

epm
Therapeutics

Non-Confidential Deck

Investment Opportunity for an
Innovative Treatment
for Prader-Willi Syndrome

January 2026

EPM Overview

Biopharmaceutical company focused on proprietary small molecule therapeutics
to treat diseases with high unmet medical needs

1

Prader-Willi Syndrome

- Rare genetic condition ~ prevalence at birth; 1/15,000-30,000 worldwide
- Significant unmet need as no approved treatments
- Challenging management of hyperphagia leading to obesity and other clinical complications

2

EPM301 – Lead Program

- EPM301 is a first-in-class therapy for Prader-Willi Syndrome (PWS)
- Robust nonclinical package demonstrating potential comprehensive impact on PWS signs and symptoms (Hyperphagia, Anxiety, Daytime sleepiness)

3

Opportunity

- EPM is funding to progress IND-enabling program, FDA IND filing and Phase I clinical trial
- Multiple value inflection opportunities on the horizon

Prader-Willi Syndrome (PWS) Has High Unmet Need

Disease Characteristics

- ◆ A rare genetic disorder affecting development and growth
- ◆ Caused by genetic defect on Chromosome 15
- ◆ 20,000 patients in the US¹ and in Europe²

Signs & Symptoms

- ◆ Hyperphagia (excessive appetite): is the most debilitating symptom according to physicians and caregivers
- ◆ Growth: Short stature, intellectual disability
- ◆ Behavioral: anxiety, cognitive rigidity, irritability
- ◆ Sleep abnormalities

Unmet Need

- ◆ There is currently no cure and no approved disease-modifying therapies for Prader-Willi syndrome. Treatment is symptomatic but is suboptimal

EPM Overview

Biopharmaceutical company focused on proprietary small molecule therapeutics to treat diseases with high unmet medical needs

1

Prader-Willi Syndrome

- Rare genetic condition ~ prevalence at birth; 1/15,000-30,000 worldwide
- Significant unmet need as no approved treatments
- Challenging management of hyperphagia leading to obesity and other clinical complications

2

EPM301 – Lead Program

- EPM301 is a first-in-class therapy for Prader-Willi Syndrome (PWS)
- Robust nonclinical package demonstrating potential comprehensive impact on PWS signs and symptoms (Hyperphagia, Anxiety, Depression, Daytime sleepiness)

3

Opportunity

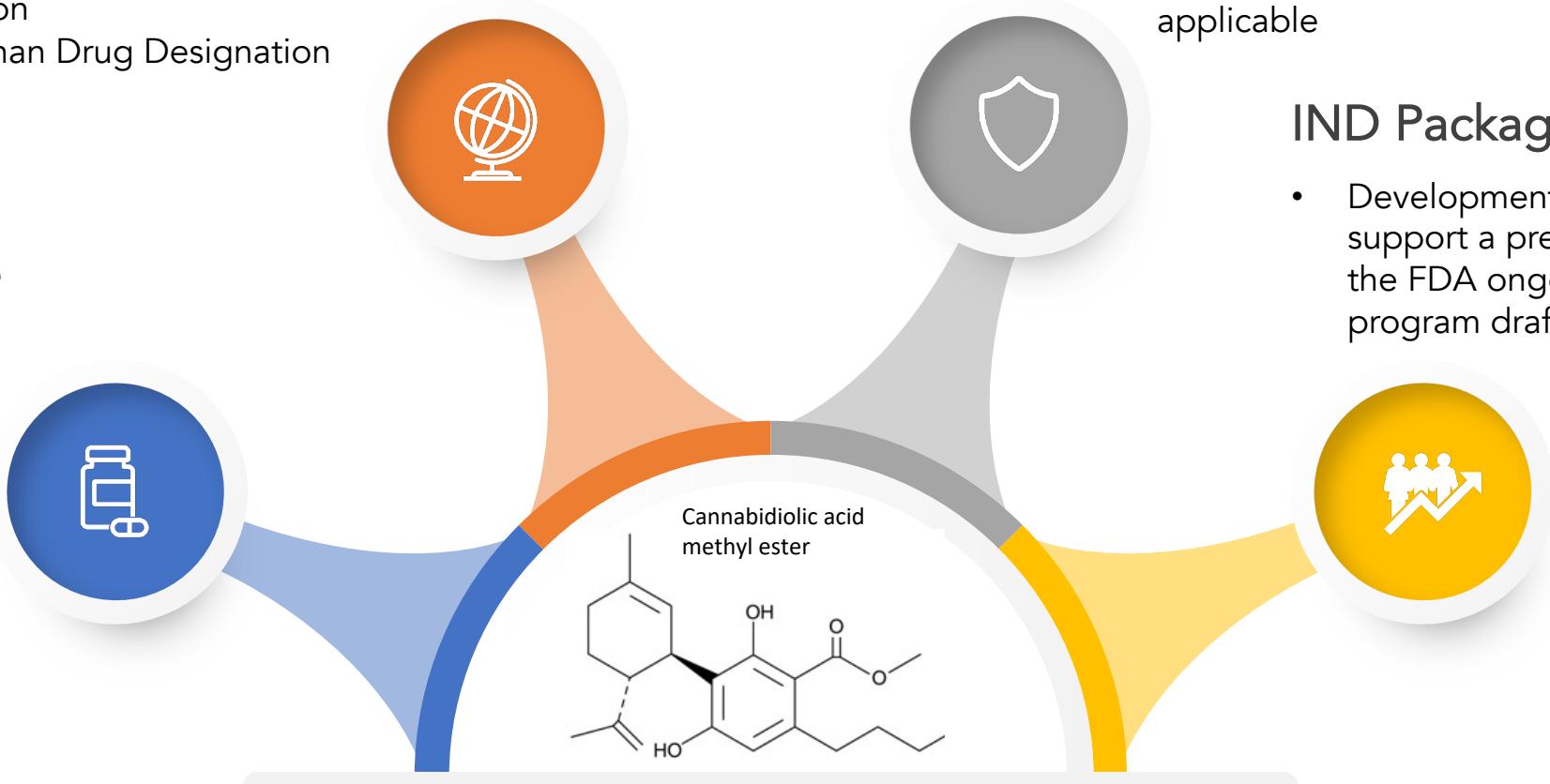
- EPM is funding to progress IND-enabling program, FDA IND filing and Phase I clinical trial
- Multiple value inflection opportunities on the horizon

