthocyanin biosynthesis.

The MBW complex positively regulates anthocyanin accumulation by transactivating the expression of anthocyanin biosynthetic genes, which relies on the transcription activation activities of the MYB and bHLH components (Gonzalez et al., 2008; Rowan et al., 2009; Xu et al., 2015). To investigate whether MYBL2 affects the transcriptional activation activities of PAP1 and PAP2, we performed dual-luciferase reporter assays and GUS reporter assays in N. benthamiana leaves. Co-infiltration of the reporters containing the DFR and TT19 promoter regions with PAP1/2 effectors resulted in significantly increased relative luciferase (relative LUC/REN ratio) and GUS (relative expression of GUS/NPT II) activities, compared with co-infiltration with EV. However, no notable differences were observed between co-transformation with MYBL2 or EV (Fig. 5C-E). These results indicate that PAP1/2 rather than MYBL2 can activate the transcription of DFR and TT19. Furthermore, co-expression of MYBL2 with PAP1 or PAP2 as effectors led to a remarkable reduction in relative luciferase and GUS activities compared with expressing PAP1 or PAP2 alone, respectively (Fig. 5C-E), suggesting that MYBL2 represses the transcriptional activation of PAP1/2 on DFR and TT19. Collectively, these results demonstrate that MYBL2 negatively regulates anthocyanin biosynthesis by repressing the transcriptional activation activities of PAP1/2 on their target genes like DFR and TT19.

MYBL2 represses the transcriptional self-activation of PAP1

Our findings suggest that the antagonistic effects of MYBL2 and PAP1 on anthocyanin biosynthesis and accumulation depend on the divergent regulation of PAP1/2. Next, we investigated the interrelation between MYBL2 and PAP1/2. Using the PlantCARE database, we identified a putative MYB binding site (MBS; TAACCA) near the transcription start site (TSS) of PAP1, and another MBS (CAACCA) in the 1.1 kb upstream region of PAP2 (Fig. 6A), implying potential selfregulation mechanisms for PAP1/2 transcription. To test this hypothesis, we performed dual-luciferase and GUS reporter assays in N. benthamiana leaves (Fig. 6B). Co-infiltration of the PAP1 promoter with PAP1-FLAG effector resulted in a significant increase in the relative luciferase activity by 2.63-fold and GUS activity by 3.92-fold compared with the co-infiltration with EV (Fig. 6C, D), indicating that PAP1 can activate its own expression. However, co-infiltration with MYBL2-FLAG did not affect PAP1 promoter activity, suggesting that MYBL2 alone does not suppress PAP1 transcription. Notably, coexpression of MYBL2-FLAG and PAP1-FLAG effectors substantially attenuated the self-activation effect of PAP1 (Fig. 6C, D), consistent with the repressive effect of MYBL2 on PAP1 transcriptional activity (Fig. 5). In contrast, neither PAP2 nor MYBL2 had any notable effect on PAP2 transcription (Fig. 6C, D.

Since previous studies reported that TT8 is required for the transcriptional activation of PAP1/2 (Gonzalez et al., 2008; Zheng et al., 2019), we co-expressed the reporters together with PAP1/2-FLAG and TT8-FLAG effectors. Co-expression of TT8-FLAG with PAP1-FLAG or PAP2-FLAG significantly enhanced the activities of DFR and TT19 promoters, but had no notable promotion effects on the PAP1/2 promoters themselves. In contrast, co-expression of PAP1-FLAG and TT8-FLAG resulted in reduced PAP1 promoter activity compared with the infiltration of PAP1 alone, potentially due to the competition between PAP1 and TT8 for binding to the PAP1 promoter region, which contains several G-box motifs

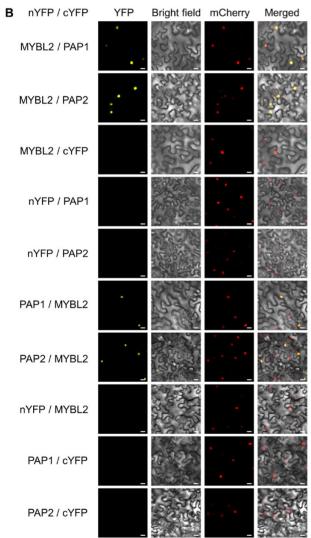
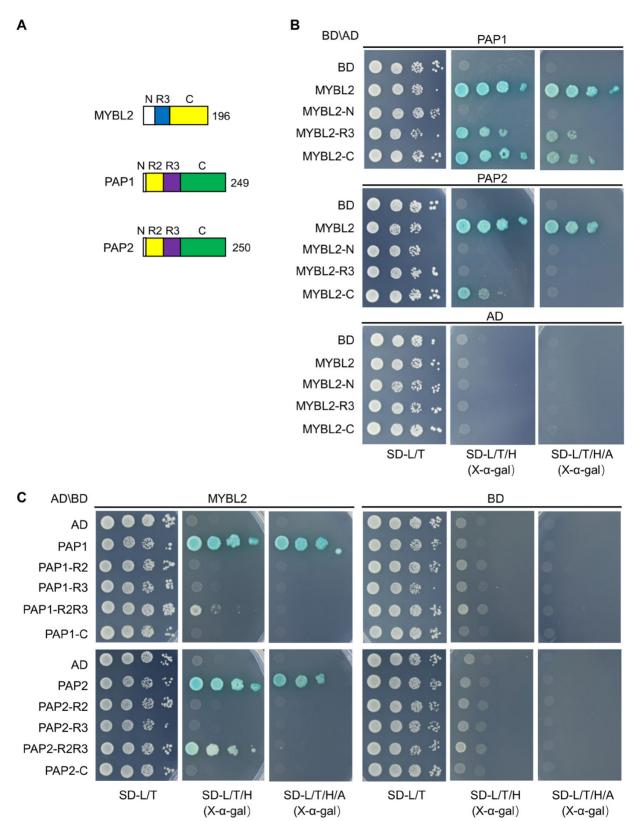


Fig. 3. Interactions between MYBL2 and PAP1/2. (A) Interactions between MYBL2 and PAP1/2 in a yeast two-hybrid assay. The combinations of BD-p53/AD-T and BD-Lam/AD-T were used as positive and negative controls, respectively. SD-L/T, SD medium lacking

Leu and Trp; SD-L/T/H/A, SD medium lacking Leu, Trp, His, and Ade; $X-\alpha$ -gal, 5-bromo-4-chloro-3-indoxyl- α -D-galactopyranoside. (B) Interactions between MYBL2 and PAP1/2 in bimolecular fluorescence complementation assay. The 35S:H2B-mCherry vector was used as a nuclear localization marker. Scale bars: 20 µm. At least three independent biological replicates were performed for each pair of proteins/peptides. YFP, yellow fluorescent protein.


responsible for bHLH binding (Fig. 6E–H; Supplementary Fig. S3). The differential regulation of PAP1 and PAP2 transcription may be attributed to distinct localization patterns of MBS within their respective promoters. These findings, along with PAP1 and PAP2 expression profiles in mybl2 plants (Fig. 1D), suggest that MYBL2 negatively regulates the expression of PAP1, but not of PAP2, by repressing the transcriptional selfactivation of PAP1.

