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Chair’s Column
Phebe Vayanos
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Dear Colleagues,

Welcome to the fourth newsletter of the Stochastic
Programming Society and our last newsletter during
my term as Chair of the Committee on Stochastic
Programming (COSP).

I would like to begin by highlighting notable awards
and honors earned by our members and by re-
searchers in closely related fields since our last
newsletter:

• Amy M. Cohn was named INFORMS Fellow, for
contributions to improving healthcare delivery; for
providing experiential learning opportunities in
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healthcare to Operations Research students; and
for her leadership and service to INFORMS and
the profession.

• David L. Woodruff was named INFORMS Fellow,
for contributions to the theory and practice of
stochastic optimization, the development of high-
quality open source software, and service to the
operations research community.

• Zuo-Jun (Max) Shen and his co-authors earned the
INFORMS Daniel H. Wagner Prize for Excellence
in the Practice of Advanced Analytics and Oper-
ations Research for their work at JD.com to im-
prove fulfillment efficiency with data-driven inte-
grated assortment planning and inventory alloca-
tion.

• Adam Elmachtoub won the INFORMS Donald P.
Gaver, Jr. Early Career Award for Excellence in
Operations Research for outstanding research con-
tributions at the interface of operations research,
machine learning, and optimization; for the cre-
ativity and impact of his research collaborations
within both the private and public sectors; and for
his outstanding contributions to the education and
mentoring of students.

• Anatoli Juditsky and Arkadi Nemirovski earned
the Frederick W. Lanchester Prize for their book
“Statistical Inference via Convex Optimization”
which provides a modern perspective on the con-
nection between convex optimization and high-
dimensional statistics, commonly used in machine
learning.

• David Shmoys won the George E. Kimball Medal in
recognition of distinguished service to INFORMS
and to the profession of operations research and
the management sciences. He was also awarded
the Philip McCord Morse Lectureship Award in
recognition of his pioneering contribution to the
field of operations research and the management
sciences.

• Jim Dai earned the John von Neumann Theory
Prize for his fundamental and sustained contribu-
tions to stochastic systems theory, most promi-
nently for his seminal work on stochastic network
stability and heavy traffic diffusion approxima-
tions.

• Barry L. Nelson was awarded the Saul Gass Ex-
pository Writing Award for his clear and concise
writing.

• Alice E. Smith was inducted into the National
Academies of Engineering (NAE) for advance-

ments in computational intelligence as applied to
modeling and optimization of complex systems.

Please join me in congratulating our colleagues! And
please let me know about any recognitions I missed
which deserve highlighting on our social media.

In a few weeks, many of us will be reuniting again at
the International Conference on Stochastic Program-
ming (ICSP) chaired by Vincent Leclère in Paris, see
here: https://icsp2025.org. At the conference,
we have a very exciting program carefully curated by
an all-star scientific committee chaired by Andrzej
Ruszczyński.

Since our last newsletter, we sadly lost Roger J-B
Wets, a pioneer of stochastic programming whose
foundational work has profoundly shaped our field.
His impact will endure through his papers, books,
students, collaborators, and lasting influence on our
community. In this newsletter, we include memorial
columns for Roger J-B Wets, Werner Römisch, and
Gautam Mitra. They will all be dearly missed. At
ICSP, we will have a dedicated session in their mem-
ory.

The upcoming ICSP will mark the end of our term
for the current COSP (which includes Merve Bodur,
Giorgio Consigli, Vincent Leclère, Bernardo Pagnon-
celli, Ward Romeijnders, Wim van Ackooij, Wolfram
Wiesemann, Haoxiang Yang, and myself). Therefore,
I would like to highlight some of the initiatives that
we have completed during our term, which I hope will
help our community in various ways.

1. To help elevate the work of our community, we
have launched 2 new prizes/awards for our society,
to be awarded at each ICSP, to add to the current
student paper prize. These are:

(a) An early-career/junior researcher prize tar-
geted at researchers in our community
within 7 years of their highest degree. The
prize will be named after Roger J-B Wets,
who we sadly lost this year. His family has
generously offered to support this prize in
perpetuity in honor of his memory. The
first iteration of the junior prize already hap-
pened this year and the winner(s) will be an-
nounced at ICSP.

(b) An impact prize, for an optimization under
uncertainty solution that is deployed, with
emphasis placed on quantifiable impact (e.g.,
money saved, lives saved), on how innovative
the application is, and on how challenging it
was to deploy it (e.g., technical or political
difficulties that had to be overcome).

https://icsp2025.org
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We have drafted associated changes to the by-
laws, adding two articles about these prizes, which
will be voted on at ICSP. These draft by-laws can
be found here: https://www.dropbox.com/sc

l/fi/90h32al3o4ai4o5nnex4y/The-Committee

-on-Stochastic-Programming-Bylaws-Revis

ed-July2025.docx?rlkey=xp143gilm04ccf8au

m7w1xecy&dl=0. To arrive at these two awards
and at the specifics of the by-laws, we interviewed
over 15 members of our community who either
currently hold or have held in the past leadership
roles in our community. This helped us narrow
it down to 3 candidate awards (junior researcher
prize, impact prize, and best video competition).
We then solicited your feedback through an on-
line survey and also live at the last SPS Business
Meeting at ISMP 2024. Based on this feedback,
we further narrowed it down to the junior prize
and the impact prize, drafted the associated by-
laws and sent them out to many of our members
for feedback before finalizing them. I am grateful
to Ward Romeijnders, Vincent Leclère, Haoxiang
Wang, and Wim van Ackooij for co-leading this
initiative with me.