EPM301 - Lead Program

Orphan Designations

- FDA Orphan Drug Designation
- FDA Rare Pediatric Disease Designation
- EMA Orphan Drug Designation

Oral Molecule


- Fully synthetic small molecule, being developed for oral administration

Patent Protected

- US patent protected through 2042 for use in the treatment of Prader-Willi Syndrome with expected patent extensions applicable

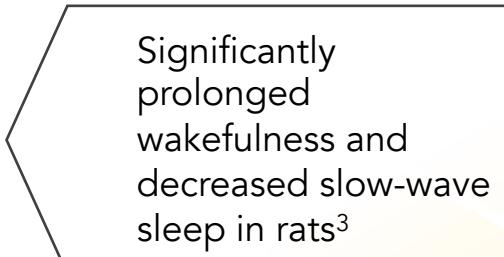
IND Package

- Development package to support a pre-IND meeting with the FDA ongoing, IND-enabling program drafted

An Effective Comprehensive Approach to PWS

01

Stable fully synthetic API in a novel oral formulation


02

Significantly reduces body weight and hyperphagia in a high-fat diet-fed *Mage1/2*^{null} mouse model¹

03

Significantly reduces stress-induced anxiety in rats²

04

Significantly prolonged wakefulness and decreased slow-wave sleep in rats³

05

Limited metabolism when incubated in cryopreserved hepatocytes in all species tested⁴

06

Different metabolic profile and superior oral bioavailability to CBD⁵

1. Ben-Cnaan, E et al. Int. J. Mol. Sci. 23, 5610-5626 (2022).
2. Pertwee, R et al. Brit. J. Pharm. 175 100-112 (2018)
3. Murillo-Rodriguez, E et al. Brain Res. Bulletin, 155, 166-173 (2020)
4. FPWR Conference, Atlanta, 25 September 2024
5. FPWR Conference, Atlanta, 25 September 2024

Efficacy in the *Mage12*^{null} Mouse Model of PWS

The therapeutic potential of EPM301 in appetite reduction, weight loss and metabolic improvements in genetic-induced obesity was studied in *Mage12*^{null} mice and C57Bl/6j wild type mice

- EPM301 (20 and 40 mg/kg/day, i.p. significantly reduced both body weight and hyperphagia in high-fat diet-fed *Mage12*^{null} mice compared to the wild type mice

Efficacy in Anxiety

The effect of EPM301 on anxiety-like responding was evaluated using the light-dark box emergence test following either foot shock stress or no foot shock stress in rats.

