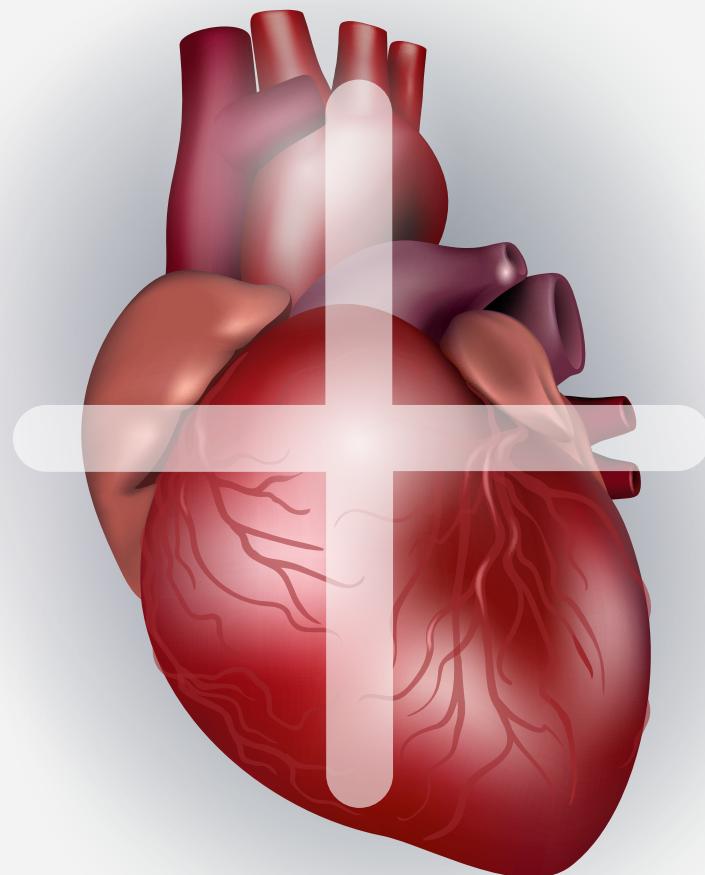


USER MANUAL


March 2023

VERSION 2.1

TruPlan™ Computed Tomography (CT) Imaging Software Application

WATCHMAN™ TruPlan™ software is developed and owned by Circle Cardiovascular Imaging Inc.(Calgary, AB, Canada), and Boston Scientific is the exclusive reseller of WATCHMAN™ TruPlan™ software.

© Copyright 2022 Circle Cardiovascular Imaging Inc.

The information contained herein is subject to change without notice. The only warranties for Circle products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Circle shall not be liable for technical or editorial errors or omissions contained herein.

00

REGULATORY INFORMATION

MANUFACTURED BY:

Circle Cardiovascular Imaging Inc. 1100,
800 5th Avenue SW Calgary, Alberta,
Canada, T2P 3T6

Telephone: 1 (587) 747-4692
Website: <http://www.circlecv.com>

FM 539204

Canada

Health Canada device license number:
105406

United States of America

The following 510K clearances applicable
for this product: K202212

Importer (UK)

Circle Cardiovascular Imaging UK Ltd.
Ty Menter Navigation Park, Abercynon,
Mountain Ash, Wales, CF45 4SN

Importer (EU)

Circle Cardiovascular Imaging B.V.
Singelstaete, Singel 250
1016 AB Amsterdam
The Netherlands

UDI-DI: 00882916000523

EUROPEAN UNION

TruPlan™ is qualified as a Class IIa device under
the European Union Medical device Regulation
(EU MDR) 2017/745, Annex VIII, Rule 10 and
Rule 11.

EU AUTHORIZED REPRESENTATIVE

QDossier B.V.
Julianalaan 11,
5141 GL Waalwijk,
Netherlands
euar@celegence.com

CH Authorized Representative

Arazy Group Swiss GmbH
Bruderholzallee 53
4059 Basel, Switzerland
swiss.ar@arazygroupp.com

IMPORTANT: US Federal law restricts this device to sale
by or on the order of a licensed healthcare practitioner.

RX Only

© Copyright 2022 Circle Cardiovascular Imaging Inc.

The information contained herein is subject to change without notice. The only warranties for Circle products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Circle shall not be liable for technical or editorial errors or omissions contained herein.

TABLE OF CONTENTS

00 Regulatory Information	14 Left Atrial Appendage (LAA) Workflow >
01 Regulatory >	14.1 Finding the LAA >
02 Glossary >	14.2 Placing the Landing Zone >
03 Indications for Use/Intended Use >	14.3 Intracardiac Ridge View >
04 Contraindications >	14.4 Sculpting >
05 Installation and Network Security >	15 TEE workflow >
06 General Warnings >	15.1 Fossa Ovali >
07 User System Requirements >	15.2 Superior Vena Cava (SVC) >
08 Basic Components, Functionality >	15.3 Inferior Vena Cava (IVC) >
09 Measurement Accuracy	15.4 Left Upper Pulmonary Vein (LUPV) >
10 Getting Started >	15.5 Remarks >
11 Working with the Study List >	15.6 Sizing Table, Virtual Device, Virtual Access Sheath >
11.1 Importing and Viewing Study Data >	15.7 Fusion Export >
11.2 Import Using "Drag and Drop" >	16 TEE workflow >
11.3 Alternative Import: Send to TruPlan™ Utility >	16.1 Defining the Esophagus >
11.4 Additional Study List Functionality >	16.2 TEE Simulation >
11.5 Additional Study List Functionality >	17 Intracardiac Echocardiography (ICE) Workflow >
12 Working with a PACS >	17.1 ICE Simulation >
13 Working with the Viewer >	18 Thrombus Workflow >
13.1 Standard mouse interaction >	18.1 Side by Side View >
13.2 Generic Tools and Layout >	19 MPR Module >
	19.1 Pixel Thresholding >
	19.1 MIP Box >
	20 Reporting >
	21 Screen Recorder >
	22 Support >

01

REGULATORY

Agency	Authorized Representative	Approval/Clearance Reference
Australia TGA ARTG	Australian Sponsor: KD&A Pty Ltd 286 Flinders Street Adelaide SA 5000	ARTG number: 381253
Health Canada	N/A	Health Canada device license number: 107386
India	Taevas Life Sciences Private Limited H.No: 2-3/AC/83, Aparna County, Behind Mathrusri Nagar Miyapur, Hyderabad-500049, India	SUGAM registration: CIRCLE-CAN/I/MD/004549
US FDA	N/A	TruPlan™ – 510k (K202212)

02

2. GLOSSARY

Term or Symbol	Definition
CT	Computed tomography: X-ray based three-dimensional medical imaging modality
DICOM	Digital Imaging and Communications in Medicine: standard for the communication and management of medical imaging information and related data
Fluoro	Fluoroscopy: continuous planar x-ray imaging
ICE	Intracardiac Echocardiography: Ultrasound based medical imaging technique
IVC	Inferior Vena Cava
LAA	Left Atrial Appendage
LAAC	Left Atrial Appendage Closure
MPR	Multiplanar Reformation or reconstruction
SVC	Superior Vena Cava
TEE	Transesophageal echocardiography: Ultrasound based medical imaging technique
Rx Only	US Federal law restricts this device to sale by or on the order of a licensed healthcare practitioner
	Warning Information: identifies potential hazards
	Manufacturer symbol: indicates the medical device manufacturer as defined in EU Directives 90/385/EEC, 93/42/EEC and 98/79/EC
	Important Information: identifies useful information
	Consult Instructions for Use: Indicates that the user shall read Instructions for Use
UDI	Unique Device Identifier (UDI): Indicates a carrier that contains Unique Device Identifier information
MD	Medical device: Indicates this product is a medical device
	Importer: To indicate the entity importing the medical device into the locale

03

INDICATIONS FOR USE/ INTENDED USE

TruPlan™ enables visualization and measurement of structures of the heart and vessels for pre-procedural planning and sizing for the left atrial appendage closure (LAAC) procedure.

To facilitate the above, TruPlan™ provides general functionality such as:

- Segmentation of cardiovascular structures
- Visualization and image reconstruction techniques: 2D review, Volume Rendering, MPR
- Simulation of TEE views, ICE views, and fluoroscopic rendering
- Measurement and annotation tools
- Reporting tools

TruPlan™'s intended patient population is comprised of adult patients.

04

CONTRAINDICATIONS

None known.

05

INSTALLATION AND NETWORK SECURITY

See TruPlan™ Installation and Configuration Guide.