PAP1 and TT8 cooperatively activate MYBL2 expression

A previous study reported that MYBL2 transcription is upregulated in TT8 overexpression plants, indicating that TT8 activates MYBL2 transcription (Matsui et al., 2008). Similarly, we observed significantly elevated MYBL2 expression in pap1-D plants, a gain-of-function allele of PAP1, while no marked changes were observed in the recessive loss-of-function mutant myb75-c (Fig. 7A). Additionally, multiple putative MBSs were identified in the MYBL2 promoter region, particularly in the 5' untranslated region, based on *cis*-element predication using the PlantCARE database (Fig. 7B). These results suggest that PAP1 may modulate MYBL2 expression. To test this hypothesis, we conducted dual-luciferase reporter assays in N. benthamiana leaves (Fig. 7C). Co-infiltration of the MYBL2 promoter with either PAP1-FLAG or TT8-FLAG effectors led to significant increases in reporter activities by approximately 3.10- and 1.63-fold compared with co-infiltration with EV, respectively, indicating that PAP1 and TT8 independently activate MYBL2 expression. Moreover, co-expression of PAP1-FLAG and TT8-FLAG together resulted in a further elevation in reporter activity (Fig. 7D, E), suggesting a synergistic effect between PAP1 and TT8 on promoting MYBL2 expression.

Discussion

A growing number of studies have substantiated the pivotal role of the MBW complex in anthocyanin biosynthesis and accumulation (Gonzalez et al., 2008; Albert et al., 2014; Starkevič et al., 2015; Zhang et al., 2019; Zheng et al., 2019; Lim et al., 2022; Broucke et al., 2023). The targeting specificity and transcriptional activity of the MBW complex are predominantly governed by R2R3-MYB components such as PAP1 and PAP2, which typically function as transcriptional activators.

Fig. 4. Determination of the specific domains responsible for the MYBL2–PAP1/2 interactions. (A) Schematic diagrams showing the domain architecture of MYBL2 and PAP1/2 proteins. N, the amino-terminus; R2 and R3, two and three imperfect amino acid sequence repeats (R), respectively; C, the carboxyl-terminus. (B) Interactions of intact or truncated MYBL2 with PAP1/2. (C) Interactions of MYBL2 with intact or truncated PAP1/2. SD-L/T, SD medium lacking Leu and Trp; SD-L/T/H, SD medium lacking Leu, Trp, and His; SD-L/T/H/A, SD medium lacking Leu, Trp, His, and Ade; X-α-gal, 5-bromo-4-chloro-3-indoxyl-α-p-galactopyranoside. At least three independent biological replicates were performed for each pair of proteins/peptides.

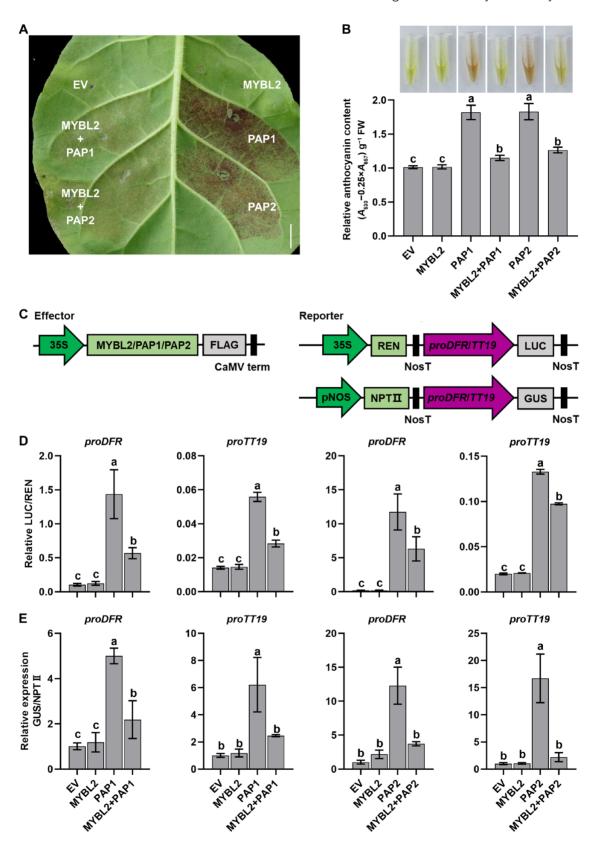


Fig. 5. MYBL2 inhibits anthocyanin accumulation by repressing the transcriptional activation activities of PAP1/2. (A, B) Anthocyanin pigmentation (A) and relative anthocyanin content (B) in Nicotiana tabacum K326 leaves ectopically expressing different exogenous genes for 5 d. Scale bar in (A): 1 cm. The values in (B) are means ±SD of three biological replicates, and each replicate contains five leaves. (C) Schematic diagrams of the effector and reporter constructs used in the dual-luciferase and β -glucuronidase (GUS) reporter assays. (D, E) The relative transcription activities of the DFR and TT19

promoters in the dual-luciferase (D) and GUS (E) reporter assays. The transcription activities of DFR and TT19 promoters co-infiltrated with indicated effectors are indicated as the relative LUC/REN ratio (D) and the relative GUS expression normalized to NPTII (E). The empty vector (EV) was used as the control effector. The values are means ±SD of three biological replicates. Identical letters indicate no significant differences (P≥0.05), while different letters indicate significant differences (P<0.05) among corresponding groups, as determined by one-way ANOVA with Duncan's test.

Additionally, several R2R3- and R3-MYB repressors, such as MYB4/7/32 and MYBL2, have been identified as negative regulators of anthocyanin biosynthesis by interacting with bHLH proteins, thus inhibiting MBW assembly. However, the connection between R2R3-MYB activators and R3-MYB repressors remains to be fully understood. Herein, we unveil a precise regulatory loop comprising the R2R3-MYB activator PAP1 and the R3-MYB repressor MYBL2, which fine-tunes anthocyanin biosynthesis under high light conditions.

The antagonistic roles between MYBL2 and PAP1 in high light-induced anthocyanin accumulation

The biosynthesis and accumulation of anthocyanins are regulated by multiple developmental and environmental cues. Light, including high light, is one of the most crucial environmental factors that promote anthocyanin production. On one hand, high light affects the expression of many anthocyanin biosynthetic and regulatory genes at the transcriptional level. For instance, the transcription of several MBW component genes, such as PAP1, PAP2, and TT8, is induced by high light.TTG1 expression is independent of light conditions. Meanwhile, MYBL2 transcription is repressed under high light (Fig. 1D), TTG1 expression is independent of light conditions, while MYBL2 transcription is repressed under high light (Fig. 1E; Cominelli et al., 2008; Dubos et al., 2008). These transcriptional effects may be attributed to the presence of lightresponsive elements in their promotor regions (Ban et al., 2007; Shin et al., 2013; P. Li et al., 2016). On the other, the promotion of anthocyanin accumulation by light is entangled with light signaling pathways. The COP1-SPA E3 ubiquitin ligase complex, a major repressor of photomorphogenesis, interacts with PAP1/2 and facilitates their ubiquitination and subsequent post-translational degradation under dark conditions, thereby suppressing anthocyanin accumulation (Maier et al., 2013). Light inhibits the action of the COP1-SPA complex, leading to increased protein levels of PAP1/2 and HY5. HY5 is a photomorphogenesis-promoting transcription factor that activates PAP1 transcription but suppresses MYBL2 expression, thereby inducing anthocyanin production (Shin et al., 2013; Nguyen et al., 2015; Wang et al., 2016; Bhatia et al., 2021).