2. We have updated the by-laws for the Dupačová-
Prékopa Best Student Paper Prize in Stochastic
Programming based on the recommendations of
this year’s Best Student Paper Prize Committee
and issues they faced in evaluating submissions.
First, the original by-laws required the student(s)
to be the first author(s). However, in our com-
munity, many groups follow alphabetical author
order, creating ambiguity as to whether students
who did most of the work on a paper are eligi-
ble for the award. The new by-laws make it clear
that what matters is that the student should have
been the main contributor (rather than requiring
them to be the first author). Second, the original
by-laws gave the impression that a single senior co-
author (the student’s advisor) is allowed. We now
clarify that multiple senior co-authors are allowed.
Finally, we clarify who the entrants/winners are
(in case of multiple student authors) and we en-
sure that all co-authors must sign the letter stating
that the eligibility criteria are met. After mak-
ing the changes, we also checked back with the
Best Student Paper Prize Committee and they
confirmed that the changes we made address their
concerns. The proposed by-law changes can be
found here: https://www.dropbox.com/scl/fi

/90h32al3o4ai4o5nnex4y/The-Committee-o

n-Stochastic-Programming-Bylaws-Revised

-July2025.docx?rlkey=xp143gilm04ccf8aum7

w1xecy&dl=0 and will be voted on at the upcom-
ing ICSP in Paris.

3. We launched a new, more modern, better-
structured, and easier-to-maintain SPS website,
see here: https://www.stoprog.org. You will
note that we also have a new logo which is more
modern than the original one but is similar in
spirit. A huge thank you to Wolfram Wiesemann,
our webmaster, for leading this initiative and to
Bernardo Pagnoncelli, our treasurer, for manag-
ing its financials.

4. We migrated our mailing list to a new system as
the original one had many issues, which signifi-
cantly delayed the publication of messages. With
the new system, messages can be approved imme-
diately. A big thank you to Wolfram Wiesemann
for helping me with the migration.

5. We published two issues of the SPS Newslet-
ter corresponding to the two years of our term:
one in July 2024 and the other in July 2025.
Special thanks to Giorgio Consigli and Haoxiang
Yang, who thoughtfully curated and edited these
newsletters.

6. During our term, we ran three series of the SPS
Seminar Series, corresponding to a total of 26 talks
(27 speakers), 3 of which were tutorials, and 6
of which were from junior researchers. We also
created a dedicated mailing list and website for the
series, see here: https://sites.google.com/vie
w/sps-seminar-series/. All talks were recorded
and are available on our SPS YouTube channel,
see here: https://www.youtube.com/@stochas

ticprogrammingsocie3357. A huge thank you to
Merve Bodur and Giorgio Consigli for organizing
and hosting this important initiative and to Wim
van Ackooij for maintaining the YouTube channel.

7. We continue to maintain our LinkedIn (https:
//www.linkedin.com/groups/13799735/) and
Twitter (https://twitter.com/stoprogsocie
ty) pages: a big thank you to Bernardo Pagnon-
celli and Merve Bodur, respectively!

If you have any thoughts/ideas/questions on the
above initiatives or ideas of other initiatives you
would like us to push, please let me know by email
at: phebe.vayanos@usc.edu and I will make sure to
transmit them to the new COSP.

At ICSP, we will be announcing the winners of the
Dupačová-Prékopa best student paper prize. Fi-
nalists are Maria Carolina Bazotte, Mengmeng Li,
Haoming Shen, Tianyu Wang, and Xian Yu. We
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https://www.dropbox.com/scl/fi/90h32al3o4ai4o5nnex4y/The-Committee-on-Stochastic-Programming-Bylaws-Revised-July2025.docx?rlkey=xp143gilm04ccf8aum7w1xecy&dl=0
https://www.dropbox.com/scl/fi/90h32al3o4ai4o5nnex4y/The-Committee-on-Stochastic-Programming-Bylaws-Revised-July2025.docx?rlkey=xp143gilm04ccf8aum7w1xecy&dl=0
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https://www.dropbox.com/scl/fi/90h32al3o4ai4o5nnex4y/The-Committee-on-Stochastic-Programming-Bylaws-Revised-July2025.docx?rlkey=xp143gilm04ccf8aum7w1xecy&dl=0
https://www.dropbox.com/scl/fi/90h32al3o4ai4o5nnex4y/The-Committee-on-Stochastic-Programming-Bylaws-Revised-July2025.docx?rlkey=xp143gilm04ccf8aum7w1xecy&dl=0
https://www.dropbox.com/scl/fi/90h32al3o4ai4o5nnex4y/The-Committee-on-Stochastic-Programming-Bylaws-Revised-July2025.docx?rlkey=xp143gilm04ccf8aum7w1xecy&dl=0
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will also be announcing the winners of the inaugural
Roger J-B Wets Junior Researcher Best Paper Prize
in Stochastic Programming. Finalists are Rui Gao
and Bradley Sturt. Congratulations to the finalists!

During the SPS Business Meeting at ICSP, we will be
sharing with you more about the above initiatives,
voting on the new by-laws, conducting the COSP
elections (electronically for the first time!), and shar-
ing with you the possible locations of the next ICSP
in 2028!

I hope you are all having a wonderful summer and
I look forward to seeing all of you at ICSP in a few
weeks.

Best Wishes,
Phebe

SPS Virtual Seminar

Series: Season III & IV
Merve Bodur∗ and Giorgio Consigli∗∗

∗University of Edinburgh (UK)
∗∗Khalifa University of Science and Technology (UAE)

merve.bodur@ed.ac.uk and
giorgio.consigli@ku.ac.ae

on behalf of COSP

The Stochastic Programming Society proudly contin-
ues its Virtual Seminar Series, a tradition that began
in 2020 to bring together a global community pas-
sionate about decision-making under uncertainty. As
always, we aim to highlight recent breakthroughs, fos-
ter collaboration across disciplines, and provide inclu-
sive opportunities for researchers at all career stages.
The bi-weekly seminars are launched on September
13 through December 6 in 2024, then resumed on
January 17 and concluded on May 9 in 2025.

2024-2025 Seminar Highlights

This year’s lineup featured a diverse set of leading
researchers pushing the frontiers of stochastic and ro-
bust optimization:

• Stan Uryasev opened the 2024-2025 series by
introducing the Risk Quadrangle framework,
which links optimization, risk management, and
statistical estimation.

• Jeff Linderoth introduced probing-enhanced
stochastic programming and a specialized
branch-and-bound method.

• Karmel Shehadeh proposed a trade-off robust
optimization model bridging optimism and con-
servatism in data-driven decisions.

• Melvyn Sim presented a unified framework for
models that integrate robust optimization and
robust satisficing paradigms.

• Siqian Shen introduced a trust-aware distri-
butionally robust optimization framework in-
formed by data from multiple sources.