06

GENERAL WARNINGS

WARNING:

- TruPlan™ should not be used for purposes other than those indicated in the Indications for Use/Intended Use section.
- Please review the patient and study information carefully to ensure the correct patient case is being evaluated.
- The TruPlan™ software is not intended to perform a diagnosis, nor to replace any duties of the physician.
- Measurements made in TruPlan™ should only provide additional information to, not replace, measurements made during the typical clinical workflow (e.g., intra-procedural imaging using fluoroscopy, TEE, and/or ICE).
- The Fluoro, TEE, and ICE modules provide simulated, not real, images of fluoroscopic, TEE, and ICE views, respectively.
- Quantitative analysis is dependent on the quality and correctness of the image source data (i.e. CT scans).
- Software may slow down when other software applications are being run on the same machine.
- OS system updates might require an updated version of TruPlan™ (see System Requirements).
- Any serious incident that has occurred in relation to this software as a medical device should be reported to the Circle Cardiovascular Imaging Inc. and the competent authority of the Member State in which you are established, see Support section for contact information.

07

USER SYSTEM REQUIREMENTS

The minimum system requirements for TruPlan™ are:

Requirement	Minimum Requirements
Operating System	Windows 10 and 11 64-bit, MacOS 10.15, 11.x, 12.x
Processor	Intel Core i5 or better, M1 for Apple
GPU	Intel HD 620 or better (dedicated GPU is recommended)
System RAM	8 GB (16 GB recommended)
Display	1920x1080

It is advised to download and install the latest GPU driver when using TruPlan™.

TruPlan™ is intended to be used after the decision to implant a LAA closure device is already made. It does not perform a diagnosis. TruPlan™ does not replace any part of the clinical workflow around the LAAC procedure, nor does it replace any part of what a physician does; it simply provides additional information and hence supports the preprocedural planning process.

The measurements made in TruPlan™ (including those in the simulated imaging modules) are either manual or user-modifiable and can only be performed as an overlay on MPR images as per good radiology practice. These measurements are not to be relied upon solely for LAAC procedural planning; users are to perform the required measurements on the anatomy, device (implant) sizing, etc. using currently accepted clinical methodology (e.g., intra-procedural transoesophageal echocardiography (TEE) or intracardiac echocardiography (ICE) in conjunction with fluoroscopy). If an incorrect measurement is performed using TruPlan™, the intra-procedural measurements via fluoroscopy, TEE, and/or ICE are available to the physician upon which they can make procedural decisions. Pre-procedural image processing using TruPlan™ is therefore adjunctive to the typical clinical workflow.

The simulated modalities (Fluoro, TEE and ICE) do not replace the real modalities during the procedure; only CT data is loaded into TruPlan™, and these CT images are modified to mimic the images physicians are used to seeing using fluoroscopy, TEE, and ICE. The modules containing simulations are clearly labelled as such.

08

BASIC COMPONENTS, FUNCTIONALITY

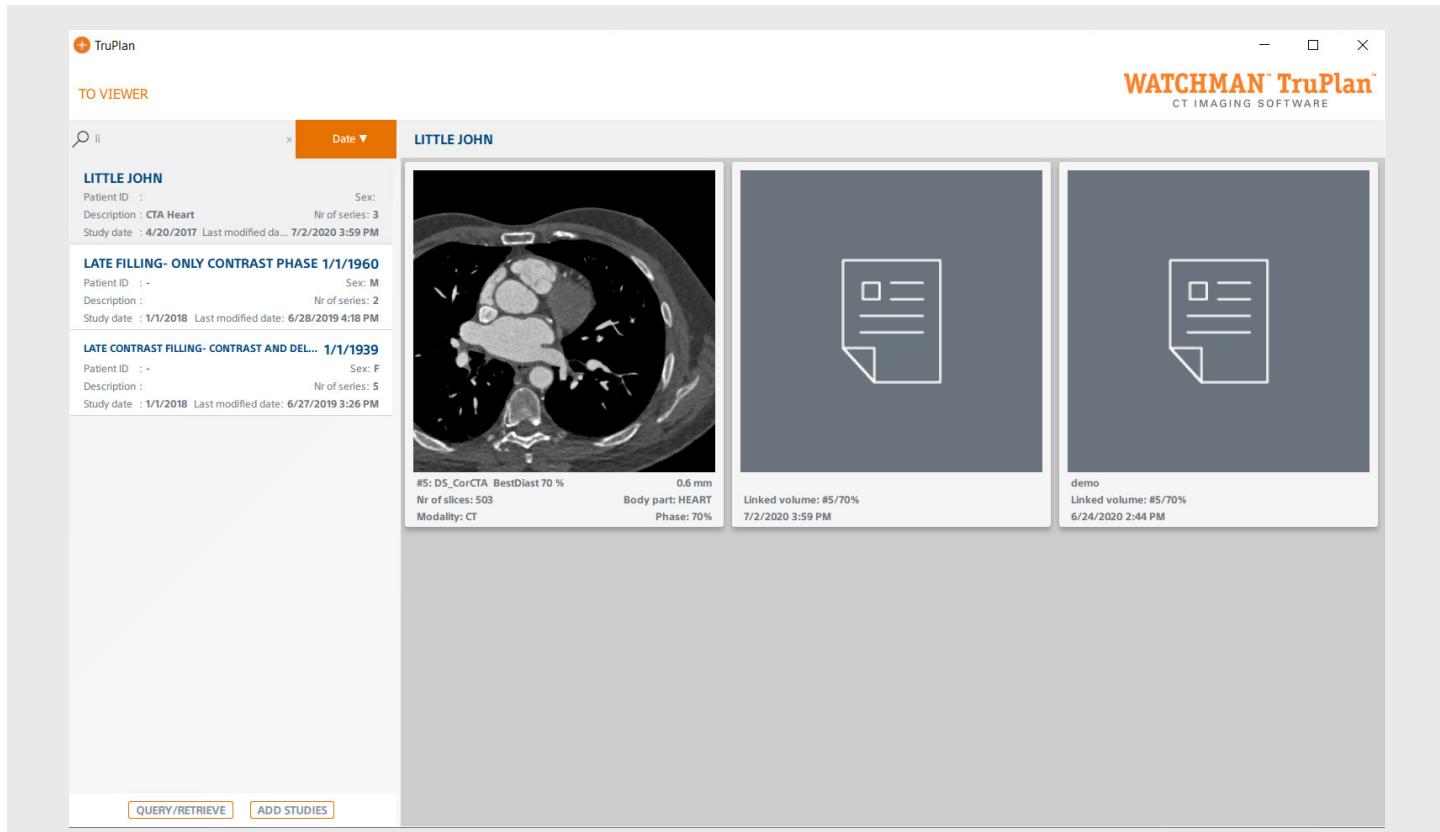
The Left Atrial Appendage Closure (LAAC) procedure involves implanting a device into Left Atrial Appendage (LAA) of the heart to close off the LAA. Clinical professionals familiar with LAAC understand the importance of visualizing and measuring the anatomy of the LAA and surrounding cardiac structures. As part of the current standard of care, visualization and measurements are performed using intra-procedural Trans Esophageal Echo (TEE) and/or Intra Cardiac Echography (ICE), in conjunction with Fluoroscopy. TruPlan™ software is adjunctive to these techniques and helps physicians plan the LAAC procedure, providing visualization and measurement tools based on Computed Tomography (CT) images. Involving both qualitative and quantitative features, TruPlan™ provides insight into the shape, size, angle, and positioning of the anatomy prior to the procedure and helps determine the appropriate size of the closure device to be implanted.

09

MEASUREMENT ACCURACY

TruPlan™ allows for measurement of lengths (in mm), angles (in degrees), and areas (in mm²) with an accuracy of 95%. All calculations and measurements in TruPlan™ are done in the DICOM patient coordinate system. On-screen pixel coordinates are converted into the DICOM patient coordinate system by the inverse operation as the rendering. This ensures that the coordinates of the measurement match the coordinates of the image. All measurements are converted into the DICOM patient coordinate system before doing any computations. This ensures that accuracy is independent of image resolution.

10


GETTING STARTED

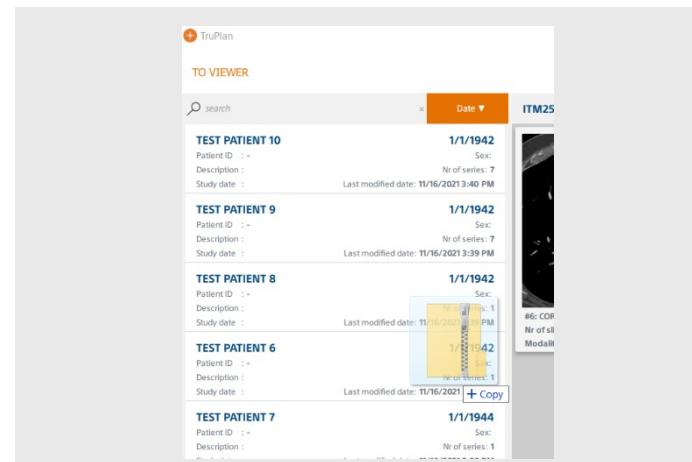
After installing TruPlan™ and activating the license per the Installation and Configuration Guide, launch the TruPlan™ application. Login is not required; use of the software may begin immediately upon launch.