In this study, we investigated the relationship between the R2R3-MYB activator PAP1 and the R3-MYB repressor MYBL2 in high light-induced anthocyanin biosynthesis and accumulation. Our results showed a significant increase in anthocyanin deposition in mybl2 and pap1-D mutants upon high light illumination (Figs 1A-C, 2A-C), in accordance with previous reports (Dubos et al., 2008; Matsui et al., 2008; Zheng et al., 2019). Additionally, we observed a greater increase in anthocyanin deposition in mybl2 plants than in WT and pap1-D plants when transferred from growth light to high light (Fig. 1A-C). This may be attributed to the presence of MYBL2 partially inhibiting high light-induced anthocyanin production in WT and pap1-D plants. Furthermore, it was noted that pap1-D plants accumulated relatively high levels of anthocyanins under growth light, which may explain its weaker increase in anthocyanin levels compared with the other two genotypes when transferred to high light. Previous studies and our findings demonstrated that MYBL2 acts as an active repressor of PAP1 and TT8. Consistent with this, the expression levels of PAP1 and TT8 were elevated in mybl2 plants but decreased in MYBL2-OE plants (Fig. 1D; Dubos et al., 2008; Matsui et al., 2008; Xie et al., 2016). Therefore, the mutation of MYBL2 in mybl2 plants might mask anthocyanin accumulation when hybridized with PAP1-overexpressing lines like pap1-D, whereas the overexpression of MYBL2 in MYBL2-OE plants possibly suppresses anthocyanin production in the hybridization of MYBL2-OE with myb75-c, posing challenges for elucidating the genetic interaction between MYBL2 and PAP1. However, mybl2 myb75-c double mutants exhibited a similar level of anthocyanins as that in myb75-c plants, whereas anthocyanin production was lower in MYBL2-OE pap1-D plants than in pap1-D plants, suggesting that MYBL2 functions upstream of PAP1 in regulating high light-induced anthocyanin accumulation.

The transcriptional regulation of anthocyanin biosynthetic and regulatory genes is a key feature in the control of anthocyanin biosynthesis. Consistent with the observed phenotypes, the expression levels of DFR, LDOX, UF3GT, and TT19 were significantly up-regulated in both mybl2 and pap1-D plants, indicating that MYBL2 and PAP1 exert antagonistic effects on the transcription of anthocyanin biosynthetic genes. Notably, the transcription levels of PAP1 and TT8 were significantly increased in mybl2 plants, while the transcription of PAP2 was unaffected by MYBL2 (Fig. 1D), suggesting potential functional divergence among these MBW components. Additionally, we found that high light and dark treatment resulted in opposite changes in the expression patterns of MYBL2 and another group of genes, including PAP1, PAP2, DFR, and TT19 (Fig. 1E, F), which is consistent with previous findings by Dubos et al. (2008). The contrasting light response between MYBL2 and PAP1 may be partly due to differential regulation by HY5, which inhibits MYBL2 transcription but activates PAP1 expression (Shin et al., 2013; Nguyen et al., 2015; Wang et al., 2016). However, the underlying mechanisms governing light-responsive expression of anthocyanin biosynthetic

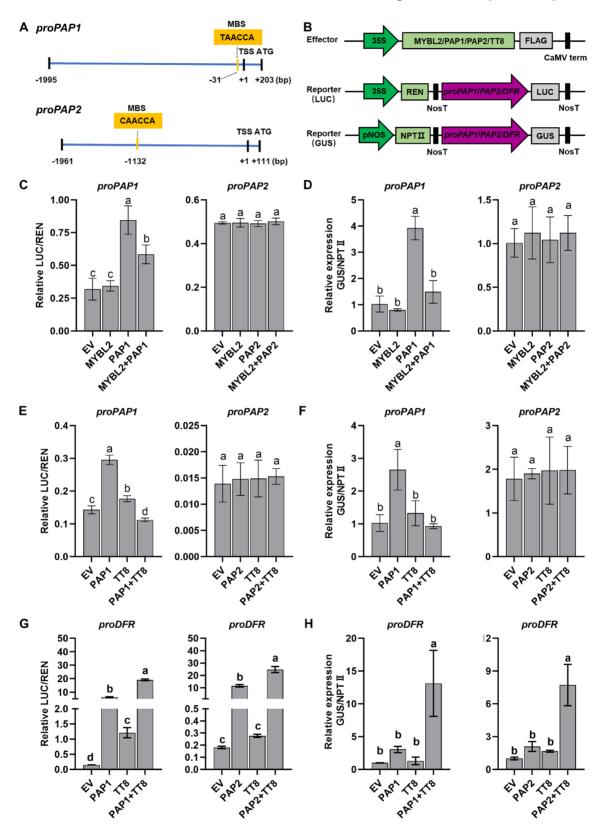


Fig. 6. MYBL2 represses the transcriptional self-activation of PAP1. (A) Putative MYB binding sites in the PAP1 and PAP2 promoter regions. ATG, start codon; MBS, MYB binding site; TSS, transcription start site. (B) Schematic diagrams of the effector and reporter constructs for the dual-luciferase and GUS reporter assays. (C-F) The relative transcription activities of PAP1 and PAP2 promoters in the dual-luciferase (C, E) and GUS (D, F) reporter assays.

(G, H) The relative transcription activities of the *DFR* promoter in the dual-luciferase (G) and *GUS* (H) reporter assays. The transcription activities of the indicated promoters co-infiltrated with different effectors are indicated as the relative LUC/REN ratio (C, E, G) and the relative *GUS* expression normalized to *NPTII* (D, F, H). The empty vector (EV) was used as the control effector. The values are means \pm SD of three biological replicates. Identical letters indicate no significant differences ($P \ge 0.05$), while different letters indicate significant differences (P < 0.05) among corresponding groups, as determined by one-way ANOVA with Duncan's test.

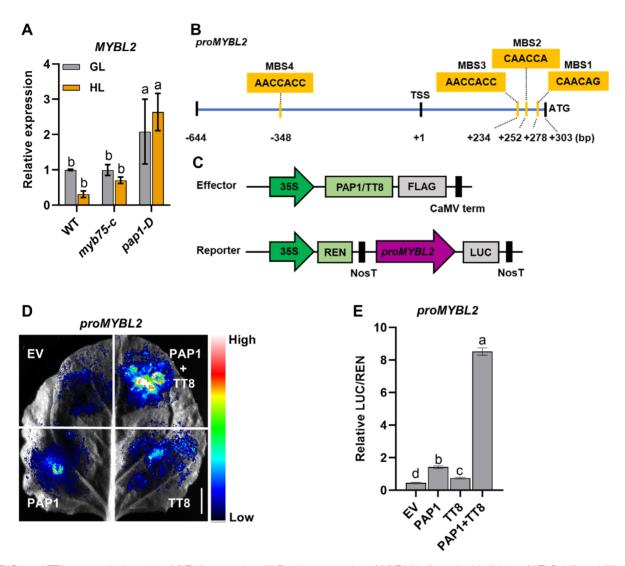


Fig. 7. PAP1 and TT8 cooperatively activate MYBL2 expression. (A) Relative expression of MYBL2 in 3-week-old wild type (WT, CoI-0), myb75-c, and pap1-D plants under continuous growth light (80 μ mol photons m⁻² s⁻¹) and high light (1200 μ mol photons m⁻² s⁻¹) for 3 h. MYBL2 expression level in WT plants under growth light was set as 1. UBQ10 was used as the reference gene. The values are means \pm SD of three biological replicates. (B) Putative MYB binding sites in the MYBL2 promoter region. ATG, start codon; MBS, MYB binding site; TSS, transcription start site. (C) Schematic diagrams of the effector and reporter constructs in the dual-luciferase reporter assays. (D, E) The luciferase image (D) and the relative transcription activities (E) of the MYBL2 promoter co-infiltrated with indicated effectors. The empty vector (EV) was used as the control effector. Scale bar in (D): 1 cm. The values (E) are means \pm SD of three biological replicates. Identical letters indicate no significant differences ($P \ge 0.05$), while different letters indicate significant differences ($P \ge 0.05$) among corresponding groups, as determined by one-way ANOVA with Duncan's test. GL, growth light; HL, high light.

