Recent Mouse Enrichment and Aging Studies at The Jackson Laboratory

Andy Schile Sr. Scientific Advisor andrews@jax.org

The Jackson Laboratory's Mission

Performing Research

Investigating genetics and biology of human disease

Providing Resources

JAX Mice Clinical & Research Services, bioinformatics data, technical publications and more...

Educating Scientists

World-class courses, internships and other programs

Benefits of enrichment for laboratory mice

- Encourage natural instincts to produce or seek shelter
- Provide a degree of control over their environment
- Can improve brain & neuronal development
- Reduce undesirable traits (stereotypies, barbering)

Enrichment breeding study

- Five groups of trio-mated C57BL/6J inbred mice were studied throughout a typical breeding period of 30 weeks
- All groups received same husbandry & autoclaved diet, water,
 & bedding (aspen chips & shavings) but differed in the type of supplemental enrichment

Cardboard tunnel

Technicians were rotated among groups

Aspen shavings only

Cardboard hut

Cotton square

Twisted paper

Enrichment breeding study

- Parameters measured for each cage:
 - Number of litters
 - Pups born
 - Pups weaned
 - Percent survival

- Pup mortalities
- Pups euthanized
 - Number of runts
 - Number of barbered pups
- Each group contained ~600 cages

Enrichment	Enrichment Total Cages (% Productive)	
Shavings Only	600 (85%)	
Twisted Paper	602 (91%)	
Hut	598 (89%)	
Cotton Square	603 (86%)	
Tunnel	598 (91%)	

Number of flooded cages

THE JACKSON LABORATORY

Enrichment had marginal effects on litter counts

A tunnel offered improvements over a cotton square or aspen shavings alone

Twisted paper led to an increase over a cotton square

Statistical model: linear regression (ANOVA)

Twisted paper, tunnels improved survival to weaning

Bar graphs are overlaid

% indicates survival to weaning

Twisted paper reduced the number of pup mortalities

Wortalities Per Cage Wean # Starting Fraction Wean # Starting Fraction Twisted Hut Shavings Cotton Tunnel Paper Alone Square

Each pairwise difference was significant for twisted paper (P < 0.0001)

Tunnels had the fewest pups euthanized for abnormalities

Each pairwise difference was significant for tunnel (P < 0.0001)

Tunnel cages had fewest runts and barbered pups

The tunnel group had the fewest wet cages

Enrichment	Wet Cages / Total Cages (%)
Tunnel	5/598 (0.8%) ^{abc}
Hut	16/598 (2.7%)
Shavings Only	21/600 (3.5%) ^a
Cotton Square	24/603 (4.0%) ^b
Twisted Paper	32/602 (5.3%) ^c

^a P = 0.0295, ^b P = 0.0113, ^c P = 0.0009

Breeder Enrichment discussion

- Environmental enrichment improved wellbeing and productivity in a C57BL/6J breeding colony
- Enrichment trials and comparisons help to determine the best type for each strain
- Combinations of cage enrichments should reveal additional benefits

Solving Strain-Specific Challenges Using Enrichment

C57BL/6J

SJL/J

- Most widely used inbred strain
- Prone to eye defects, hair loss hydrocephalus, dermatitis
- Used to make F1s, multiple sclerosis models
- Aggressive

Barbering in C57BL/6J

- Female bias
- Often involves whisker-picking, hair loss (alopecia)
- Increases with age, cage density
- Proposed explanations include social dominance, stress responses, obsessivecompulsive disorder

Rotational Enrichment

Rotational Enrichment Study in B6

Two sets of 120 female C57BL/6J mice were assigned at weaning to enrichment groups:

- Rotating enrichment
- No extra enrichment

Typical husbandry practices were followed

Mice were monitored weekly for hairloss or any other adverse conditions for 18 weeks

Rotational Enrichment Delays & Reduces Hairloss in B6 Females

Rotational Enrichment Delays & Reduces Hairloss in B6 Females

Pros

- Novelty & diversity
- Effective at reducing hairloss

Cons

- Cost
- Operational challenges

17

Comparing Enrichment: Shelter vs Activity

3 groups were created, each with 1080 female mice:

- No extra enrichment
- Cardboard tunnel and dome
- Trapeze and rings

Mice were monitored between the ages of 3 & 12 weeks for hairloss and other adverse signs

Comparing Shelter & Activity Enrichment in C57BL/6J

Can Different Nesting Materials Reduce Aggressive Tendencies in SJL/J?

- Male bias
- Can affect pups, mates, same-sex cagemates
- Increases with age, cage density

Can Different Nesting Materials Reduce Aggressive Tendencies in SJL/J?

- Supplement aspen chip bedding with one of four different nesting materials
 - Twisted paper
 - Aspen Shavings
 - Crinkled paper
 - Cotton square
- Productivity, welfare parameters measured throughout a standard breeding period (22 weeks)
- Standard husbandry practices were followed

Impacts of Nesting Material on SJL/J

Productivity advantages for twisted paper, crinkled paper

Impacts of Nesting Material on SJL/J

- Many factors did not depend on nesting material
 - Born/Wean Ratio
 - Weight of pups at weaning
 - Female breeder mortality
 - Male breeder mortality
 - O Pups removed for defects (bite wounds, runts, etc.)
 - Pup mortality

Solving Strain-Specific Challenges Using Enrichment

C57BL/6J

SJL/J

- Hair loss lessened when females were provided extra enrichment
- Twisted paper greatly improved productivity
- Shelter enrichment offered similar benefits as rotating enrichment
- No obvious effect on pup survival

Group-Housed Animals

Common reasons for postwean loss:

- Barbering
 - Hair Loss
 - Whisker Picking
- Aggression
- Eye defects
- Malocclusion

Tunnels & Huts reduced C57BL/6J female post-wean losses

50% decrease in loss.