The first page that appears is the Study List page.

11

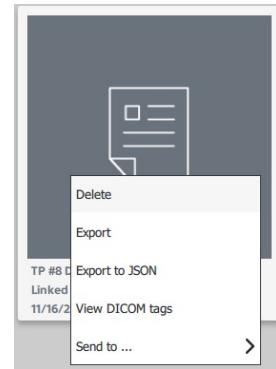
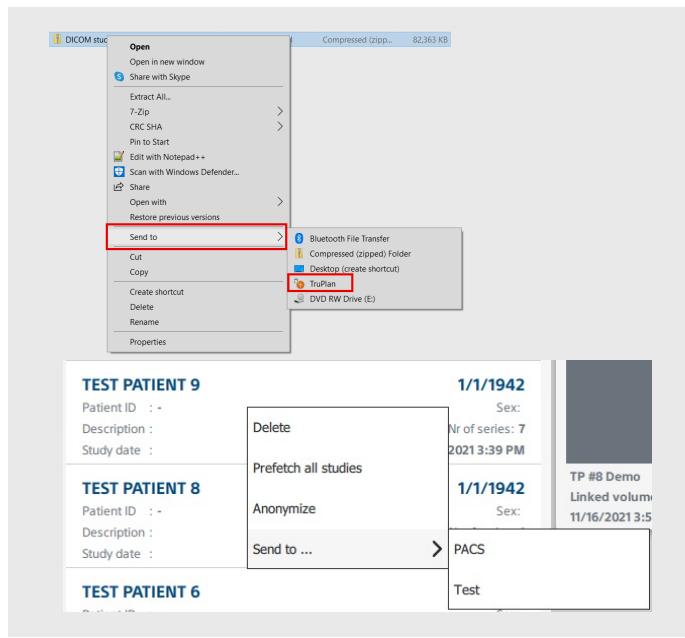
WORKING WITH THE STUDY LIST

11.1 IMPORTING AND VIEWING STUDY DATA


Use the button **ADD STUDIES** to import data, select a folder that contains one or more studies and press select folder to start the import.

Once the studies are imported, they will be shown as above, double click a thumbnail to open the series in the viewer.

When selecting a newly imported study for the first time, it might take some time before all thumbnails are shown.



11.2 IMPORT USING "DRAG AND DROP"

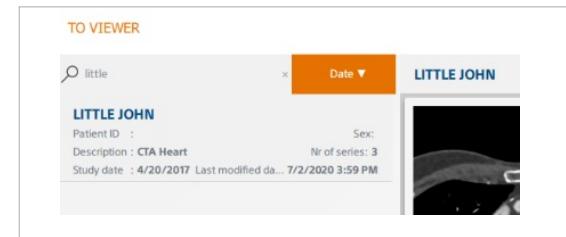
Folders and zip files containing DICOM images can be dragged and dropped on the UI of TruPlan™, this way the data will be added to the study list.

11.3 ALTERNATIVE IMPORT: SEND TO TRUPLAN™ UTILITY

In Windows Explorer right click on a folder or zip file that contains DICOM studies and select "Send to > TruPlan™"; a progress dialog will appear. Once finished the study is imported into the TruPlan™ study list.

11.4 ADDITIONAL STUDY LIST FUNCTIONALITY

- Right click on a thumbnail to open the context sensitive menu:
 - Delete: Deletes the image series.
 - Export: Exports Saved Session to a DICOM file that can be imported into another TruPlan™ system.
 - Export to JSON: Exports a saved session as JSON file.
 - View DICOM tags: Shows the DICOM information for this series.
 - Send to ...: Send study, series to a remote DICOM node.


11.5 SAVED SESSION

The purpose of Saved Session is to have a dynamic alternative for a static report or save the state of a specific dataset to continue analyze the scan at a later moment.

Saved session will save the state of the work session, including measurements, sculpting of volume, bookmarks (TEE), home views (ICE), and other relevant work.

A saved session file is a DICOM compatible file, it can be transferred easily.

To restore a saved session on a different system, the original study data should be present as well.

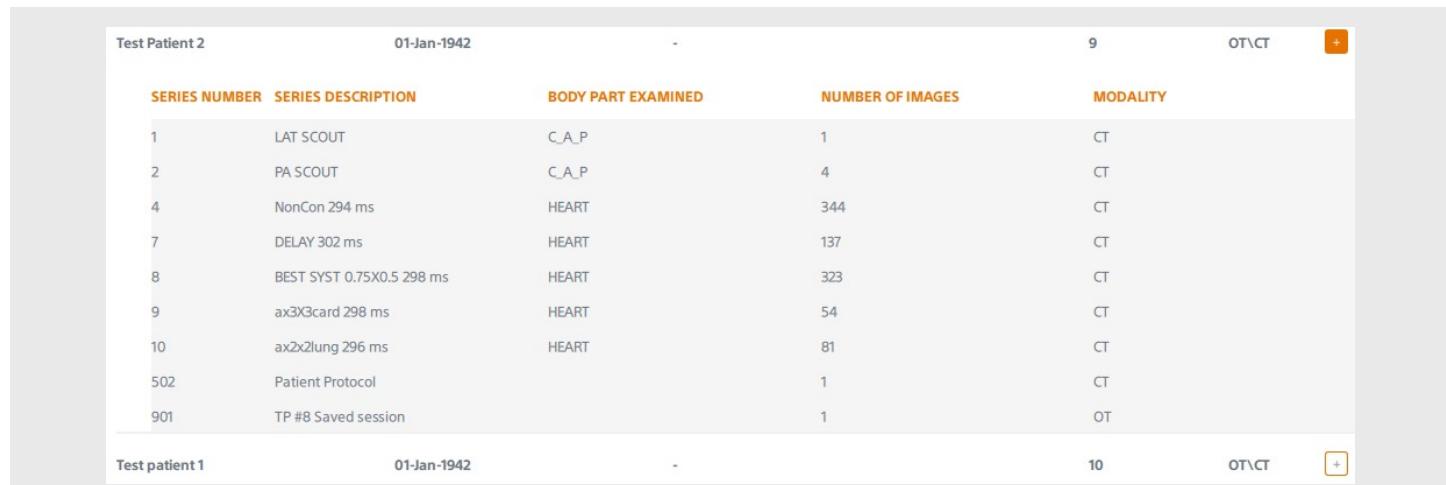
- Sorting and searching:
 - Enter (a part of) the patient name to search for a specific study.
 - The study list can be sorted on patient name and last modified date/time. By default, the last imported study will be at the top of the list.

12

WORKING WITH A PACS

A PACS (Picture Archiving and Communication system) is typically used as storage location for medical images in a hospital. The configuration is described in the TruPlan™ Installation and Configuration Guide.

TruPlan™ supports query and retrieving studies from the PACS. Studies or series can also be sent back to the PACS, this is mainly useful for the saved session created in TruPlan™.


Use the **QUERY / RETRIEVE** button to open the Query retrieve window.

The screenshot shows the 'QUERY' tab of the TruPlan Query / Retrieve window. On the left, there are search fields for Patient name (containing 'te'), Patient ID, Accession number, and Study description. A checkbox for 'CT studies' is checked. Below these fields is a 'Search studies' button. On the right, the results of the query are displayed in a table with columns: PACS, PATIENT NAME, PATIENT SEX, DOB, ACCESSION NO., PATIENT ID, STUDY DESC., STUDY DATE, NUM. SERIES, and MODALITIES. Two entries are shown: 'Test Patient 2' and 'Test patient 1'. Each entry has a '+' button to expand the series list. At the bottom are buttons for 'QUERY/RETRIEVE', 'ADD STUDIES', and a refresh icon.

The search fields are on the right side of the dialog, at least one of these fields need a value to enable the Search studies button. When the CT checkmark is checked only studies containing a CT will be shown. The patient name will automatically be appended with a wildcard, so only the first part of the name needs to be entered.

The right part of the screen will show the results of the query. To see the individual series, click the + button to expand. Or right click and select Retrieve study to import the complete study.