and regulatory genes require further investigation. For instance, besides the COP1/SPA–HY5 pathway, the precise roles of photoreceptors in anthocyanin accumulation and the expression of anthocyanin-related genes remain to be elucidated. Strikingly, the transcription levels of *DFR* and *TT19* were significantly decreased in *mybl2 myb75-c* plants compared with that in *mybl2*,

and their expression was markedly reduced in *MYBL2-OE* pap1-D plants in comparison with that in pap1-D (Fig. 2D, E), suggesting that MYBL2 not only inhibits PAP1 transcription but also represses the transcriptional activation ability of PAP1 on its target genes like DFR and TT19. Collectively, our results from the phenotypic and transcriptional regulation analyses

indicate that MYBL2-mediated repression of anthocyanin production is dependent on PAP1 function, encompassing both PAP1 transcription and its activation of target genes.

The interaction between MYBL2 and PAP1/2

Protein interactions provide another essential regulatory level for anthocyanin biosynthesis and accumulation. The R2R3-MYB TFs PAP1, PAP2, MYB113, and MYB114, the bHLH TFs TT8, GL3, and EGL3, and the WD40 protein TTG1 have been reported to form the MBW complex through alternative protein interactions (Borevitz et al., 2000; Baudry et al., 2004; Koes et al., 2005; Ramsay and Glover, 2005; Gonzalez et al., 2008; Dubos et al., 2010). The MBW complex plays a central role in controlling LBGs and anthocyanin biosynthesis. Numerous other proteins have been characterized as interactors of the MBW components to modulate the activity of the MBW complex, thereby participating in regulating anthocyanin biosynthesis. For example, MAP kinase 4 (MPK4), SAP and Miz 1 (SIZ1), TEOSINTE BRANCHED 1, CYCLOIDEA AND PCF TRANSCRIPTION FACTOR 3 (TCP3) and GOLDEN2-LIKE 1 (GLK1) interact with PAP1 and enhance stability of the MBW complex (Li and Zachgo, 2013; S. Li et al., 2016; Zheng et al., 2020; Y. Li et al., 2023a), whereas COP1, HOMEOBOX ARABIDOPSISTHALIANA 1 (HAT1), PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), and EAR MOTIF-CONTAINING ADAPTOR PROTEIN (ECAP) reduce stability of the MBW complex by interacting with PAP1 (Maier et al., 2013; Zheng et al., 2019; Li et al., 2022; Qin et al., 2022). A recent study has demonstrated that the R2R3-MYB repressor MYB30 directly represses PAP1 transcription and interacts with PAP1 to disrupt the MBW complex assembly (H. Zhou et al., 2023). Several other R2R3-MYB repressors, MYB4/7/32 and PhMYB27, as well as R3-MYB proteins MYBL2, CPC, and PhMYBx, competitively interact with the bHLH components rather than the R2R3-MYBs, and inhibit the formation and activity of the MBW complex (Dubos et al., 2008; Matsui et al., 2008; Zhu et al., 2009; Albert et al., 2014; Zhang et al., 2019; Wang et al., 2020; Zhao et al., 2023). However, petunia R2R3-MYB activator DEEP PURPLE (DPL) failed to interact with the R2R3-MYB repressor PhMYB27 in yeast, unless unlabelled bHLH proteins JAF13 or AN1 were provided as bridging factors (Albert et al., 2014). In contrast, only a limited number of MYBL2-interacting proteins have been identified. In addition to the bHLH subunits of the MBW complex such as TT8, GL3, and EGL3 (Dubos et al., 2008; Matsui et al., 2008), DELLA proteins directly sequester MYBL2 and repress its activity, thereby facilitating the MBW complex formation and promoting subsequent anthocyanin biosynthesis and accumulation under abiotic stresses (Xie et al., 2016). APETALA2 (AP2) not only transcriptionally activates MYBL2 expression but also physically interacts with MYBL2 protein to form an AP2-MYBL2-TT8/EGL3 complex, thus disrupting MBW complex assembly and repressing proanthocyanidin biosynthesis in seeds (Jiang et al., 2024).

Here, we evidenced that the R3-MYB repressor MYBL2 interacts with the R2R3-MYB activators PAP1/2 in both Y2H and BiFC assays (Fig. 3). This finding differs from the DPL-PhMYB27 interaction that necessitates the bHLH proteins (Albert et al., 2014). One possible explanation for this discrepancy is that PhMYB27, an R2R3-MYB repressor, and MYBL2 exhibit significant differences in their amino acid sequences, sharing only 33.48% similarity, although the R2R3-MYB activator DPL and PAP1/2 display a relatively higher similarity (Supplementary Fig. S4). Phylogenetic analysis further revealed that PhMYB27 belongs to the FaMYB1-like type MYB repressors, while MYBL2 belongs to the AtMYBL1-like clade (Aharoni et al., 2001; Yan et al., 2021). A previous study has shown that the interaction between PAP1 and HAT1 requires its R2 domain and the C-terminal region (Zheng et al., 2019). In our case, the interaction between MYBL2 and PAP1/2 relies on the R2R3 domain of PAP1/2. Notably, there is a slight difference between PAP1 and PAP2 in the interaction with MYBL2 (Fig. 4C). On another note, we found that the C-terminal region of MYBL2 is essential for its interactions with PAP1/2 (Fig. 4B), consistent with its interactions with RGA1 and AP2 (Xie et al., 2016; Jiang et al., 2024), while its N-terminal fragment is required for the binding with TT8 (Matsui et al., 2008; Jiang et al., 2024). Given that the interactions between PAP1/2 and MYBL2 are mediated by their R2R3 domains conserved in various R2R3-MYB proteins (Fig. 4), it remains unclear whether other MYBs also interact with MYBL2, or if these specific domains/regions are crucial for such interactions. Conducting Y2H screening and immunoprecipitation-mass spectrometry using intact or truncated MYBL2 may provide insights into these unanswered questions.

Previous studies have demonstrated that the COP1/SPA complex interacts with PAP1/2 and regulates the degradation of PAP1/2 through ubiquitination mediated by the 26S proteasome (Maier et al., 2013). Similarly, it has been reported that a Kelch domain-containing F-box protein, KFB^{CĤS}, interacts with CHS and promotes its ubiquitination and degradation (Zhang et al., 2017). Here, we discovered that the interactions between MYBL2 and PAP1/2 repress their activation of PAP1/2 on DFR and TT19 transcription. Surprisingly, their interactions with MYBL2 remarkably diminish the transcription self-activation of PAP1 but not of PAP2 (Fig. 6), which may be attributed to their sequence and functional divergence. Taken together, these findings elucidate the diversity and complexity of protein interactions involved in regulating anthocyanin biosynthesis and accumulation.