Tunnels reduced C57BL/6J male postwean losses

50% decrease in loss

27

Enrichment in Immunodeficient NSG Mice

Huts reduced NSG female post-wean losses in inventory

NOD.Cg-*Prkdc*^{scid} *II2rg*^{tm1Wjl}/SzJ

28

Losses in Breeding Colonies

Common reasons for prewean loss in breeding cages:

- Runts
- Missing Mice
- Barbering
 - Hair Loss
 - Whisker Picking

Huts Improved BALB/cJ Pup Survival

Tunnels Improved C57BLKS/J Pup Survival

Bio Tunnel enrichment supplied to breeders

Twisted Paper Enrichment Improves SJL/J Breeding

Twisted paper demonstrated a positive impact on the breeding performance for SJL/J Breeding Colonies.

Gains in productivity for both average litter size and wean output.

32

Cotton Squares Did Not Increase Pup Survival in B6.129S7-Ldlr^{tm1Her}/J

- A 12 week trial of cotton squares showed no improvement to breeding or prewean loss.
 - Struggling with runty mice, missing mice, as well as hair loss in pups.

J:DO, A Highly Diverse Population of Mice

Study Design

To identify conditions leading to reduced aggression, J:DO males were assigned to one of 5 groups at 3 weeks of age:

GROUP	CAGE	BEDDING/ENRICHMENT	MICE/CAGE	NUMBER OF CAGES
Α	Disposable	Aspen chips/shavings, tunnel	4	5
В	Disposable	Cotton pad	4	5
С	Wean box	Aspen chips/shavings, tunnel	4	5
D	Wean box	Cotton pad	4	5
E	Wean box	Aspen chips/shavings, cardboard divider	4	5

Aspen Chips/Shavings & Tunnel Group Survived Longest

Aspen Chips/Shavings & Tunnel Losses:

- 5 for bite wounds, 1 for barbering

Study discontinued at 14 weeks of age (chewing on disposable cages)

THE JACKSON LABORATORY

Cost Versus Benefit

THE JACKSON LABORATORY

Enrichment Discussion

- Environmental enrichment can improve mouse welfare and breeding productivity
- Benefits depend on the strain
- Enrichment trials and comparisons help to determine the best type for each strain

Aged C57BL/6J Mice

- Most studied inbred mouse strain
- Reference genome for mice
- Prone to eye defects, hair loss, malocclusion, dermatitis
- Males and females are offered up to 90 weeks (~22 months) of age

Human – Mouse Life Stage Equivalencies

Adapted from Figure 20-3: Flurkey, Currer, and Harrison, 2007. 'The mouse in biomedical research.' in James G. Fox (ed.), American College of Laboratory Animal Medicine series (Elsevier, AP: Amsterdam; Boston)

Survival of C57BL/6J

Data from the Nathan Shock Aging Center at The Jackson Laboratory (Yuan2 data set in the Mouse Phenome Database; phenome.jax.org)

Defining Tolerated Conditions for Aged B6 Colonies

Tolerated

- Weight variation
- Coat color changes
- Hair loss

Not Tolerated

- Dermatitis
- Bite wounds
- Malocclusion
- Hernias
- Other adverse clinical conditions

Husbandry & Housing Conditions

Diet: LabDiet 5K52 formulation (6% fat by weight)

Water: Filtered, acidified & autoclaved water in bottles

Change frequency: Weekly (ventilated) or 2X weekly

(conventional)

Bedding: Aspen chips & aspen shavings

Extra enrichment: Cardboard shelters

General Observations

Few mice are lost on a typical week

Age Range	Females	Males
6 mo – 1 yr	0.18%	0.16%
1 – 1.5 yrs	0.71%	0.14%
1.5 yrs +	TBD	1.0%

Common reasons for losses

Females	Males

<u> Aged 6 Mo – 1 Yr</u>
Dermatitis (53%)
Bite Wounds (20%)

Aged 1 - 1	.5	Yrs
Dermatitis	(5	2%
Mortality	(16	5%)

number indicates % of losses due to the indicated reason

Aged 6 Mo – 1 Yr
Mortality (28%)
Dermatitis (18%)

<u> Aged 1 – 1.5 Yrs</u>
Mortality (44%)
Bite Wounds (14%

Aged >1.5 Yr Mortality (57%) Dermatitis (12%)

Additional Information

- Aged B6 Strain Data Sheet (<u>jax.org/aged-b6</u>)
- Mouse Phenome Database (<u>phenome.jax.org</u>)

The End

Thank you!

andrews@jax.org

Acknowledgements

- Lauren Thibault
- Ismael Aguilar
- Jessica Strebel
- Krystal Leighton
- Richard French