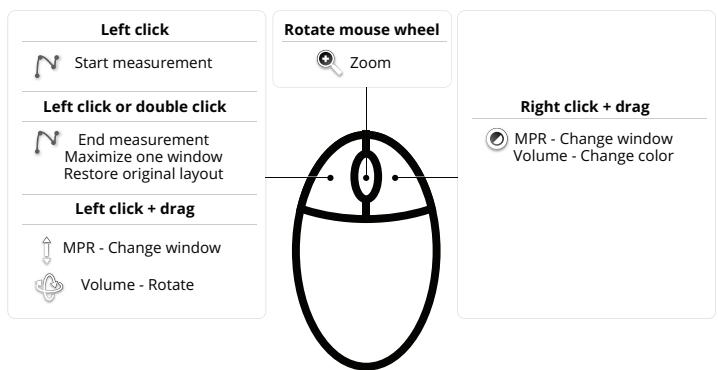
The screenshot shows the results of the query for 'Test Patient 2' and 'Test patient 1'. The table has columns: SERIES NUMBER, SERIES DESCRIPTION, BODY PART EXAMINED, NUMBER OF IMAGES, and MODALITY. For 'Test Patient 2', 9 series are listed, including LAT SCOUT, PA SCOUT, NonCon 294 ms, DELAY 302 ms, BEST SYST 0.75X0.5 298 ms, ax3X3card 298 ms, ax2x2lung 296 ms, Patient Protocol, and TP #8 Saved session. For 'Test patient 1', 10 series are listed, all with 0 images and OT\CT modality. Each series row has a '+' button to expand.

SERIES NUMBER	SERIES DESCRIPTION	BODY PART EXAMINED	NUMBER OF IMAGES	MODALITY
1	LAT SCOUT	C_A_P	1	CT
2	PA SCOUT	C_A_P	4	CT
4	NonCon 294 ms	HEART	344	CT
7	DELAY 302 ms	HEART	137	CT
8	BEST SYST 0.75X0.5 298 ms	HEART	323	CT
9	ax3X3card 298 ms	HEART	54	CT
10	ax2x2lung 296 ms	HEART	81	CT
502	Patient Protocol		1	CT
901	TP #8 Saved session		1	OT

PATIENT NAME	DOB	STUDY DESC.	STUDY DATE	NUM. SERIES	MODALITY
Test patient 1	01-Jan-1942	-	-	10	OT\CT

Individual series can be imported by right clicking and selecting the option Retrieve series.

Saved sessions created by TruPlan™ v1.1 can be recognized by the series number and series description. Series number will be 901, and the series description will start with TP and then the series number of the linked series followed by the description the user entered while saving.

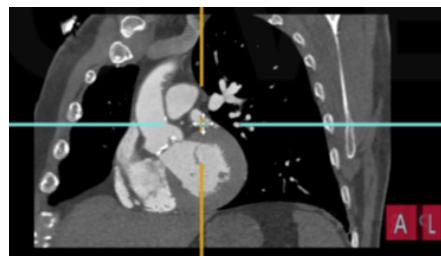

Right click on a local study, series or saved session to send it to PACS.

WORKING WITH THE VIEWER

The following image (captured from the LAA module) is representative of the MPR viewer functionality that is present in several TruPlan™ modules. Below the image are standard mouse interactions for navigating such views.

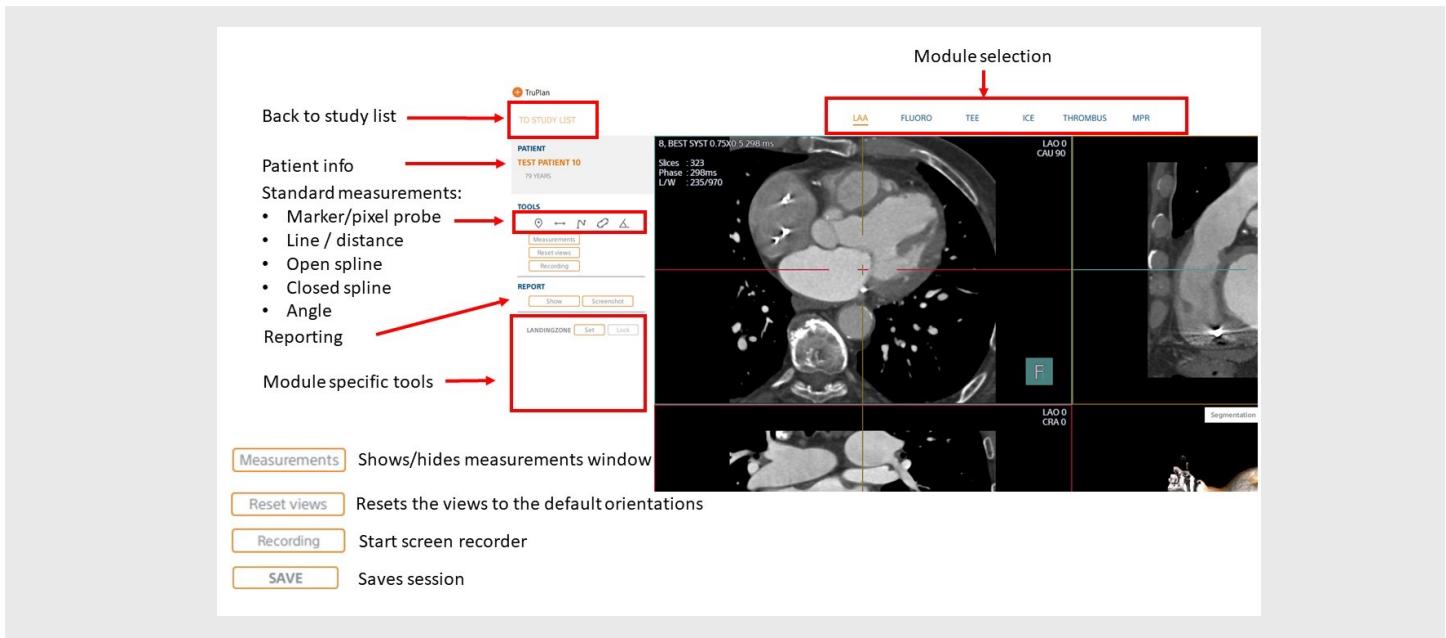
The colors of the lines and borders are corresponding with the orthogonal intersection planes of the MPR. In the example above, the two red lines in the upper viewport are representing the intersection with the view in the lower left viewport.

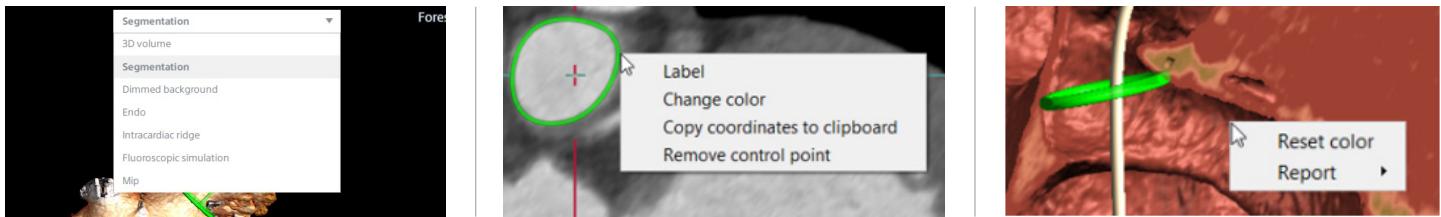
13.1 STANDARD MOUSE INTERACTION


Cursor shape	Action	Mouse	Windows trackpad	Apple trackpad
↑↓	MPR - Translate	Left click + drag	1 finger press + slide	1 finger press + slide
⟳	Volume - Rotate	Left click + drag	1 finger press + slide	1 finger press + slide
🔍	Zoom	Rotate mouse wheel	2 fingers slide up /down	2 fingers slide up/down
🕒	MPR - Change window	Right click + drag	2 fingers press + slide or 1 finger press on lower right part of trackpad + slide	2 fingers press + slide
	Volume - Change color	Right click + drag	2 fingers press + slide or 1 finger press on lower right part of trackpad + slide	2 fingers press + slide
ℳ	Maximize one window/ restore original layout	Double click left	Double tab	Double tab
	Start measurement	Left click	Tab	Tab
	End measurement	Left click or double click	Tab or double tab	Tab or double tab
	Context menu	Right click	2 fingers tab or tab on lower right of trackpad	2 fingers tab

Behavior of Windows trackpad might vary depending on model and vendor

13.2 GENERIC TOOLS AND LAYOUT


Left click drag the sides of the crosshair to rotate the crosshair.


Left click drag the center of the crosshair to move the crosshair.

Left click drag the center of the image to pan the image.

Right mouse click will give a context sensitive menu with various options.