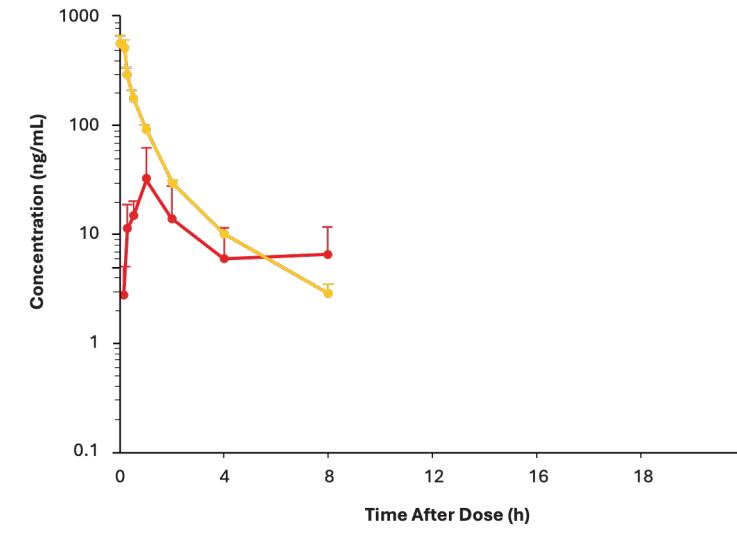
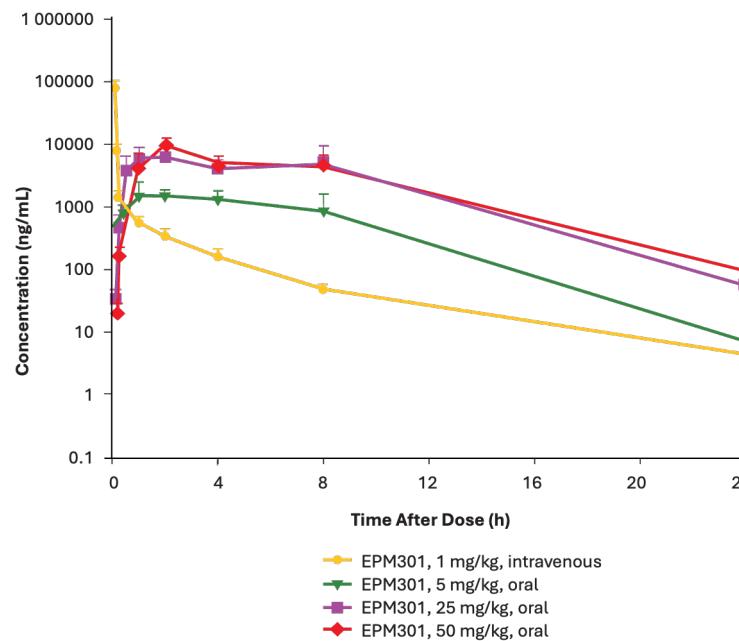
- EPM301 (0.01 μ g/kg, i.p.) significantly reversed the effect of foot shock on the anxiety-like responding of decreased time spent in the light box
- The ability of EPM301 to reduce foot shock enhancement of anxiogenic-like behavior is 5HT 1A receptor-mediated

Effects on Sleep-Wake Cycle

The effect of EPM301 on behavioral parameters, specifically on the sleep-wake cycle was investigated following systemic administration in rats.

- EPM301 dose-dependently (0.1, 1.0 or 100 μ g/kg, i.p.) prolonged wakefulness and decreased slow wave sleep whereas rapid eye movement sleep showed no statistical change
- EPM301 also enhanced extracellular levels of dopamine, and serotonin collected from the nucleus accumbens, while adenosine and acetylcholine were increased in the basal forebrain

Biotransformation *in vitro* is Highly Conserved Across Multiple Species



The *in vitro* biotransformation of EPM301 was investigated in rat, dog, minipig and human hepatocytes:

- The parent compound EPM301 accounted for 82.7% of the total peak area response in rat, 93.6% in dog, 81.2% in minipig and 85.5% in human
- EPM301 was metabolised *in vitro* with up to 14 metabolites detected across the species studied
- The most abundant metabolite was M13 followed by M9. The total peak area responses are shown below:

Peak	Identity	<i>m/z</i>	Rat	Dog	Minipig	Human
M13	EPM301+O	387.2177	4.0%	0.2%	5.0%	4.0%
M9	EPM301+C ₆ H ₈ O ₆	547.2549	0.2%	4.0%	3.3%	2.6%