A feedback regulatory module comprising MYBL2, PAP1, and TT8 fine-tunes high light-induced anthocyanin biosynthesis

Plants have evolved intricate positive and negative feedback regulatory mechanisms to modulate anthocyanin biosynthesis in response to dynamic developmental and environmental cues (Baudry et al., 2006; Petroni and Tonelli, 2011; Gao et al., 2021). In Arabidopsis, both the R2R3-MYB component PAP1 and the bHLH component TT8 can activate TT8 transcription (Tohge et al., 2005; Baudry et al., 2006). Here, we observed a remarkable up-regulation of TT8 transcription in pap1-D plants (Fig. 1D). Furthermore, we provided evidence supporting the induction of its own expression by PAP1 (Fig. 6), while PAP2 transcription remains unaffected by PAP2, TT8, or MYBL2 (Figs 1D, 6; Matsui et al., 2008; Xie et al., 2016), despite the promotion effect on PAP1/2 transcription by high light. A recent study demonstrated that BRASSINAZOLE RESISTANT 1 (BZR1), a brassinosteroid-responsive transcription factor, promotes PAP1 transcription and directly interacts with PAP1, thereby cooperatively regulating the expression of anthocyanin biosynthetic genes and anthocyanin accumulation (Lee et al., 2024). The reciprocal regulation among MBW components, along with hierarchical control over anthocyanin biosynthetic genes, may establish positive feedback loops triggering MBW complex assembly for rapid anthocyanin accumulation in response to environmental changes.

On the contrary, TT8 facilitates the transcription of MYBL2; MYBL2, in turn, directly represses the expression of TT8 and PAP1, thereby inhibiting the formation and activity of the MBW complex (Figs 1D, 6, 7; Matsui et al., 2008). In the regulation of sugar-induced anthocyanin biosynthesis, PAP1 transcription is activated by sugars like sucrose, and expressed PAP1 positively regulates TAS4 transcription; as feedback, increased TAS4 transcription elevates TAS4-siR81(-) abundance, which down-regulates PAP1, PAP2, and MYB113 (Luo et al., 2012). Under low sucrose conditions, MYB30 directly represses PAP1 transcription and interacts with PAP1 to disrupt MBW complex formation; however, when sucrose induces PAP1 transcription, the expressed PAP1 activates the transcription of a ubiquitin E3 ligase gene RHA2b that degrades MYB30, thus releasing PAP1 to promote anthocyanin biosynthesis in response to high sucrose (H. Zhou et al., 2023). Another study revealed that SNF1-related kinase 1 (SnRK1) represses sucrose-induced anthocyanin biosynthesis by suppressing PAP1 expression but inducing MYBL2 transcription. Additionally, SnRK1 directly interacts with and phosphorylates PAP1, bHLH2, and TTG1, resulting in impaired MBW complex formation. Nevertheless, sucrose reduces SnRK1 expression and relieves its repression on the MBW complex (Broucke et al., 2023). In the absence of gibberellin or under abiotic stresses, accumulated DELLA proteins sequester MYBL2 and JAZs, releasing their inhibition of the MBW complex, leading to the formation of MBW complex and the activation of anthocyanin biosynthesis (Xie et al., 2016). A more recent study revealed that WRKY33 represses DFR expression and anthocyanin biosynthesis through directly binding to the DFR promoter as well as interacting with PAP1 and disturbing the assembly of MBW complex under phosphorus-sufficient conditions (Tao et al., 2024).

In this study, we discovered that high light-induced anthocyanin biosynthesis involves the repression of MYBL2 expression and the up-regulation of MBW components such as PAP1,

PAP2, and TT8 (Fig. 1). Strikingly, we revealed that PAP1, but not PAP2, collaborates with TT8 to promote MYBL2 expression (Fig. 7); however, MYBL2 negatively regulates transcription of PAP1 and TT8 as feedback (Fig 1D). Notably, the promotion of MYBL2 expression by PAP1 seems effective only at high PAP1 levels, as MYBL2 expression was increased in pap1-D plants, but remained unchanged in myb75-c plants under both growth light and high light conditions (Fig. 7A). In petunia, two repressor genes, *PhMYB27* and *PhMYBx*, were found to inhibit AN1 transcription, despite being activated by AN1 and the MBW complex (Quattrocchio et al., 1998; Spelt et al., 2000; Albert et al., 2014). In soybean, GmMYBA2 along with GmTT8a form a positive complex that activates the expression of the MYB repressor gene GmMYBR; subsequently, expressed GmMYBR competitively interacts with GmTT8a, thereby interfering with the activity of the GmMYBA2-GmTT8a complex and inhibiting seed coat pigmentation (Gao et al., 2021). These negative feedback loops between MYB repressors and the MBW activation complex may function as a 'rheostat' to prevent excessive anthocyanin accumulation and maintain normal growth and development. The conserved hierarchical and feedback regulatory networks comprising the MBW components, activators, and repressors probably play crucial roles in controlling anthocyanin production.

Based on the integration of previous findings and our results, we propose a working model to elucidate the regulation of anthocyanin production in response to light intensity. This model highlights the pivotal role of MYBL2 and the MBW components PAP1 and TT8, as a core regulatory module. Under low-intensity light conditions, MYBL2 transcription is activated, and the expressed MYBL2 protein simultaneously represses the expression of PAP1 and TT8. Moreover, MYBL2 physically interacts with TT8 and/or PAP1, thereby disrupting MBW complex formation and inhibiting transcription activation of anthocyanin biosynthetic genes, resulting in restricted anthocyanin production (Fig. 8A). Conversely, high light irradiation suppresses MYBL2 expression, which alleviates the repression effects on PAP1 and TT8 transcription as well as their protein activities. Consequently, expressed PAP1 and TT8 proteins facilitate MBW complex assembly, thereby promoting the expression of anthocyanin biosynthetic genes and enhancing anthocyanin production, which aids plants in adapting to high light stress (Fig. 8B). When plants produce adequate anthocyanins or have high expression levels of PAP1, PAP1 and TT8 cooperatively trigger MYBL2 transcription; MYBL2, in turn, reduces the expression of both PAP1 and TT8 and impairs MBW complex formation, serving as a 'brake' to prevent anthocyanin overproduction and to maintain normal growth (Fig. 8B). The dynamic hierarchical and feedback regulation between MYBL2 and PAP1/TT8 allows plants to rapidly, precisely, and flexibly modulate anthocyanin biosynthesis under varying light conditions. Moreover, it is worth noting that additional factors including HY5, HY5-induced MYBD and miR858a, DELLAs, AP2, and SnRK1 may contribute to