• Angelos Georghiou proposed a robust, de-
centralized approach for multi-agent decision-
making, minimizing communication and pro-
moting privacy.

• Bernardo Costa presented duality and bounding
techniques for risk-averse multistage stochastic
programs.

merve.bodur@ed.ac.uk
giorgio.consigli@ku.ac.ae
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• Susan Hunter discussed two-stage stochastic
multi-objective linear programs, including prop-
erties and solution methods.

• Alois Pichler focused on fundamental results on
stochastic dominance partial orders with appli-
cations across different fields.

• The series concluded with Haofeng Zhang
and Adam Elmachtoub, who co-presented the-
oretical insights into integrated estimation-
optimization.

Tutorials and Junior Research Spotlight

We continued to invest in accessibility and inclusive-
ness with tutorial sessions and a dedicated junior
speaker spotlight:

• Francesca Maggioni and Utsav Sadana delivered
tutorials on bounding methods for multistage
stochastic programs and the emerging field of
contextual optimization, respectively.

• Junior researchers Di Zhang, Bianca Marin
Moreno, Maria Bazotte, and Haoyun Deng
tackled cutting-edge topics including sampling-
based progressive hedging, convex/concave util-
ity reinforcement learning, two-stage stochas-
tic programs with decision-dependent probabil-
ity distribution, and ReLU Lagrangian cuts for
stochastic mixed-integer programming.

To view talk recordings, please visit the SPS YouTube
channel (https://www.youtube.com/@stochasti
cprogrammingsocie3357), and to register for future
events, please check out the SPS Seminar Series Web-
site (https://sites.google.com/view/sps-semin
ar-series/). Looking forward to seeing you next
time for more discovery and dialogue!

The ICSP XVI

Dupačová-Prékopa

Student Paper Prize

Activated Benders
Decomposition with Locally

Pareto-Optimal Cuts
Kayla Kummerlowe (née Cummings)

MIT (USA)

kcummings@microsoft.com

The 2023 Dupačová-Prékopa Best Student Paper Fi-
nalist was awarded to Kayla Kummerlowe (née Cum-
mings) at ICSP XVI for the paper “Activated Benders
Decomposition with Locally Pareto-Optimal Cuts,”
co-authored with Alexandre Jacquillat and Vikrant
Vaze, preprint in INFORMS Journal on Computing.
Kummerlowe completed the work during her time as
a PhD student at Massachusetts Institute of Technol-
ogy. Below is a summary of this paper.

We contribute an exact activated Benders decom-
position (ABD) algorithm for two-stage stochas-
tic mixed-binary optimization with a nested block-
angular structure. Compared to Benders decomposi-
tion (BD), ABD exploits linking constraints between
first-stage and second-stage decisions to solve smaller,
“activated” subproblems at each iteration, by fixing
variables and eliminating redundant constraints. In
facility location, network design, and unit commit-
ment, the activated problems are induced by the se-
lected facilities, arcs, and plants. Using a primal-
dual approach, the ABD scheme lifts the activated
solution into the full dual space to retrieve optimal-
ity and feasibility cuts. The algorithm circumvents
exponentially large subproblems without sacrificing
exactness: we prove that it converges finitely to an
optimal solution.

We present ABD for a generic two-stage mixed-binary
optimization problem with continuous recourse and
linking constraints, referred to as (2MBO). Let c ∈
Rk+n, f ∈ Rp, A ∈ Rm1×(k+n), G ∈ Rm2×(k+n),
H ∈ Rm2×p, b ∈ Rm1 and t ∈ Rm2 . Let x ∈ {0, 1}k×
Rn

+ and y ∈ Rp
+ be first- and second-stage variables.

(2MBO) min
{
c⊤x+ f⊤y : x ∈ X , y ∈ P(x)

}
,

(1)

https://www.youtube.com/@stochasticprogrammingsocie3357
https://www.youtube.com/@stochasticprogrammingsocie3357
https://sites.google.com/view/sps-seminar-series/
https://sites.google.com/view/sps-seminar-series/
kcummings@microsoft.com
https://doi.org/10.1287/ijoc.2023.0311
https://doi.org/10.1287/ijoc.2023.0311
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Presenters in the SPS Seminar Series in Season III, Fall 2024.

Presenters in the SPS Seminar Series in Season IV, Spring 2025.
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with X = {x ∈ {0, 1}k × Rn
+ : Ax ≥ b}

and P(x) = {y ∈ Rp
+ : Hy ≥ t−Gx}.

Let D = {π ∈ Rm2
+ : π⊤H ≤ f⊤} denote the dual

second-stage polyhedron, and {π̂u : u ∈ U} and {r̂v :
v ∈ V} denote its extreme points and extreme rays.
The Benders reformulation of (2MBO) is

min
{
c⊤x+ θ : x ∈ X , (x, θ) ∈ F(U ,V)

}
, (2)

with F(U ,V) = {(x, θ) ∈ Rk+n+1 :

θ ≥ (t−Gx)⊤π̂u,∀u ∈ U ;
0 ≥ (t−Gx)⊤r̂v,∀v ∈ V}.

Let MP(U ′,V ′) denote the BD main problem, which
produces a first-stage solution x ∈ X ; and let SP(x)
denote the subproblem. If the subproblem admits a
direction of unboundedness rv, v ∈ V (an optimal
solution πu, u ∈ U), then it generates a feasibility
(optimality) cut.