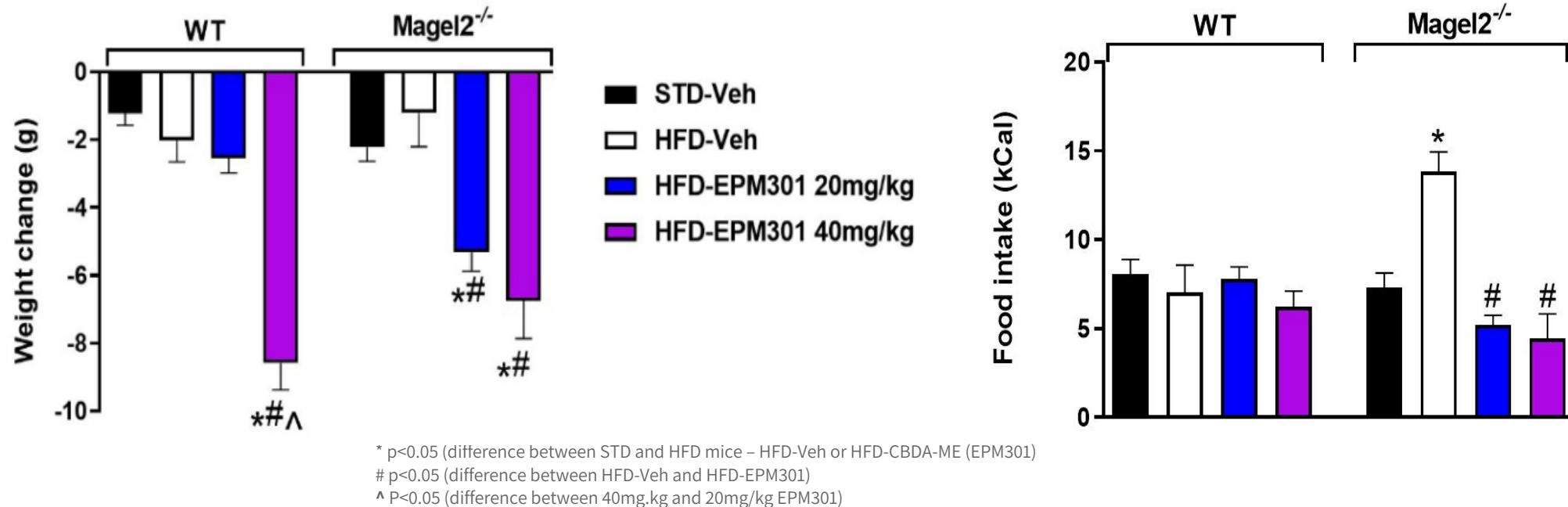
In comparison with CBD, where the major metabolites in rat, dog, and human liver microsomes and hepatocytes *in vitro* were 7-OH-CBD, 7-COOH-CBD, and 6-OH-CBD* the *in vitro* biotransformation of EPM301 is distinct and dramatically different

Pharmacokinetics of EPM301 and CBD following intravenous and oral administration

The pharmacokinetics of EPM301 and CBD following intravenous and oral administration were measured in rats, for up to 24 hours post dosing

- EPM301 does not appear to metabolize to CBD following either IV or oral administration
- The absolute bioavailability following oral dosing was significantly higher for EPM301 than for CBD with values of 37.4% versus 4.94% following dosing at 5 mg/kg

EPM301 Achievements


EPM CBD and CBG Analogues
Obesity

EPM CBD and CBG Analogues

EPM Name	Generic	New Chemical Entity
EPM-302	Reduced CBDa-Me 8,9-dihydro-CBD-Methyl ester	Yes
EPM-306	CBDa-Me (OMe)2 Di-Methoxy CBD-Methyl ester, CBDDa-Me	Yes
EPM-310	CBGa-Me (OMe)2 Di-Methoxy CBG-Methyl ester	Yes

Efficacy in the *Mage12*^{null} Mouse Model For Obesity

The therapeutic potential of EPM301 in appetite reduction, weight loss and metabolic improvements in genetic-induced obesity was studied in *Mage12*^{null} mice and C57Bl/6j wild type mice

- EPM301 (40 mg/kg/day, i.p.) successfully resulted in weight loss in diet induced obesity in wild type mice

EPM Overview

Biopharmaceutical company focused on proprietary small molecule therapeutics
to treat diseases with high unmet medical needs