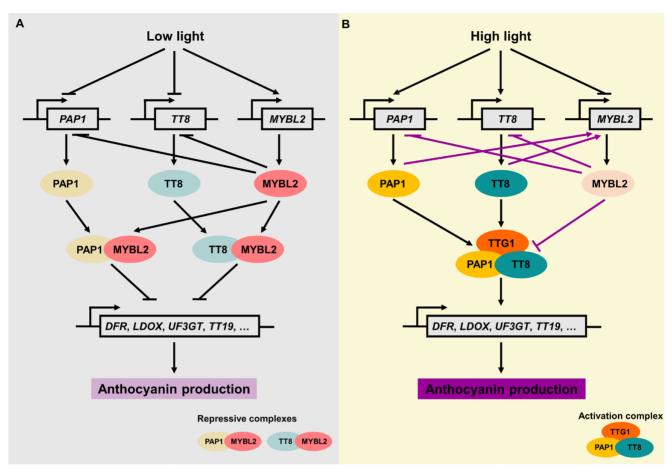


Fig. 8. A possible working model for the MYBL2-PAP1 regulatory module in high light-induced anthocyanin biosynthesis and accumulation. Dynamic anthocyanin production in response to varying light conditions is predominantly controlled by the antagonistic activities between the MYBL2 repressor and the MBW activation complex. (A) Under low light. MYBL2 represses the transcription of PAP1 and TT8, and directly interacts with PAP1 and TT8 proteins, thereby disrupting the MBW complex assembly and inhibiting the transcription of anthocyanin biosynthetic genes, resulting in restricted anthocyanin production. (B) Upon high light irradiation, MYBL2 transcription is repressed, while the expression of PAP1 and TT8 is activated. Expressed PAP1 and TT8 proteins promote the assembly of the MBW complex and trigger the transcription of anthocyanin biosynthetic genes, leading to anthocyanin biosynthesis and accumulation, which enhances plant tolerance to high light stress. Under excessive anthocyanin accumulation or high PAP1 expression level, PAP1 and TT8 cooperatively activate MYBL2 transcription; as feedback, expressed MYBL2 represses the transcription of PAP1 and 778 and impairs MBW complex formation, thus preventing anthocyanin over-accumulation and maintaining the balance between growth and high light response. Dashed lines represent possible but unvalidated regulations, solid lines indicate confirmed regulations, and purple lines suggest regulations occurring only under excessive anthocyanin production. DFR, DIHYDROFLAVONOL 4-REDUCTASE; LDOX, LEUCOANTHOCYANIDIN DIOXYGENASE; MBW, MYB-bHLH-WD40; MYBL2, MYB-LIKE 2; PAP1, PRODUCTION OF ANTHOCYANIN PIGMENT 1; TT8, TRANSPARENT TESTA 8 (TT8); TT19, TRANSPARENT TESTA 19; TTG1, TRANSPARENT TESTA GLABRA 1; UF3GT, ANTHOCYANIDIN UDP-GLUCOSE:FLAVONOID 3-O-GLUCOSYLTRANSFERASE.

regulating MYBL2 expression, whereas the transcription regulation of PAP1 may be associated with HY5, TAS4-siR81(-), MYB30, BZR1 and WRKY33 (Supplementary Fig. S5). However, several key issues need to be addressed, such as the precise response of MYBL2 and PAP1 expression to varying illumination intensity, the threshold values of anthocyanin content and PAP1/TT8 expression levels triggering the reactivation of MYBL2 under specific high light conditions, and the interplay between light and other environmental cues in modulating anthocyanin biosynthesis, among others.

Supplementary data

The following supplementary data are available at *IXB* online. Fig. S1. Relative expression of two validated reference genes,

UBQ10 and ACTIN2 under different light conditions.

Fig. S2. Relative expression of PAP2 in different plants under continuous growth light (80 µmol photons m⁻² s⁻¹) and high light (1200 μmol photons m⁻² s⁻¹) for 3 h.

Fig. S3. Putative G-box motifs in the *PAP1* promoter regions. Fig. S4. Multiple sequence alignment of MYBL2, PhMYB27, PAP1, PAP2, and DPL.

Fig. S5. An integrative model for the regulation of high light-induced anthocyanin biosynthesis and accumulation by the MYBL2–PAP1 module and other regulators.

Table S1. Primers used in this study.

Acknowledgements

We thank Dr Jirong Huang (Shanghai Normal University) for kindly providing seeds of *mybl2* (SALK_ 126807) and *MYBL2-OE* lines. We thank Dr Honghui Lin and Dr Dawei Zhang (Sichuan University) for kindly providing seeds of *myb75-c* and *pap1-D* mutants. We thank Dr Xiang Gao (Northeast Normal University) for kindly providing seeds of *Nicotiana tabacum* K326. We thank Dr Yanjie Zhang (Zhengzhou University) for generously providing the pBI121 plasmid and for his valuable advice and helpful comments.

Author contributions

XZ, KC, and MX conceived and designed the research; MX performed most of the experiments; PX, YW, CH, CL, WH, YZ, and XYZ performed some of the experiments; XZ, KC, and MX analysed the data; MX wrote the manuscript; XZ, KC, and MX revised the paper. All authors participated in this research and approved the final draft of the paper.

Conflict of interest

The authors have no conflicts of interest to declare.

Funding

This work was supported by the National Natural Science Foundation of China (32070262) and the Zhongyuan Scholar Workstation Funded Project of Henan Province in China (234400510004).

Data availability

All data generated or analysed during this study are included in this article and its supplementary data.

References

Aharoni A, De Vos CH, Wein M, Sun Z, Greco R, Kroon A, Mol JN, O'Connell AP. 2001. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. The Plant Journal 28, 319–332.

Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo H, Jameson PE, Schwinn KE. 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell **26**, 962–980.

Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, Davies KM. 2009. Light-induced vegetative anthocyanin pigmentation in *Petunia*. Journal of Experimental Botany **60**, 2191–2202.

Albert NW, Lewis DH, Zhang H, Schwinn KE, Jameson PE, Davies KM. 2011. Members of an R2R3-MYB transcription factor family in *Petunia* are developmentally and environmentally regulated to control

complex floral and vegetative pigmentation patterning. The Plant Journal **65.** 771–784.

An JP, Zhang XW, Bi SQ, You CX, Wang XF, Hao YJ. 2020. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. The Plant Journal **101**, 573–589.

Araguirang GE, Richter AS. 2022. Activation of anthocyanin biosynthesis in high light – what is the initial signal? New Phytologist **236**, 2037–2043.

Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T. 2007. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant and Cell Physiology **48**, 958–970.

Baudry A, Caboche M, Lepiniec L. 2006. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in *Arabidopsis thaliana*. The Plant Journal **46**, 768–779.

Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L. 2004. TT2, TT8, and TTG1 synergistically specify the expression of *BANYULS* and proanthocyanidin biosynthesis in *Arabidopsis thaliana*. The Plant Journal **39**, 366–380.

Bayle V, Nussaume L, Bhat RA. 2008. Combination of novel green fluorescent protein mutant TSapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay. Plant Physiology **148**, 51–60.

Bhatia C, Gaddam SR, Pandey A, Trivedi PK. 2021. COP1 mediates light-dependent regulation of flavonol biosynthesis through HY5 in Arabidopsis. Plant Science **303**, 110760.

Bieza K, Lois R. 2001. An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiology **126**, 1105–1115.

Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C. 2000. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. The Plant Cell **12**, 2383–2394.

Broucke E, Dang TTV, Li Y, Hulsmans S, Van Leene J, De Jaeger G, Hwang I, Wim VDE, Rolland F. 2023. SnRK1 inhibits anthocyanin biosynthesis through both transcriptional regulation and direct phosphorylation and dissociation of the MYB/bHLH/TTG1 MBW complex. The Plant Journal 115, 1193–1213.

Cai HY, Zhang M, Chai MN, He Q, Huang XY, Zhao LH, Qin Y. 2019. Epigenetic regulation of anthocyanin biosynthesis by an antagonistic interaction between H2A.Z and H3K4me3. New Phytologist **221**, 295–308.

Carey CC, Strahle JT, Selinger DA, Chandler VL. 2004. Mutations in the *pale aleurone color1* regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. The Plant Cell 16, 450–464.