We define activation constraints as linking con-
straints between first- and second-stage variables, in-
dexed as J A, with J O indexing other constraints.
Activated constraints are simply activation con-
straints with a non-zero right-hand side based on x,
indexed by J A(x) ⊆ J A. A deactivated constraint
fixes all variables with nonzero coefficients to zero.
We define activation variables—indexed as QA—as
those that can be deactivated for some first-stage so-
lution, and deactivated variables as those that are
forced to zero by x. Let QA(x) ⊆ QA index the
activated variables, and let QO index the other vari-
ables. Finally, we define an invisible constraint as a
non-activation constraint that consists solely of de-
activated variables. We assume that invisible con-
straints are always satisfied; we store other, visi-
ble, constraints in J O(x). The activated subprob-
lem projects the subproblem into the primal subspace
spanned by activated variables and the dual subspace
spanned by activated and visible constraints. Fixing
x ∈ conv(X ), the activated subproblem is

SP(x) : max
π∈D(x)

∑
j∈JA(x)∪JO(x)

πj

(
tj − g⊤

j x
)
, (3)

with D(x) =
{
π ∈ R|JA(x)∪JO(x)|

+ :∑
j∈JA(x)∪JO(x)

hjiπj ≤ fi,

∀i ∈ QA(x) ∪QO
}
. (4)

The solution of SP(x) does not include the dual
prices of the omitted (deactivated and invisible) con-
straints, which cannot be assumed to have zero du-
als. Thus, we lift any solution of the activated sub-
problem into the full-dimensional dual space, by using

a linear-time primal-dual approach to map extreme
points and extreme rays of the activated polyhedron
into extreme points and extreme rays of the full poly-
hedron, while preserving optimality and unbounded-
ness.

First, Lemma 1 maps any feasible solution of the
full subproblem into one of the activated subprob-
lems. The crown jewel of our primal-dual approach,
Lemma 2 identifies a linear-time dual transforma-
tion. This transformation maps any (optimal) ex-
treme point of the activated dual subproblem into an
(optimal) extreme point of the full dual subproblem,
exploiting the fact that any feasible lifting procedure
preserves optimality due to the zero-cost coefficients
posed by the deactivated constraints.

Lemma 1. Let x ∈ X and π̂ ∈ D. Then proj(π̂) ∈
D(x), where proj(·) denotes the projection of π̂ in
the dual subspace spanned by the activated and visible
constraints:

proj(π̂) := (π̂j)j∈JA(x)∪JO(x). (5)

Lemma 2. Let ZU = {(x,π) : x ∈ X , π ∈ D(x)}.
Let ΦU : ZU → Rm2

+ . For any (x,π) ∈ ZU , we
define ΦU

j (x,π) as follows for each j ∈ {1, . . . ,m2}:

ΦU
j (x,π) =

πj if j ∈ J A(x) ∪ J O(x),

0 if j ∈ J O \ J O(x),

max
i∈QA\QA(x)

κ(i)=j

−1
hji

( ∑
k∈JA(x)∪JO(x)

hkiπk − fi

)+

if j ∈ J A \ J A(x).

(6)

Note that ΦU (x,π) ∈ D for all (x,π) ∈ ZU and
is an extreme point of D whenever π is an extreme
point of D(x). If SP(x) admits an optimal solution
π ∈ D(x), then SP(x) and SP(x) achieve the same
cost and ΦU (x,π) is an optimal solution of SP(x).

The full article provides an analogous Lemma for
transformation ΦV that maps any extreme ray of
the activated dual polyhedron into one of the dual
polyhedra and that preserves unboundedness. These
Lemmas establish the equivalence of the activated
and full subproblems: if one admits an optimal so-
lution, so does the other; if one is unbounded, so
is the other; and if one is infeasible, so is the other.
Moreover, the dual and dual-ray transformations map
extreme points and extreme rays of the activated
dual polyhedron into extreme points and extreme
rays of the full dual polyhedron. Specifically, if
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{
πu : u ∈ U(x)

}
and

{
rv : v ∈ V(x)

}
index the ex-

treme points and extreme rays of D(x) for any x ∈ X ,
we obtain:⋃

x∈X

{
ΦU (x,πu) : u ∈ U(x)

}
⊆ {π̂u : u ∈ U} (7)⋃

x∈X

{
ΦV (x, rv) : v ∈ V(x)

}
⊆ {r̂v : v ∈ V} . (8)

Whenever an incumbent solution (x(τ), θ(τ)) is not
optimal, the ABD generates an optimality or feasibil-
ity cut that separates it from the main problem’s fea-
sible region. Finiteness follows from the finite number
of cuts (Equations (7)–(8)).

Theorem 1. Activated Benders decomposition is an
exact and finite algorithm for (2MBO).

We also augment the method from [2] to gener-
ate locally Pareto-optimal (LPO) cuts in a subspace
including the incumbent first-stage decision. The
LPO cuts can be generated via activated subprob-
lems, retaining the computational benefits of the
ABD algorithm. Together, the ABD algorithm and
LPO cuts exploit the sparse first-stage structure and
linking constraints to accelerate cut generation and
to strengthen Benders cuts in “promising” regions.
Given a core point x0 in the relative interior of the
convex hull of the first-stage region X , the Pareto
dual subproblem seeks an optimal solution to the dual
subproblem that also maximizes the dual objective in
x0:

SP0(x;x0)

max

{(
t−Gx0

)⊤
π : π ∈ argmax

π̂∈D
(t−Gx)

⊤
π̂

}
.

(9)

[2] showed that, if π0 solves SP0(x;x0), then the cut
θ ≥ (t − Gx)⊤π0 cannot be dominated by another
cut θ ≥ (t−Gx)⊤π across the first-stage region X .

Global Pareto-optimality requirements may dilute
the local strength of the resource function approxi-
mation in an exponentially sized main problem. Ad-
ditionally, generating Pareto-optimality cuts via an
extra subproblem (Equation (9)) may diminish the
computational benefits of ABD. We propose LPO
cuts to strengthen optimality cuts in “promising” re-
gions, and we generate them with activated subprob-
lems. For any subset K ⊆ {1, . . . , k}, let X (K) :=
X ∩ {x ∈ Rk+n

+ : xi = 0,∀i ∈ K} denote the first-
stage region in which the binary variables in K are
set to zero.

Definition 1. Let K ⊆ {1, . . . , k}. Consider π1,π2 ∈
D. A cut θ ≥ (t−Gx)⊤π1 locally dominates another

cut θ ≥ (t − Gx)⊤π2 with respect to K if (a) (t −
Gx)⊤π1 ≥ (t −Gx)⊤π2 for all x ∈ X (K), and (b)
(t−Gx)⊤π1 > (t−Gx)⊤π2 for some x ∈ X (K).

Definition 2. Let K ⊆ {1, . . . , k} and π ∈ D. The
cut θ ≥ (t − Gx)⊤π is locally Pareto-optimal with
respect to K if there is no other cut that locally dom-
inates it with respect to K.