The dropdown menu in the volume viewport has the following options:

3D volume	Will show all image data in a 3D view
Segmentation	Shows the left side of the heart in 3D
Dimmed background	As segmentation, but will also show the background semitransparent
Endo	Shows the whole volume cut with the last clicked MPR will act as cutting plane
Intracardiac ridge	An endo view looking from the left atrium into the LAA and LUPV
Fluoroscopic simulation	3D volume shown as if it is an interactive 2D x-ray
Mip	MIP rendering (only in MPR module)

The availability of these options depend on the state of the application and the module

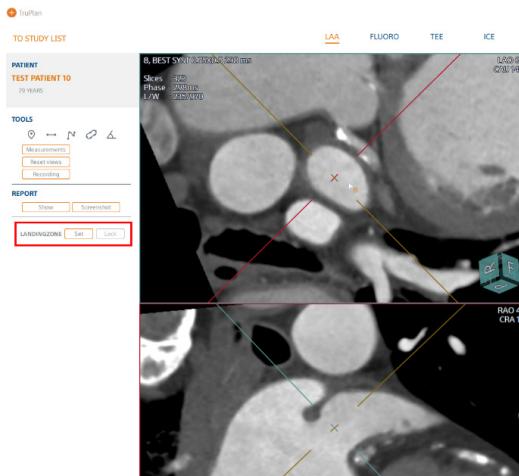
LEFT ATRIAL APPENDAGE (LAA) WORKFLOW

The purpose of this workflow is to determine the location, orientation, and dimensions of the landing zone for the LAAC closure device to be implanted. (An example of a LAA closure device is the WATCHMAN FLX device, a major commercially available implantable device for LAAC manufactured by Boston Scientific.)

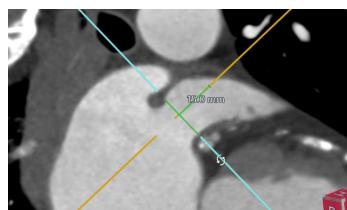
This workflow provides MPR views and 3D rendering of the original CT data. It displays two long-axis MPR views and a short-axis MPR view of the LAA, on which manual lines and regions of interest (ROIs) can be drawn for quantitative measurements (e.g., distance, area, and perimeter). Additionally, a 3D rendering of the left side of the heart (including the left ventricle, left atrium, and LAA) is displayed for visualization purposes.

Once the image data is loaded an auto segmentation of the left side of the heart runs in the background and will display when ready.

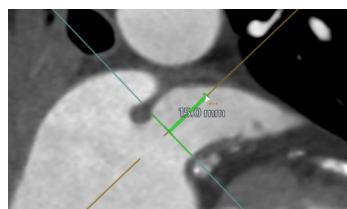
14.1 FINDING THE LAA

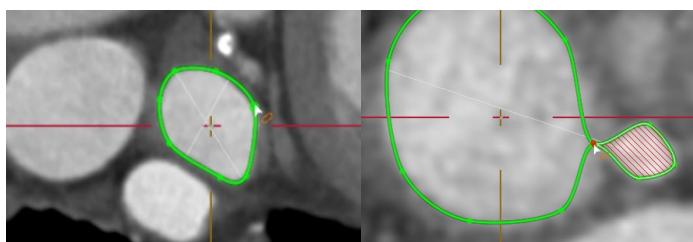


In the sagittal (lower left) viewport, scroll until the LAA is visible and place the crosshair at the base of the LAA.



Align the blue line of the crosshair with the base of the LAA, in both the lower left and the upper right viewport.

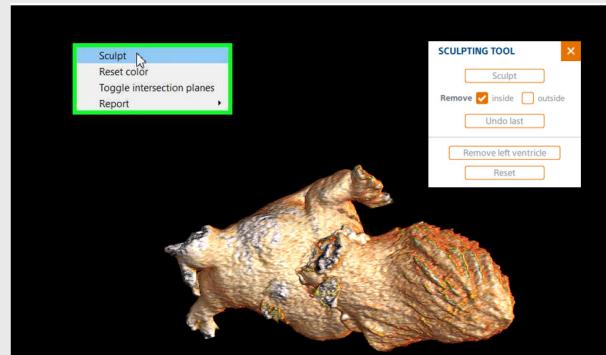

14.2 PLACING THE LANDING ZONE


Once the LAA is identified, press the Set Landing zone button and identify the landing zone by clicking on it in the short axis view .

The landing zone can be altered by moving or rotating the crosshairs in the long axis views until the Lock button is pressed.

To measure the depth of the LAA, drag the endpoint of the depth measurement to the desired location.

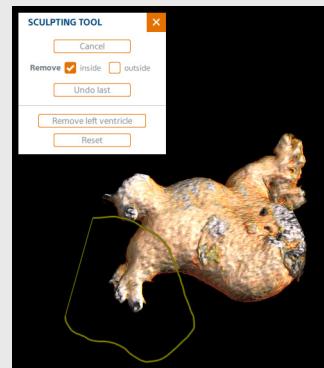
The landing zone contour can be adjusted by dragging the control points that appear when hovering over the green line with the mouse.


By dragging two control points on top of each other loops can easily be removed.

14.3 INTRACARDIAC RIDGE VIEW

When the landing zone is defined the intracardiac ridge view will be available in the dropdown list of the volume window.

14.4 SCULPTING



To remove parts of the segmentation, use the sculpting feature, by selecting this option from the right mouse button menu in the volume window.

The Sculpt/Cancel button toggles the sculpt mode on or off. Select whether the inside or outside of the sculpt contour should be removed.

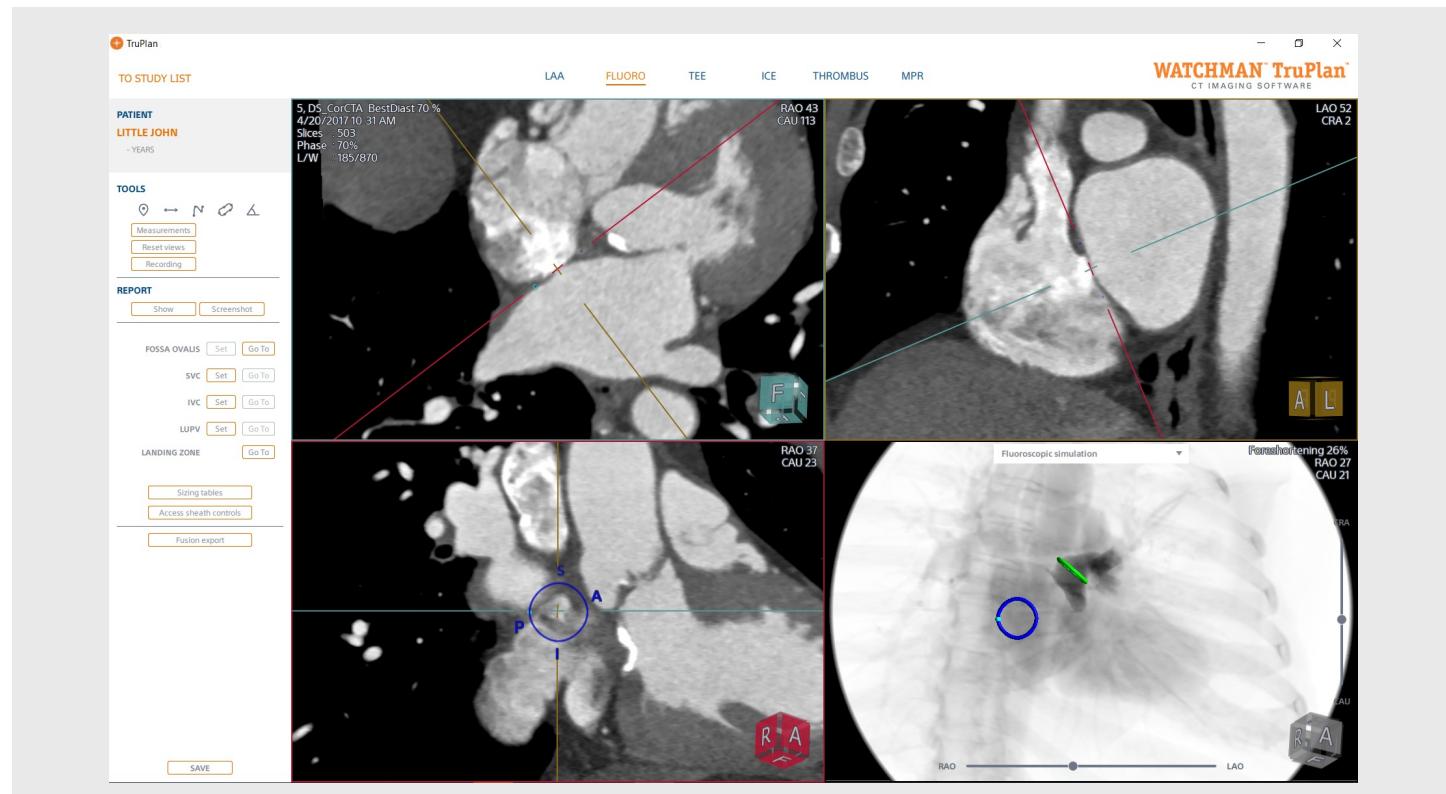
The Remove left ventricle button will remove the complete ventricle with one click.

It is possible to undo the last action or use Reset to start all over again.