Cominelli E, Gusmaroli G, Allegra D, Galbiati M, Wade HK, Jenkins GI, Tonelli C. 2008. Expression analysis of anthocyanin regulatory genes in response to different light qualities in *Arabidopsis thaliana*. Journal of Plant Physiology **165**, 886–894.

Cone KC, Burr FA, Burr B. 1986. Molecular analysis of the maize anthocyanin regulatory locus *C1*. Proceedings of the National Academy of Sciences, USA **83**, 9631–9635.

Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L. 2008. MYBL2 is a new regulator of flavonoid biosynthesis in *Arabidopsis thaliana*. The Plant Journal **55**, 940–953.

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in *Arabidopsis*. Trends in Plant Science **15**, 573–581.

Fan D, Wang XQ, Tang XF, Ye X, Ren S, Wang DH, Luo KM. 2018. Histone H3K9 demethylase JMJ25 epigenetically modulates anthocyanin biosynthesis in poplar. The Plant Journal **96**, 1121–1136.

Gao R, Han T, Xun H, et al. 2021. MYB transcription factors GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean. Journal of Experimental Botany **72**, 4401–4418.

- Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53, 814-827.
- Goodrich J. Carpenter R. Coen ES. 1992. A common gene regulates pigmentation pattern in diverse plant species. Cell 68, 955-964.
- Grotewold E. 2006. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology 57, 761-780.
- Gu Z, Zhu J, Hao Q, et al. 2019. A novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression of PsCHS in tree peony (Paeonia suffruticosa). Plant & Cell Physiology
- Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 13.
- Jain BP, Pandey S. 2018. WD40 repeat proteins: signalling scaffold with diverse functions. The Protein Journal 37, 391-406.
- Jiang W, Yin Q, Liu J, Su X, Han X, Li Q, Zhang J, Pang Y. 2024. The APETALA2-MYBL2 module represses proanthocyanidin biosynthesis by affecting formation of the MBW complex in seeds of Arabidopsis thaliana. Plant Communications 5, 100777.
- Kim J, Lee WJ, Vu TT, Jeong CY, Hong SW, Lee H. 2017. High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in *Brassica napus* L. Plant Cell Reports **36**. 1215-1224.
- Kitamura S. Shikazono N. Tanaka A. 2004. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. The Plant Journal 37, 104-114.
- Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10, 236-242.
- Lazarević B, Šatović Z, Nimac A, Vidak M, Gunjača J, Politeo O, Carović-Stanko K. 2021. Application of phenotyping methods in detection of drought and salinity stress in basil (Ocimum basilicum L.). Frontiers in Plant Science 12, 629441.
- Lee SH, Kim SH, Park TK, Kim YP, Lee JW, Kim TW. 2024. Transcription factors BZR1 and PAP1 cooperate to promote anthocyanin biosynthesis in Arabidopsis shoots. The Plant Cell 36, 3654-3673.
- Li C, Shi L, Li X, Wang Y, Bi Y, Li W, Ma H, Chen B, Zhu L, Fu Y. 2022. ECAP is a key negative regulator mediating different pathways to modulate salt stress-induced anthocyanin biosynthesis in *Arabidopsis*. New Phytologist **233**, 2216–2231.
- Li D, Ye G, Li J, Lai Z, Ruan S, Qi Q, Wang Z, Duan S, Jin HL, Wang HB. 2023. High light triggers flavonoid and polysaccharide synthesis through DoHY5-dependent signaling in Dendrobium officinale. The Plant Journal 115, 1114-1133.
- Li P, Chen B, Zhang G, Chen L, Dong Q, Wen J, Mysore KS, Zhao J. 2016. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytologist **210**. 905–921.
- Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, Yu HM, Hou BK. 2017. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. The Plant Journal 89, 85-103.
- Li S, Wang W, Gao J, Yin K, Wang R, Wang C, Petersen M, Mundy J, Qiu JL. 2016. MYB75 phosphorylation by MPK4 is required for lightinduced anthocyanin accumulation in Arabidopsis. The Plant Cell 28,
- Li S, Zachgo S. 2013. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. The Plant Journal 76, 901-913.
- Li Y, Lei W, Zhou Z, Li Y, Zhang D, Lin H. 2023a. Transcription factor GLK1 promotes anthocyanin biosynthesis via an MBW complex-dependent pathway in Arabidopsis thaliana. Journal of Integrative Plant Biology 65, 1521-1535.

- Li Y, Xing M, Yang Q, et al. 2023b. SmCIP7, a COP1 interactive protein, positively regulates anthocyanin accumulation and fruit size in egoplant. International Journal of Biological Macromolecules 234, 123729.
- Liao HS. Yang CC. Hsieh MH. 2022. Nitrogen deficiency- and sucrose-induced anthocyanin biosynthesis is modulated by HISTONE DEACETYLASE15 in Arabidopsis. Journal of Experimental Botany 73, 3726-3742
- Lim SH, Kim DH, Lee JY. 2022. RsTTG1, a WD40 protein, interacts with the bHLH transcription factor RsTT8 to regulate anthocyanin and proanthocyanidin biosynthesis in Raphanus sativus. International Journal of Molecular Sciences 23. 11973.
- Ludwig SR, Habera LF, Dellaporta SL, Wessler SR. 1989. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proceedings of the National Academy of Sciences, USA 86, 7092-7096.
- Luo QJ, Mittal A, Jia F, Rock CD. 2012. An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Molecular Biology 80, 117-129.
- Maier A, Schrader A, Kokkelink L, Falke C, Welter B, Iniesto E, Rubio V, Uhrig JF, Hülskamp M, Hoecker U. 2013. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. The Plant Journal 74, 638-651.
- Matsui K, Umemura Y, Ohme-Takagi M. 2008. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The Plant Journal 55, 954-967.
- Miller R, Owens SJ, Rørslett B. 2011. Plants and colour: Flowers and pollination. Optics & Laser Technology 43, 282-294.
- Naing AH, Kim CK. 2021. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiologia Plantarum 172. 1711-1723.
- Nakabayashi R. Yonekura-Sakakibara K. Urano K. et al. 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. The Plant Journal 77, 367-379.
- Nguyen NH, Jeong CY, Kang GH, Yoo SD, Hong SW, Lee H. 2015. MYBD employed by HY5 increases anthocyanin accumulation via repression of MYBL2 in Arabidopsis. The Plant Journal 84, 1192–1205.
- Petroni K, Pilu R, Tonelli C. 2014. Anthocyanins in corn: a wealth of genes for human health. Planta 240, 901-911.
- Petroni K, Tonelli C. 2011. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science 181, 219-229.
- Podolec R, Ulm R. 2018. Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Current Opinion in Plant Biology 45, 18-25
- Qin J, Zhao C, Wang S, Gao N, Wang X, Na X, Wang X, Bi Y. 2022. PIF4-PAP1 interaction affects MYB-bHLH-WD40 complex formation and anthocyanin accumulation in Arabidopsis. Journal of Plant Physiology 268, 153558.
- Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J, Koes R. 1999. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. The Plant Cell 11, 1433-1444.
- Quattrocchio F, Wing JF, van der Woude K, Mol JN, Koes R. 1998. Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. The Plant Journal 13, 475-488.
- Rahamkulov I. Bakhsh A. 2020. Tissue-specific and stress-inducible promoters establish their suitability for containment of foreign gene(s) expression in transgenic potatoes. 3 Biotech 10, 426.
- Ramsay NA, Glover BJ. 2005. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science 10, 63-70.
- Rao MJ, Xu Y, Huang Y, Tang X, Deng X, Xu Q. 2019. Ectopic expression of citrus UDP-GLUCOSYL TRANSFERASE gene enhances anthocyanin and proanthocyanidins contents and confers high light tolerance in Arabidopsis. BMC Plant Biology 19, 603.