Finally, we define a local core point with respect to K
as a point in the relative interior of the convex hull
of X (K). Instead of using a core point to generate a
Pareto-optimal cut, our procedure uses a local core
point to generate a locally Pareto-optimal cut.

Theorem 2. Let x̂ ∈ X and define K ⊆ {1, . . . , k}
such that x̂ ∈ X (K). Let x0 be a local core point
of X with respect to K. Consider π0, an optimal
solution of SP0(x̂;x0). Then the optimality cut θ ≥
(t−Gx)⊤π0 is locally Pareto-optimal with respect to
K.

As with ABD, we apply a similar approach to gen-
erate locally Pareto-optimal cuts via an activated
Pareto dual subproblem. The full article provides the
linear-time lifting procedure for activated LPO cuts,
using the activated Pareto dual subproblem. The full
article also illustrates the benefits of the ABD al-
gorithm and LPO cuts for solving large-scale para-
transit itinerary planning instances, together with
code and simulated data [1]. Benchmark algorithms
exhibit limited scalability: off-the-shelf implementa-
tions only scale to small instances, and BD leaves
large optimality gaps in medium instances with tens
of thousands of itineraries and 10–50 scenarios. To-
gether, the ABD algorithm and activated LPO cuts
outperform the best BD benchmark in terms of so-
lution quality (7–9% reduction in expected costs),
solution guarantees (tight optimality and statistical
bounds), and computational performance (speedups
by one or two orders of magnitude). From a practi-
cal standpoint, our two-stage stochastic optimization
approach can reduce paratransit operating costs by
up to 3.5% without inducing service delays.
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The ICSP XVI

Dupačová-Prékopa

Student Paper Prize

General Feasibility Bounds for
Sample Average Approximation

via Vapnik–Chervonenkis
Dimension

Fengpei Li
Columbia University (USA)

fl2412@columbia.edu

The 2023 Dupačová-Prékopa Best Student Paper Fi-
nalist was awarded to Fengpei Li at ICSP XVI for
the paper “General Feasibility Bounds for Sample Av-
erage Approximation via Vapnik–Chervonenkis Di-
mension,” coauthored with Henry Lam, published in
SIAM Journal on Optimization, 32(2): 1471–1497,
2022. Below is a summary of this paper.

This paper is among several recent works [1, 3] that
follow up on the seminal work of [2], exploring the use
of sample average approximation (SAA) for stochas-
tic programming problems without assuming rela-
tively complete recourse. In such setting, we consider
stochastic programs of the form

inf
x∈X⊆Rn

F (x) := E[f(x, ξ)],

where X ⊆ Rn is the decision space and ξ : Ω → Ξ ⊆
Rr is a random vector defined on a complete probabil-
ity space (Ω,F , P ). The extended real-valued func-
tion f(ξ, ·) : X → R ∪ {+∞} is lower semicontinu-
ous with the feasible set {x ∈ X : F (x) < +∞} as-
sumed nonempty. As discussed in [2], the two-stage
stochastic problems, where the objective is defined
via a second-stage optimization problem:

f(x, ξ) = inf
y∈Y (x,ξ)

gξ(y),

is said to have relatively complete recourse (RCR),
if for every decision x ∈ X and almost every realiza-
tion of ξ, the feasible set Y (x, ξ) is nonempty, equiv-
alently, f(x, ·) < ∞ almost surely ∀x ∈ X. When
RCR assumption is violated, i.e., P({ξ ∈ Ξ : f(ξ, x) =

+∞}) > 0 for some x ∈ X, we are interested in quan-
tifying V (x⋆(ξ[N ])), a measure of feasibility for the
SAA solution where

V (x) ≜P (ξ ∈ Ξ : x /∈ dom fξ ≜ {x ∈ X :

f(ξ, x) < +∞}),

is the violation probability of a decision x and x⋆(ξ[N ])
is the solution of the SAA based on N I.I.D. sam-
ples ξ[N ] ≜ (ξ1, ξ2, . . . , ξN ) from P, i.e., ξ[N ] ∼ PN ≜
P× P× · · · × P︸ ︷︷ ︸

N times

:

x⋆(ξ[N ]) = argmin
x∈X

1

N

N∑
i=1

f(x, ξi).

In this paper, we employ probably approximately cor-
rect (PAC) learning, a framework for mathematical
analysis in computational learning theory, to analyze
the feasibility of SAA solutions. In this framework,
the learner selects a hypothesis function from a spec-
ified class based on observed samples. The objective
is to ensure that, with high probability (“probably”),
the chosen hypothesis has a small generalization er-
ror (“approximately correct”). Consistent with prior
research [1, 2], our analysis demonstrates exponen-
tial convergence PN (V (x∗(ξ[N ])) > ϵ) for any pre-
specified tolerance level ϵ. While prior works such as
[2, 1] established exponential convergence by lever-
aging specific problem structures - such as proper-
ties of basic feasible solutions inherent to linear pro-
gramming formulations [1] or the chain-constrained
domain defined in [2] - and sometimes leaving cer-
tain constants implicit or unknown in the bound.

We use the Vapnik–Chervonenkis (VC) dimension as
the measure of complexity for H, a convenient but
by no means exclusive choice within the PAC learn-
ing framework, to yield explicit feasibility bounds
with readily computable constants dependent solely
on problem parameters and VC dimension of H ≜
{Hx}x∈X where

Hx ≜ {ξ ∈ Ξ : f(ξ, x) < +∞},

while imposing no additional structural or regularity
constraints. In particular, the main results can be
summarized as:

PN
(
V (x⋆(ξ[N ])) > ϵ

)
≤ 2 exp

(
−Nϵ

4

)(
12

ϵ

)d

(1)

where d is the VC dimension H. As a result, the
method presented in this paper recovers previously
established results on SAA feasibility and yields some

fl2412@columbia.edu
https://epubs.siam.org/doi/10.1137/21M140211X
https://epubs.siam.org/doi/10.1137/21M140211X
https://epubs.siam.org/doi/10.1137/21M140211X
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previously unattainable results, including in two-
stage stochastic programming with mixed-integer re-
course and high-dimensional stochastic programming
with low-dimensional structures, e.g., sparsity, low-
rankness. The result (1) significantly simplifies the
analysis; the primary challenge lies in bounding the
VC dimension dVC of H, which is case-dependent,
e.g., such as number of extreme rays of the polyhe-
dral cone, finiteness properties, and the order of a
chain-constrained domain.
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In Memoriam:

Roger J-B Wets
Johannes Royset

Department of Industrial and Systems Engineering,
University of Southern California (USA)

royset@usc.edu

The stochastic programming community lost one of
its giants on April 1, 2025. Distinguished Professor
Roger J-B Wets (1937-2025) passed away in Davis,
California, after a period of declining health. Origi-
nally from Belgium, Professor Wets came to Berke-
ley in the early 1960s for graduate studies under the
guidance of George Dantzig and David Blackwell on
pioneering work in stochastic programming.