FLUORO WORKFLOW

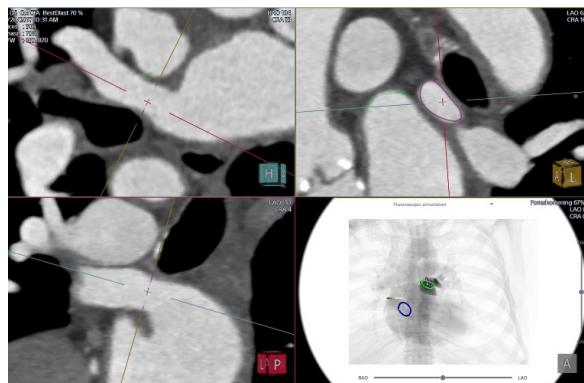
The purpose of this workflow is to simulate a view normally seen during fluoroscopy to indicate the location of anatomical landmarks relevant to the LAAC procedure, to get an understanding of their locations and orientations. Understanding how the different structures relate to each enables clinical professionals to plan a possible path for the LAA closure device to be implanted into the LAA.

The module starts by displaying three standard MPR views (axial, sagittal, and coronal). These images can be browsed through to locate and annotate the anatomical landmarks. From there, the landmarks and the dimensions of the landing zone (determined in the LAA workflow) can be used to overlay a virtual device and access sheath. This step can also be used to determine the fluoro angles, and anatomical landmarks will also be used for transesophageal echocardiography (TEE) simulations in the TEE module and the automated home positions in the ICE module.


WARNING: The Fluoro module provides a simulated, not real, fluoroscopy image. The actual image modality is CT.

WARNING: The Fluoro module makes no diagnosis or clinical decision in place of the physician.

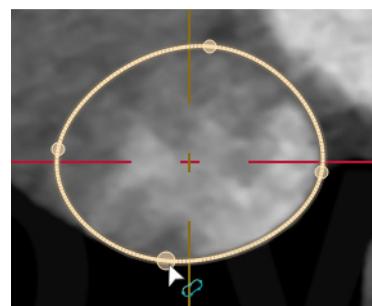
15.1 FOSSA OVALIS


In the upper left viewport, scroll until a 4-chamber view is visible. Align the red line of the crosshair with the inter atrial septum, do the same in the upper right viewport.

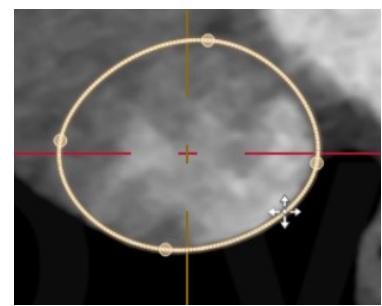
Press the Set button for Fossa Ovalis and click on the center of the lower left viewport. A circle will be placed at the location of the fossa.

15.2 SUPERIOR VENA CAVA (SVC)

Use the Reset views button to start with default orientations. In the lower left (coronal) viewport, scroll until the SVC becomes visible. Place the crosshair on the SVC, close to the heart and optionally tilt the blue line a bit to create a plane perpendicular to the vessel. Click the Set button for SVC and on the center of the SVC in the upper left viewport.



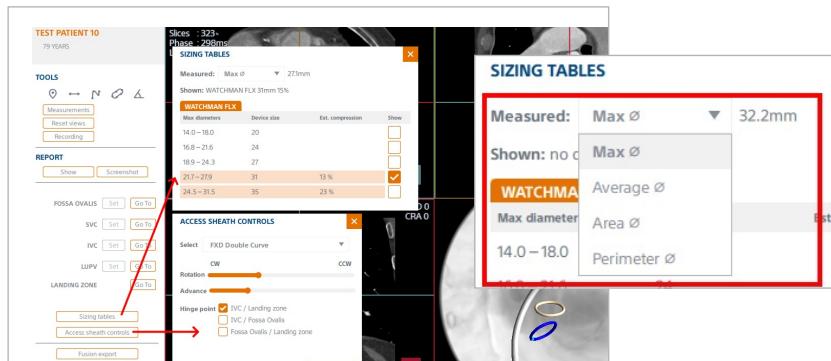
15.3 INFERIOR VENA CAVA (IVC)


Use the same approach as for the SVC.

15.4 LEFT UPPER PULMONARY VEIN (LUPV)

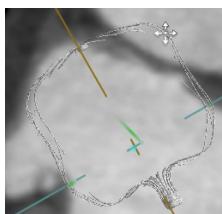
Locate the LUPV in one of the MPR views, place the crosshair on the base, align the crosshair in two viewports with the long axis, so the short axis view will become visible in the third viewport, and mark the LUPV there.

It is possible to resize the contour by dragging the control points that become visible when hovering the mouse over the annotation. It is also possible to insert additional control points.

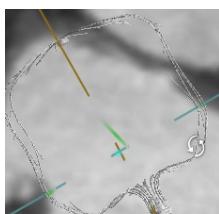

Using the Ctrl + left mouse drag makes it possible to move the annotation without deforming it.

15.5 REMARKS

The purpose of this workflow is to indicate some anatomical structures; therefore, the software will place a circle with a pre-fixed size at the indicated locations.


For orientation purposes it is not necessary to have exact contouring of the structures, this workflow serves as a visualization aid rather than for measurements.

15.6 SIZING TABLE, VIRTUAL DEVICE, VIRTUAL ACCESS SHEATH



Open the Sizing tables dialog for the available devices, select the desired device. (Support for the WATCHMAN 2.5 can be enabled via the configuration menu.)

With the virtual device the following interactions are possible:

Left mouse – drag, to move the device in the multiplanar reconstruction (MPR) viewport.

Ctrl + Left mouse drag to tilt the device in the MPR viewport.

Use the Access sheath controls dialog box to select the virtual catheter. The Rotation slider will rotate the sheath, the Advance slider will move the virtual sheath over selected hinge points.

When needed the hinge points can be moved in the MPR views, use the Go To buttons to easily find the structures that needs to be adjusted.

(In the configuration either the TruSeal or FXD sheaths can be selected.)

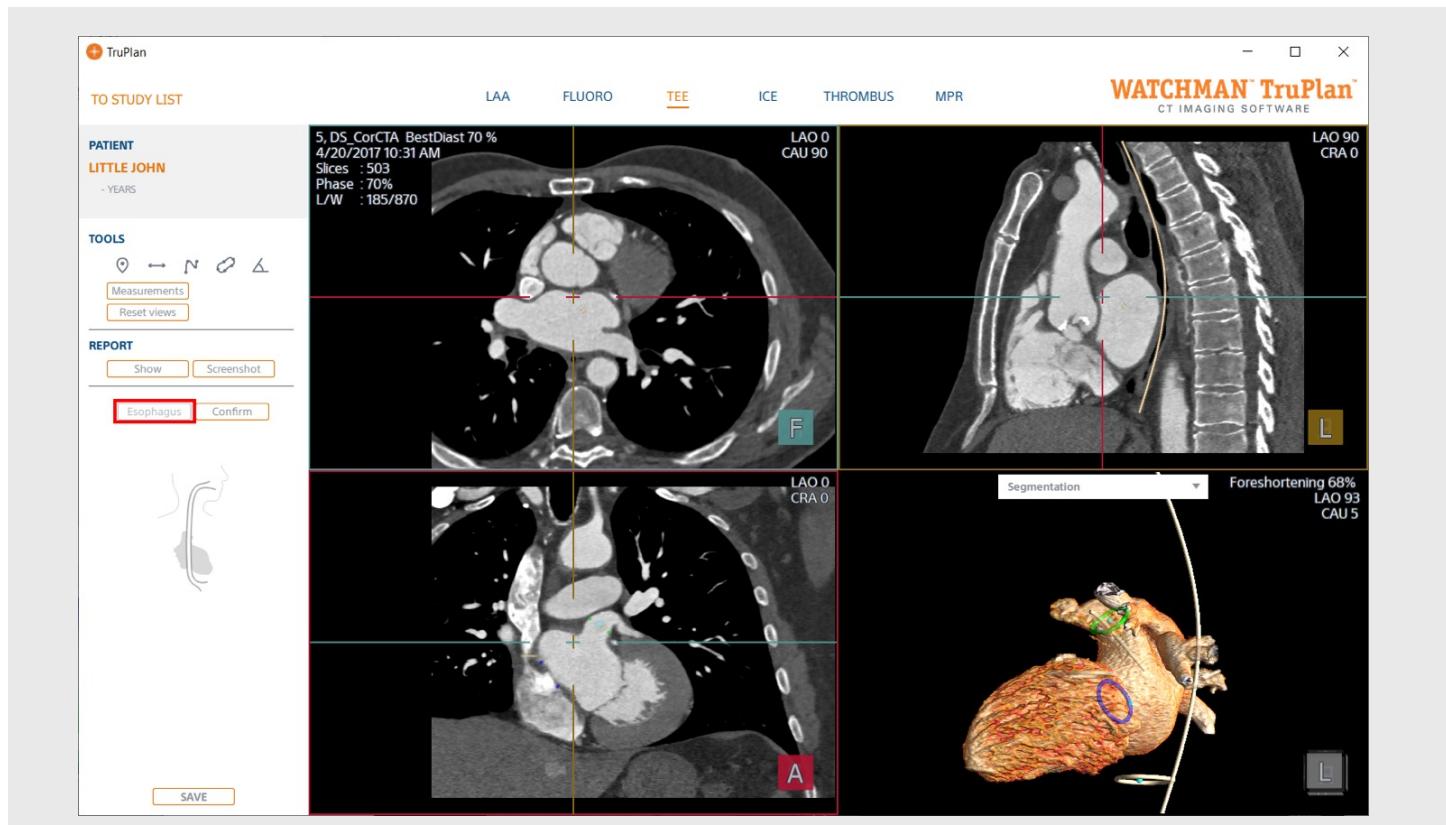
When the Lock rotation option is enabled, the rotation in the fluoro view will be limited to the angles that will show the landing zone in a perpendicular way.