- Rowan DD, Cao M, Lin-Wang K, et al. 2009. Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytologist 182, 102–115.
- Santos-Buelga C, Mateus N, De Freitas V. 2014. Anthocyanins. Plant pigments and beyond. Journal of Agricultural and Food Chemistry 62, 6879–6884.
- **Schmittgen TD, Livak KJ.** 2008. Analyzing real-time PCR data by the comparative C_T method. Nature Protocols **3**, 1101–1108.
- Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C. 2006. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus *Antirrhinum*. The Plant Cell **18**, 831–851.
- **Shao L, Shu Z, Sun S-L, Peng C-L, Wang X-J, Lin Z-F.** 2007. Antioxidation of anthocyanins in photosynthesis under high temperature stress. Journal of Integrative Plant Biology **49**, 1341–1351.
- **Shi Y, Ke X, Yang X, Liu Y, Hou X.** 2022. Plants response to light stress. Journal of Genetics and Genomics **49**, 735–747.
- Shin DH, Choi M, Kim K, Bang G, Cho M, Choi SB, Choi G, Park YI. 2013. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in *Arabidopsis*. FEBS Letters **587**, 1543–1547.
- **Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P.** 2006. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiology **140**, 637–646.
- **Spelt C, Quattrocchio F, Mol J, Koes R.** 2002. ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. The Plant Cell **14**, 2121–2135.
- **Spelt C, Quattrocchio F, Mol JN, Koes R.** 2000. *anthocyanin1* of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. The Plant Cell **12**, 1619–1632.
- Starkevič P, Paukštytė J, Kazanavičiūtė V, Denkovskienė E, Stanys V, Bendokas V, Šikšnianas T, Ražanskienė A, Ražanskas R. 2015. Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (*Prunus avium* L.) MYB10 and bHLH genes. PLoS One 10, e0126991.
- Starkevič P, Ražanskienė A, Starkevič U, Kazanavičiūtė V, Denkovskienė E, Bendokas V, Šikšnianas T, Rugienius R, Stanys V, Ražanskas R. 2020. Isolation and analysis of anthocyanin pathway genes from *Ribes* genus reveals MYB gene with potent anthocyanin-inducing capabilities. Plants **9**, 1078.
- Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR, Weisshaar B. 2010. Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in *Arabidopsis thaliana* plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytologist 188, 985–1000.
- **Su S, Lei Y, Zhou X, Suzuki T, Xiao W, Higashiyama T.** 2023. A BLADE-ON-PETIOLE orthologue regulates corolla differentiation in the proximal region in *Torenia fournieri*. Nature Communications **14**, 4763.
- **Sun Y, Li H, Huang JR.** 2012. *Arabidopsis* TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Molecular Plant **5**, 387–400.
- **Tao H, Gao F, Linying L, et al.** 2024. WRKY33 negatively regulates anthocyanin biosynthesis and cooperates with PHR1 to mediate acclimation to phosphate starvation. Plant Communications **5**, 100821.
- **Tohge T, Matsui K, Ohme-Takagi M, Yamazaki M, Saito K.** 2005. Enhanced radical scavenging activity of genetically modified *Arabidopsis* seeds. Biotechnology Letters **27**, 297–303.

- **Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J.** 2008. Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes *in planta*. The Plant Journal **56**, 505–516.
- Wang XC, Wu J, Guan ML, Zhao CH, Geng P, Zhao Q. 2020. *Arabidopsis* MYB4 plays dual roles in flavonoid biosynthesis. The Plant Journal **101**, 637–652
- **Wang Y, Wang Y, Song Z, Zhang H.** 2016. Repression of *MYBL2* by both microRNA858a and HY5 leads to the activation of anthocyanin biosynthetic pathway in *Arabidopsis*. Molecular Plant **9**, 1395–1405.
- Xie XB, Li S, Zhang RF, Zhao J, Chen YC, Zhao Q, Yao YX, You CX, Zhang XS, Hao YJ. 2012. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant, Cell & Environment 35, 1884–1897.
- **Xie Y, Tan H, Ma Z, Huang J.** 2016. DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in *Arabidopsis thaliana*. Molecular Plant **9**, 711–721.
- Xing Y, Sun W, Sun Y, Li J, Zhang J, Wu T, Song T, Yao Y, Tian J. 2023. MPK6-mediated HY5 phosphorylation regulates light-induced anthocyanin accumulation in apple fruit. Plant Biotechnology Journal 21, 283–301.
- Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science 20, 176–185.
- **Xu W, Grain D, Le Gourrierec J, et al.** 2013. Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of *TT8* expression in Arabidopsis. New Phytologist **198**, 59–70.
- Yan H, Pei X, Zhang H, Li X, Zhang X, Zhao M, Chiang VL, Sederoff RR, Zhao X. 2021. MYB-mediated regulation of anthocyanin biosynthesis. International Journal of Molecular Sciences 22, 3103.
- Yu L, Sun Y, Zhang X, Chen M, Wu T, Zhang J, Xing Y, Tian J, Yao Y. 2022. ROS1 promotes low temperature-induced anthocyanin accumulation in apple by demethylating the promoter of anthocyanin-associated genes. Horticulture Research 9, uhac007.
- **Zhang X, Abrahan C, Colquhoun TA, Liu CJ.** 2017. A proteolytic regulator controlling chalcone synthase stability and flavonoid biosynthesis in Arabidopsis. The Plant Cell **29**, 1157–1174.
- **Zhang Y, Li Y, Li W, Hu Z, Yu X, Tu Y, Zhang M, Huang J, Chen G.** 2019. Metabolic and molecular analysis of nonuniform anthocyanin pigmentation in tomato fruit under high light. Horticulture Research **6**, 56.
- **Zhao X, Li P, Zuo H, et al.** 2023. CsMYBL2 homologs modulate the light and temperature stress-regulated anthocyanin and catechins biosynthesis in tea plants (*Camellia sinensis*). The Plant Journal **115**, 1051–1070.
- Zheng T, Li Y, Lei W, Qiao K, Liu B, Zhang D, Lin H. 2020. SUMO E3 Ligase SIZ1 stabilizes MYB75 to regulate anthocyanin accumulation under high light conditions in Arabidopsis. Plant Science **292**, 110355.
- Zheng T, Tan W, Yang H, Zhang L, Li T, Liu B, Zhang D, Lin H. 2019. Regulation of anthocyanin accumulation via MYB75/HAT1/TPL-mediated transcriptional repression. PLoS Genetics 15, e1007993.
- **Zhou H, He J, Zhang Y, Zhao H, Sun X, Chen X, Liu X, Zheng Y, Lin H.** 2023. RHA2b-mediated MYB30 degradation facilitates MYB75-regulated, sucrose-induced anthocyanin biosynthesis in *Arabidopsis* seedlings. Plant Communications **5**, 100744.
- **Zhou Y, Zhang T, Wang X, et al.** 2023. A maize epimerase modulates cell wall synthesis and glycosylation during stomatal morphogenesis. Nature Communications **14**, 4384.
- **Zhu HF, Fitzsimmons K, Khandelwal A, Kranz RG.** 2009. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in *Arabidopsis*. Molecular Plant **2**, 790–802.