After graduation, Professor Wets held positions
at Boeing Scientific Research Labs, University of
Chicago, and University of Kentucky. He was a
leader at IIASA, Laxenburg, Austria (1980-1984; act-
ing 1985-1987) and instrumental in the remarkable
number of outstanding scholars from the East and
the West passing through the institute. From 1984
to 2009, he was Professor and Distinguished Profes-
sor of Mathematics at University of California, Davis.
After retirement, he remained active as Distinguished
Research Professor of Mathematics and advised stu-
dents until 2018. Professor Wets’ fundamental con-
tributions to stochastic programming, mathemati-
cal optimization, and variational analysis have been
widely recognized. He was a Guggenheim Fellow, re-
ceived the Dantzig and Lanchester prizes, and was
awarded Doctor Honoris Causa by Universität Wien.
He was recognized in 2004 as a Pioneer in the field
by the Stochastic Programming Society.

Professor Wets developed the first algorithm directed
specifically at two-stage stochastic optimization, the
L-Shape Method, in 1969 with R. van Slyke. The
method has been implemented in many software
packages and remains a standard approach to such
problems. In his earliest work, Professor Wets rec-
ognized the special kind of induced constraints that
emerge naturally in multi-stage decision problems
and coined the term. Later, he introduced the term
nonanticipativity constraints in multi-stage stochas-
tic optimization problems to describe the constraints
that enforce the necessity of making decisions based
only on the information available at the time of the
decision. This breakthrough led to two 1976 papers

royset@usc.edu
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(with R.T. Rockafellar) that established duality the-
ory for stochastic programs and fundamental insight
about the price of information. Professor Wets devel-
oped the Progressive Hedging Algorithm for multi-
stage stochastic programs in 1991 (with Rockafellar),
which is now implemented in the widely used software
Pyomo.

Roger Wets’ strong law of large numbers (developed
with H. Attouch, Z. Artstein, and L. Korf in the
90s) gives the most versatile consistency theory for
M-estimators. It relies on his even more fundamen-
tal work on approximation theory for optimization
and variational problems: Professor Wets coined the
term epi-convergence in 1980, which is now accepted
as the “right” notion for approximating minimiza-
tion problems; it ensures the convergence of optimal
solutions and optimal values under the mildest pos-
sible assumptions. His contributions started in 1967
with a fundamental result about convergence and dis-
tances between convex cones as well as between their
polars and include the first results on uniform ap-
proximations of sets and the convergence of measur-
able selections (both in 1981 with G. Salinetti), an
Arzela-Ascoli Theorem for set-valued mappings (with
A. Bagh in 1996), and a quantitative theory for epi-
convergence (with Attouch in the 80s and early 90s).
Many of Professor Wets’ contributions are summa-
rized and expanded in the seminal treatise, Varia-
tional Analysis (with Rockafellar in 1998).

Professor Wets will be greatly missed, especially for
his kindness and generosity to all those aspiring re-
searchers who sought his expert advice.

Roger J-B Wets

In Memoriam:

Werner Römisch

A Pioneer of Stochastic
Optimization

René Henrion
Weierstrass Institute for Applied Analysis and

Stochastics (Germany)

henrion@wias-berlin.de

Werner Römisch (28.12.1947–7.6.2024)

On June 7 of last year, Werner Römisch, a pioneer
in stochastic optimization, passed away at the age of
76. He was a highly esteemed member of our commu-
nity whose fundamental contributions—particularly
in the area of solution stability for stochastic opti-
mization problems—have had a lasting impact on the
development of our field. His lifetime achievements
were honored in 2018 with the Khachiyan Prize of the
INFORMS Optimization Society.

Werner Römisch was born in 1947 in Zwickau, East
Germany. He studied mathematics at Humboldt Uni-
versity of Berlin (HUB), where he earned his doctor-
ate in 1976. In 1993, he became Professor of Applied
Mathematics at HUB. He was the co-author of 150
publications, including three books, served as an as-
sociate editor for several journals such as the SIAM
Journal on Optimization, and was involved in more
than 20 third-party funded research projects, nearly
all of which were dedicated to applications of stochas-
tic optimization in the energy sector. Furthermore,
he supervised around 25 master’s theses and 12 doc-
toral dissertations, and mentored four habilitation
theses.

henrion@wias-berlin.de
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Werner Römisch’s original mathematical background
was in numerical mathematics, which he also taught
at HUB. Beginning in the 1980s, his research increas-
ingly focused on stochastic optimization, particularly
on the convergence rates of approximation methods.
Inspired by developments in nonlinear parametric op-
timization at HUB, he later devoted much of his at-
tention to questions of solution stability in stochas-
tic optimization. A whole series of joint publica-
tions with Rüdiger Schultz on solution stability in
problems with recourse or probabilistic constraints
received wide international recognition and strongly
influenced the subsequent work of other colleagues
and students, particularly Darinka Dentcheva and
me, later Andreas Eichhorn, Holger Heitsch, Hernan
Leövey, and many others.