Enable Show aortic root to show the aorta in the fluoroscopic simulation.

15.7 FUSION EXPORT

Use the Fusion export functionality to export the markers (Landing zone, IVC, SVC, Fossa). There is an option to save them as a DICOM surface segmentation object, or to burn them in the pixel data of a regular CT series.

WARNING: The virtual 3D models of the device and virtual catheter (access sheath) are shown as-is and will not adjust their shape to the shown anatomy.



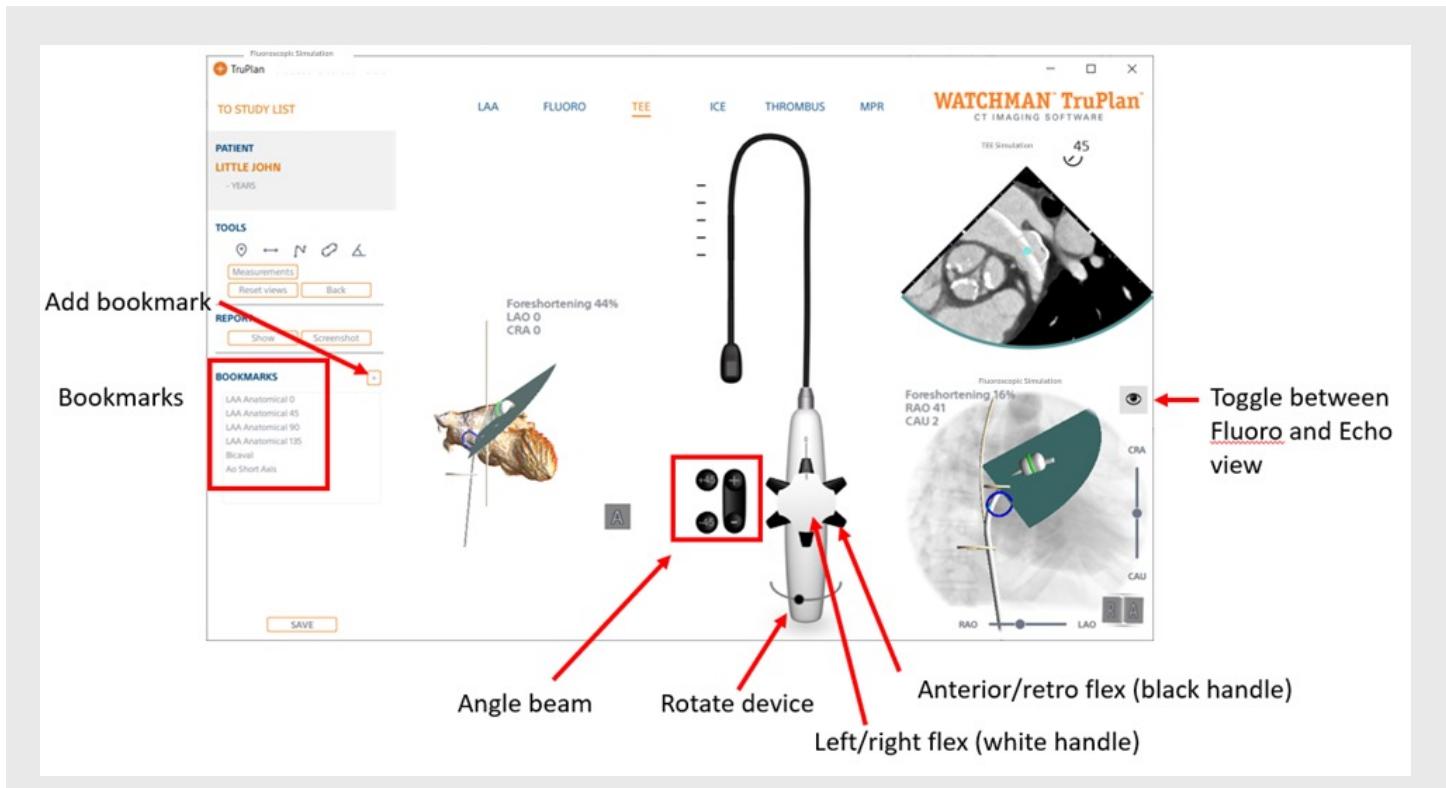
16

TEE WORKFLOW

This module simulates the views that can be obtained with TEE, to aid the physician and supporting clinical staff during LAAC pre-procedural planning with familiar views seen during the standard of care. In this module, the MPR views of the CT scan are used to locate the position of the TEE probe in the esophagus, and subsequently the corresponding TEE simulation screen (including simulated TEE image in actual modality CT) is created with the anatomical structures defined in the Fluoro module (LAA, FO, IVC, SVC, etc.) highlighted. Visualization and manual measurements are possible in this workflow.

16.1 DEFINING THE ESOPHAGUS

The esophagus can be defined in any orientation, when it is clearly visible in the sagittal view (upper right) this is the easiest way. Click the Esophagus button, and trace it in the image, end the drawing mode with a double click. Press the Confirm button to proceed to the next step of the module.


(The esophagus can also be drawn in the other MPR views when needed.)

WARNING: The TEE module provides a simulated, not real, TEE image. The actual image modality is CT.

WARNING: The TEE module makes no diagnosis or clinical decision in place of the physician.

16.2 TEE SIMULATION

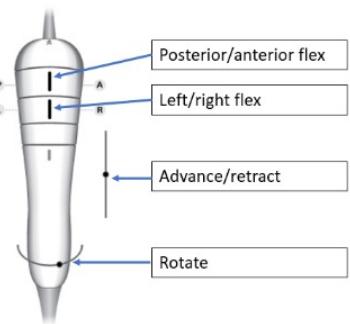

Several bookmarks are pre-populated based on the Landing zone and structures defined in the Fluoro module. When needed it is possible to overwrite these bookmarks by updating the echo view and then right click on the bookmarks; select Overwrite bookmark or create a new bookmark using the + button.

- The TEE probe can be moved along the esophagus line by dragging the probe.
- The TEE angle can be changed by pressing the + and - or -45 and +45 buttons left of the probe handle.
- The TEE probe can be rotated by dragging the rotate button at the lower end of the probe handle.
- Rotating the probe can also be done by left mouse dragging the simulated echo view (top right).
- Change the depth by using the scroll wheel in the simulated echo view.
- Flexing of the probe can be done by turning the white or black knob on the probe handle.

INTRACARDIAC ECHOCARDIOGRAPHY (ICE) WORKFLOW

This module simulates ICE devices and their corresponding views, to aid the physician and supporting clinical staff during LAAC pre-procedural planning with familiar views seen during the standard of care. The software will automatically suggest 4 home positions, when the needed structures (Landing zone, SVC, IVC, Fossa and LUPV) are defined in the fluoro workflow. It is possible to adjust the automated home positions and create new ones.

17.1 ICE-SIMULATION


The home positions are listed on the left side and can be selected by clicking on them. Then the probe can be controlled using the virtual probe handle.

A new ICE probe can be laced by clicking the + icon, click in the MPR on the position for the distal tip of the probe, and then click towards the more proximal location.

HOME POSITIONS

+ Add new home position

 Reset all home positions

Reset will restore the home positions; it can also be used when some structures in the Fluoro module are added or changed after the initial home positions are created.