1

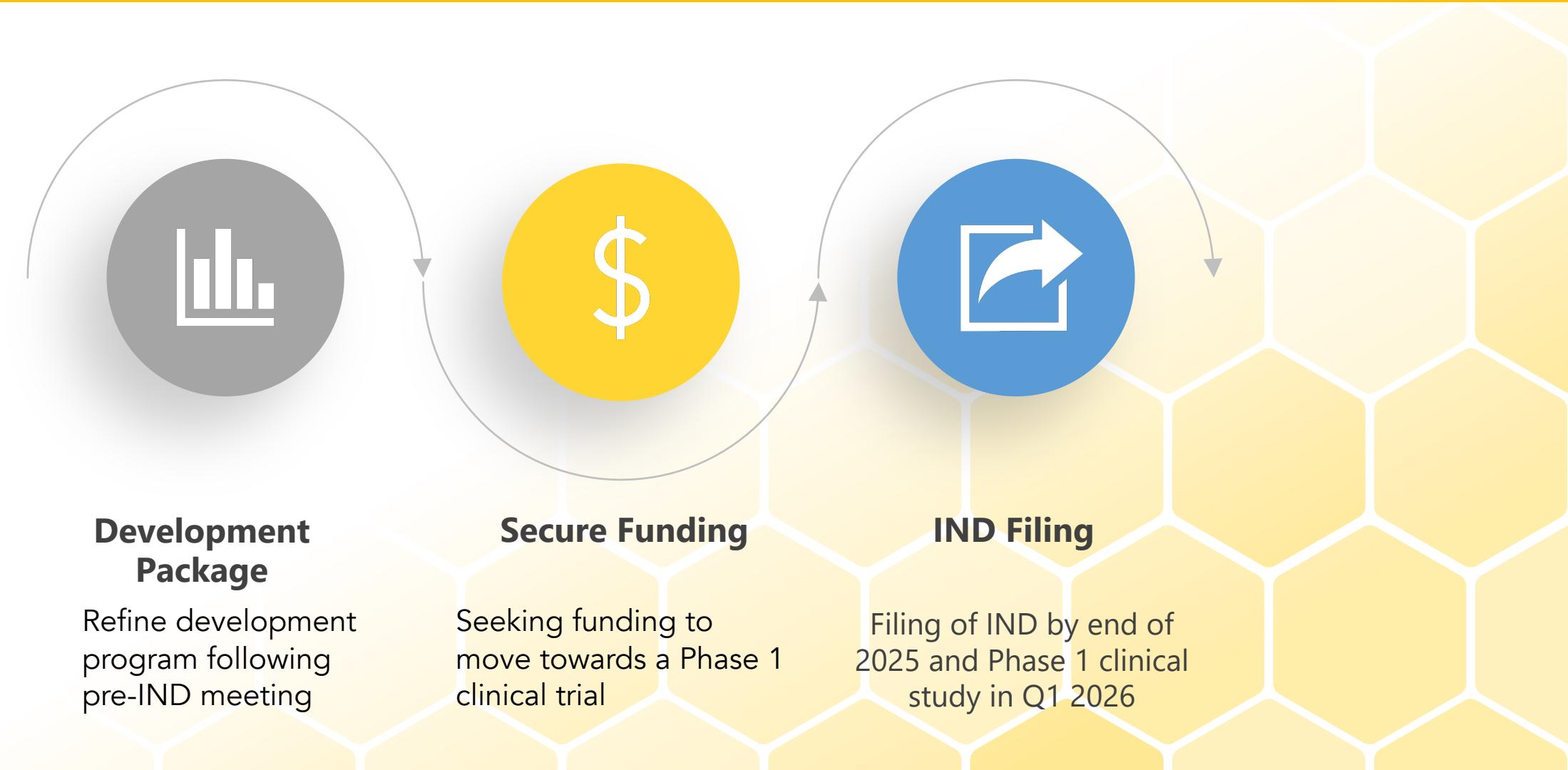
Prader-Willi Syndrome

- Rare genetic condition ~ prevalence at birth; 1/15,000-30,000 worldwide
- Significant unmet need as no approved treatments
- Challenging management of hyperphagia leading to obesity and other clinical complications

2

EPM301 – Lead Program

- EPM301 is a first-in-class therapy for Prader-Willi Syndrome (PWS)
- Robust nonclinical package demonstrating potential comprehensive impact on PWS signs and symptoms (Hyperphagia, Anxiety, Depression, Daytime sleepiness)


3

Opportunity

- EPM is funding to progress IND-enabling program, FDA IND filing and Phase I clinical trial
- Multiple value inflection opportunities on the horizon

The Opportunity – Seeking Funding

epm
Therapeutics

Non-Confidential Presentation

Investment Opportunity for an
Innovative Treatment
for Prader-Willi Syndrome

September 2025