It is especially noteworthy that Werner Römisch’s
mathematical work was not confined to theoreti-
cal development; he always maintained a strong fo-
cus on practical applications, primarily in the en-
ergy sector (electricity and gas). This is evidenced
by long-standing industrial collaborations with the
East German utility VEAG, Electricité de France,
and E.ON Ruhrgas. Of particular practical relevance
were his algorithms for scenario reduction and gener-
ation, based on the previously developed theory of so-
lution stability and the use of problem-adapted prob-
ability metrics. His publication “Scenario Reduction
Algorithms in Stochastic Programming” (with Holger
Heitsch) has been cited over a thousand times, and
the associated SCENRED algorithm is in widespread
use. Another of his research focuses was the study
of polyhedral risk measures in multistage stochas-
tic optimization problems. Over the past ten years,
Werner Römisch turned his attention to the study of
Monte Carlo and quasi-Monte Carlo methods within
stochastic optimization frameworks.

Werner Römisch was an active member of the
Stochastic Programming Community. He was the or-
ganizer of the 9th ICSP, which took place in Berlin
in 2001, and he was co-editor of the Stochastic Pro-
gramming E-Print Series (1999-2018).

Werner Römisch was known by his many colleagues
and friends around the world as a kind, calm, and
sincere person with whom one could always have en-
riching conversations, not only in mathematics. He
mentored his numerous students with exemplary ded-
ication and remained interested in their professional
careers even after their graduation.

On a personal note, I owe Werner more than could fit
on a single page, especially for guiding me toward op-
timization problems under probabilistic constraints

and the concepts of generalized differentiation. I have
lost a teacher, mentor, co-author, and above all, a
friend.

In Memoriam:

Gautam Mitra
Enza Messina

Department of Informatics, Systems and Communication
University of Milan Bicocca (Italy)

enza.messina@unimib.it

We are deeply saddened to announce the passing of
Professor Gautam Mitra, a distinguished academic
and visionary thinker, who passed away on February
2024 at the age of 83.

Gautam’s contributions to the fields of stochastic pro-
gramming, computational optimization, and quanti-
tative decision analytics were instrumental in bridg-
ing the gap between rigorous optimization theory
and its real-world applications, particularly in sup-
ply chain, finance, and risk management.

His academic and professional journey began in 1968
when he pursued a Ph.D. in Computational Methods
in Operational Research at the Institute of Computer
Science, University of London. In the early 1970s,
he started his academic career at Brunel University,
where he was much more than a professor. He served
for many years as Director of the Mathematics and
Statistics Department and founded the CARISMA
research Centre for the Analysis of Risk and Optimi-
sation Modelling Applications.

Gautam’s earliest and most influential contributions
emerged in the mid-1970s when large-scale linear
and integer programming was still evolving. He
tackled a deceptively simple yet fundamentally im-
portant observation: real-world optimization prob-
lems often contain hidden structures that, if properly
identified, can dramatically improve computational
performance. This work epitomizes his research
ethos—combining algorithmic insight with practical
implementation to enhance the scalability and appli-
cability of optimization tools.

enza.messina@unimib.it
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Building on these foundations, Gautam became a
leading voice in the stochastic programming commu-
nity in the 1990s. His research on multi-stage stochas-
tic optimization introduced new modeling paradigms
to finance, supply chain management, and energy sys-
tems. He developed techniques for scenario genera-
tion and solution methods robust to real-world data
noise. Notably, he applied these techniques to Asset
and Liability Management (ALM), creating dynamic
stochastic models that empowered pension funds and
financial institutions to make informed, risk-aware
decisions over long horizons.

In the 2000s, Gautam made remarkable advances in
risk-sensitive optimization. He was among the first
to integrate second-order stochastic dominance (SSD)
into portfolio selection, developing models that re-
spect risk-averse preferences beyond mean-variance
analysis. This work bridged theory and regulatory
finance by offering alternative portfolio optimiza-
tion approaches accounting for investor utility and
downside risk. Simultaneously, he contributed to ro-
bust optimization, helping develop solvers and mod-
eling languages that manage data uncertainty with
bounded adversarial assumptions—critical for logis-
tics and supply chain risk.

In his later years, Gautam extended his vision
to alternative data in finance, becoming an early
adopter of textual sentiment analysis for investment
strategies. His work integrated news sentiment and
NLP-derived signals into portfolio construction mod-
els—what he termed Sentiment-Enhanced Signals
(SES). This research anticipated the data-rich, AI-
driven finance landscape of today’s quantitative in-
vestment world.

Yet Gautam’s impact extended far beyond academia.
He was a visionary entrepreneur who founded Uni-
com Seminars and later OptiRisk Systems, translat-
ing his research in optimization, risk management,
and stochastic programming into practical software
solutions and professional training initiatives widely
used by financial institutions and businesses world-
wide. But perhaps more than any publication or
project, it is his mentorship that defines Gautam’s
enduring legacy for those of us privileged to learn
from him. He pursued excellence without blame,
viewing mistakes as opportunities for growth. He
firmly believed that generosity, knowledge sharing,
transparency, and integrity were fundamental values.
Despite his demanding roles as Head of Department
and business leader, he was always generous with his
time. He made time for every student—discussing re-
search directions and revising papers (except on Sat-
urday mornings, which he reserved for tennis!). His

door was always open for thoughtful and stimulating
discussions. He consistently shared in and celebrated
the successes of his students and collaborators, hon-
oring both their professional achievements and per-
sonal milestones. Even late into his career, Gautam
remained a catalyst for knowledge sharing and com-
munity building.

To this day, many of his former students and collab-
orators remain closely connected, a testament to the
strong, supportive community he so thoughtfully nur-
tured. He will be remembered as a pioneer, mentor,
and builder of bridges—between disciplines, between
theory and practice, and between people.

He is survived by his wife, son, daughter, and beloved
young granddaughter. We extend our deepest condo-
lences to his family, friends, and colleagues. Dear
Gautam, you will be greatly missed.

Gautam Mitra



14 Stochastic Programming Society Newsletter

Invited Columns:

Optimization under

Decision-Dependent

Uncertainty
Giorgio Consigli∗ and Haoxiang Yang∗∗

∗ Khalifa University of Science and Technology, Abu
Dhabi (UAE)

∗∗The Chinese University of Hong Kong, Shenzhen
(China)

giorgio.consigli@ku.ac.ae and
yanghaoxiang@cuhk.edu.cn

This section of the Newsletter hosts contributions
from distinguished colleagues invited to share their
recent contributions on decision-dependent uncer-
tainty, an emerging research subfield within optimiza-
tion under uncertainty.