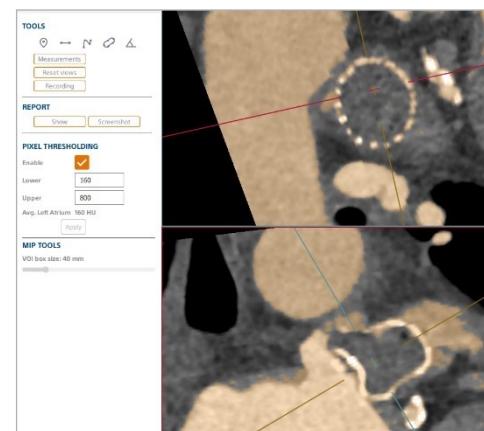
WARNING: The ICE module provides a simulated, not real, ICE image. The actual image modality is CT.

WARNING: The ICE module makes no diagnosis or clinical decision in place of the physician.

THROMBUS WORKFLOW

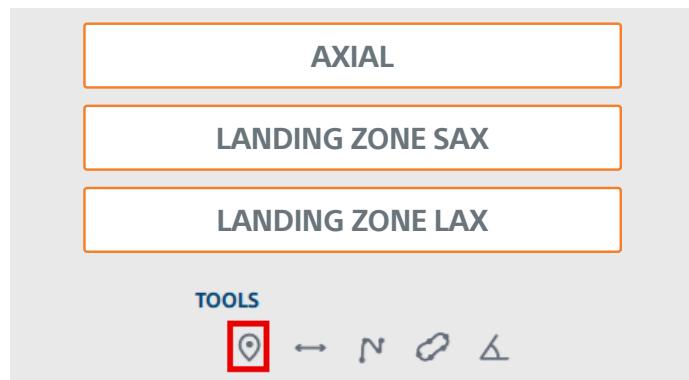
This module facilitates the detection of thrombus in the LAA by allowing visual comparison of a regular contrast-enhanced CT scan with a time-delayed contrast-enhanced CT scan as done in standard radiology practice. TruPlan™ makes no suggestion, diagnosis, or decision regarding the presence of thrombus, nor does it allow measurements in this module. It is for visualization purposes only.

18.1 ANSICHT NEBENEINANDER


When enabling the Thrombus module, the active scan that has been analyzed will be shown on the left side, on the right side a button is visible that states: Load another volume. When this button is pressed the study list will be activated. The delayed scan that corresponds to the active scan can now be selected.

Now the two scans are displayed side-by-side and most interactions will be synchronized. Use the buttons on the left side to select the default orientations. And from there it is possible to scroll through the dataset.

Use the pixel probe to determine the Hounsfield values in specific areas.


MPR MODULE

The MPR module provides generic MPR views (axial, sagittal, and coronal) and a 3D rendering view to freely visualize the images (browsing through images, panning, zooming, tilting, etc.) and perform basic measurements. This can be done independently from the actions performed in the other workflows.

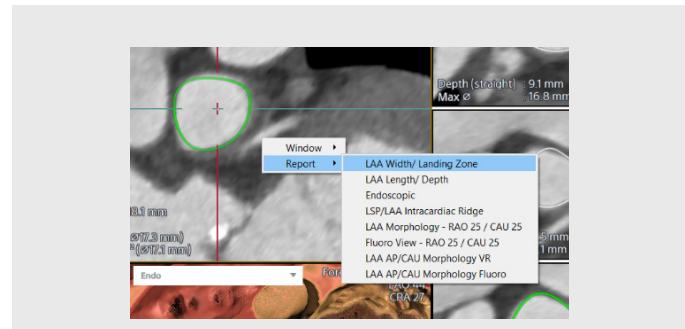
19.1 PIXEL THRESHOLDING

Using the pixel thresholding tool, it is possible to highlight specific range of pixels based on their Hounsfield value.

WARNING: TruPlan™ makes no suggestion, diagnosis, or decision regarding the presence of thrombus. The interpretation of the images and resulting decisions are under the user's control.

19.2 MIP BOX

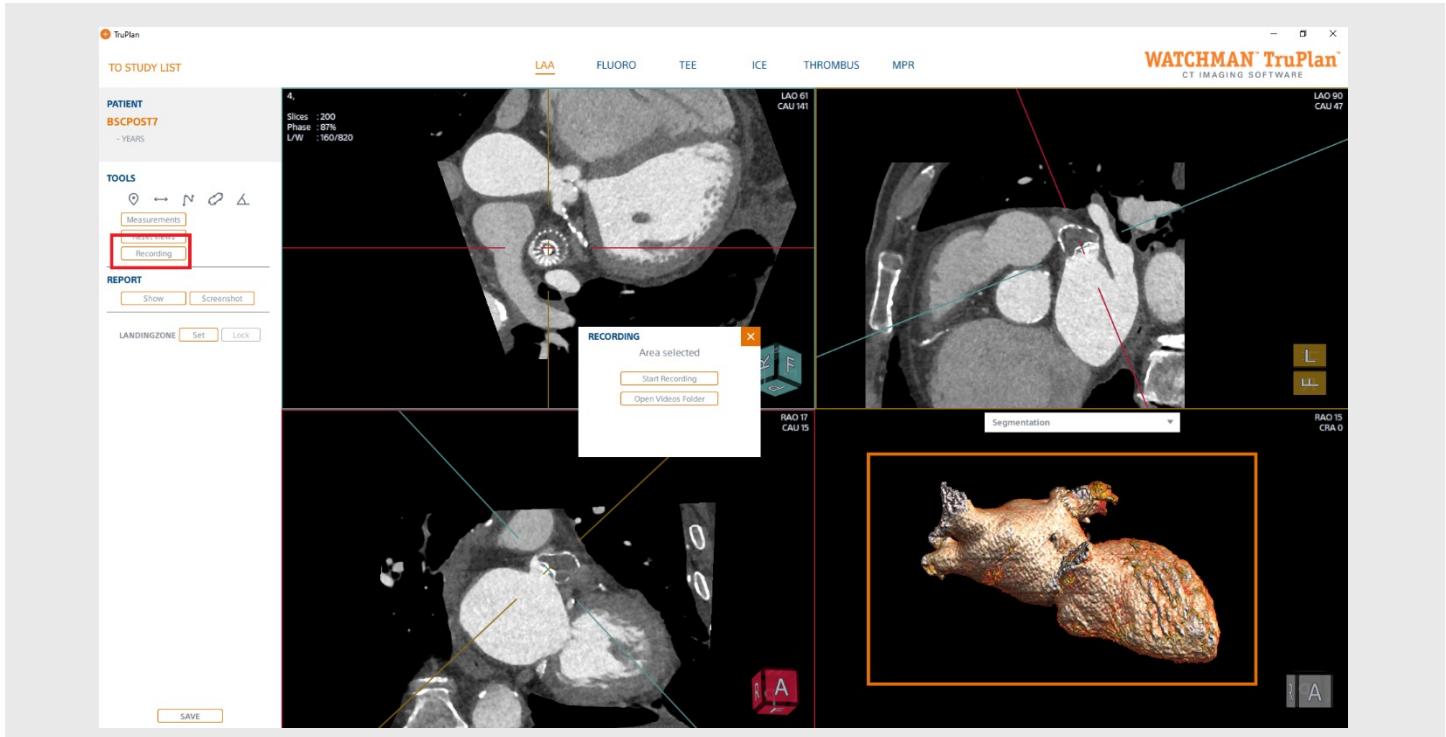
The MIP feature will render a part of the volume in MIP (Maximum intensity projection). The center of the box is linked to the center of the crosshairs and the size can be adjusted using the slider on the left side of the application.



20 REPORTING

Each of the modules offer the ability to capture screenshots, measurements, etc. and send them to the report. The report also shows some patient information derived from the DICOM information of the CT scans, and there is a section to enter comments.

Use the Show button to open the report window. The default views in the report are filled automatically, use the Update placeholders button to reset the original views.


The placeholders in the report can also be filled by right clicking in the viewport and select the desired placeholder from the report section.

Press the Screenshot button to add a manual screenshot to the report. This button will copy all visible viewports to the report, from there it is possible to remove images that are not needed in the report.

21

SCREEN RECORDER

With the built-in screen recorder, it is possible to record a part of the screen to create a movie clip.

Press the Recording button, then define the area that needs to be recorded: left click on the top left corner of the target area keep the mouse button down and drag the area of interest.

Press Start Recording, interact with the viewport or use the arrow keys on the keyboard to rotate the volume in an absolute horizontal or vertical direction. Stop the recording when finished. Use the Open Videos Folder button to find the saved movie. The file size of the video is determined by the recording time and the size of the recording area.

22

SUPPORT

For technical questions please contact our team by phone or e-mail:

North America

Circle Cardiovascular Imaging Inc.
1100, 800 5th Avenue SW Calgary
Alberta, Canada, T2P 3T6
P: +1 403 338 1870
F: +1 403 338 1895

Europe

Circle Cardiovascular Imaging B.V.
Europe Support Phone: + 31 (800)265 8982

Problemmeldung: support@circlecv.com

Website: www.circlecv.com