Decision-Dependent Uncertainty (DDU) arises when
the uncertainty in a model is affected by the decisions
made within that model. Unlike classical stochastic
or robust optimization—where uncertainty is mod-
eled as exogenous and independent from the decision
variables—in DDU, decisions can influence the distri-
bution, support, or realization of uncertain parame-
ters. DDU arises in many realistic situations. For
example, a sensor placement may change the distri-
bution of identifying a disaster, or the pricing decision
may affect the demand uncertainty. In those cases,
the traditional exogenous uncertainty does not cap-
ture this quantitative relationship, which may lead to
suboptimal or misleading decisions. To model uncer-
tainty’s decision-dependency, we can deploy the fol-
lowing model formulations for different types of opti-
mization models:

(SP ) min
x∈X

EP(x)[f(x, ξ)],

(RO) min
x∈X

max
ξ∈Ξ(x)

f(x, ξ),

(DRO) min
x∈X

max
P∈P(x)

EP[f(x, ξ)],

where the decision can directly affect the distribution
P, the uncertainty set Ξ, or the ambiguity set P.

In the first invited article, Miguel Lejeune from the
George Washington University provides a compre-
hensive overview of the types of uncertainty depen-
dent on the decision: Type 1, where decisions can
directly affect the probability distributions and such

change can be further categorized by four different
classes, and Type 2, where decisions affect the un-
certainty realization mechanism. Miguel focuses on
the first type and illustrates the properties and meth-
ods for chance-constrained programs under decision-
dependent uncertainty with three specific examples.

In the second article, Xian Yu and Güzin Bayrak-
san from the Ohio State University discuss a spe-
cific, yet very important type of optimization model
under decision-dependent uncertainty — Contextual
Stochastic Optimization under Decision Dependent
Uncertainty (DD-CSP). Their article offers some im-
portant insights about why such a model is compu-
tationally challenging and how to approximate it in
a tractable fashion. The article also serves as a con-
tinuation of the data-driven optimization in the pre-
vious newsletter, which is an important trend in this
big-data era of operations research.

As Miguel points out in his article, modeling the
decision-dependent uncertainty has been gaining mo-
mentum in the stochastic programming field, not only
reflected by the increasing number of works in differ-
ent model formulations and solution methodologies,
but also underscored by the upcoming Mathemati-
cal Programming special issue titled “Stochastic Pro-
gramming and DRO under Decision-Dependent Un-
certainty”, Eds: Lejeune, Krokhmal and Romeijn-
ders. We hope these two papers can inspire our read-
ers with more ideas to tackle this challenging class
of problems and derive new theoretical and applied
results.

Enjoy your read!

Stochastic Optimization under
Decision-Dependent

Uncertainty: Overview and New
Chance-Constrained Models

Miguel A. Lejeune
George Washington University (USA)

mlejeune@gwu.edu

giorgio.consigli@ku.ac.ae
yanghaoxiang@cuhk.edu.cn
mlejeune@gwu.edu
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Executive Summary: Most stochastic program-
ming and distributionally robust optimization models
focus on problems involving exogenous uncertainty.
Relatively few have addressed decision-dependent (or
endogenous) uncertainty, where the probability distri-
bution of the random variables is altered by the deci-
sions taken within the optimization problem. This
work provides an overview of the various forms
of decision-dependent uncertainty and demonstrates
that such models extend beyond traditional risk-
neutral and recourse-based formulations. In partic-
ular, we focus on chance-constrained problems un-
der decision-dependent uncertainty and present a suc-
cinct summary of three novel models that incorporate
different types of decision-dependent uncertainty.

Stochastic Programming (SP) is a well-established
framework for modeling and solving optimization
problems under uncertainty, in which uncertainty
generally manifests into two main categories: exoge-
nous and endogenous, also referred to as decision-
dependent, uncertainty [3]. Exogenous uncertainty is
independent of the decision variables, and the prob-
ability distribution of the random variables is not af-
fected by the decisions made. In contrast, decision-
dependent uncertainty arises when decisions directly
impact the probability space, indicating that current
choices can shape the uncertainty faced in the future.
While most of the SP literature has traditionally fo-
cused on exogenous uncertainty, interest in decision-
dependent uncertainty has grown significantly in re-
cent years and the area has been gaining momen-
tum. The upcoming Mathematical Programming
special issue titled “Stochastic Programming and Dis-
tributionally Robust Optimization Under Decision-
Dependent Uncertainty” underscores this emerging
research trend.

The relatively limited body of work on decision-
dependent uncertainty in SP can largely be at-
tributed to the inherent and significant modeling
and computational challenges. These challenges stem
from the intricate interplay between decision and ran-
dom variables. Accurately capturing the dependency
of random variables on decision variables requires ad-
vanced formulations. A coupling function [1] is typ-
ically employed to characterize how decisions influ-
ence the underlying stochastic processes and proba-
bility spaces. Incorporating such dependencies typi-
cally introduces nonlinear and nonconvex terms into
the optimization model, significantly increasing its
computational complexity. As a result, the numer-
ical solution of such models is challenging and often
necessitates the development of specialized algorith-
mic methods.

In SP models with decision-dependent uncertainty,
decisions can influence the probability space of ran-
dom variables in distinct ways. We present a con-
cise taxonomy that captures the different mechanisms
through which decisions can affect the probability
space of decision-dependent random variables. Two
main types of SP models with decision-dependent un-
certainty have been identified in the literature [2]. In
Type 1 SP problems with decision-dependent uncer-
tainty, decisions directly alter the probability distri-
bution of the random variables. In contrast, in Type
2 SP problems with decision-dependent uncertainty,
also known as problems with decision-dependent in-
formation structure, decisions affect the time at which
information is revealed and uncertainty is resolved.
These models typically arise in multi-stage SP prob-
lems with recourse, where decisions determine which
non-anticipativity conditions should be enforced. In
such cases, binary decision variables are often em-
bedded within disjunctive constraints to activate or
ignore specific non-anticipativity conditions, thereby
shaping the information structure of the problem.

The Type 1 category can be further subdivided into
four main subclasses, based on the specific character-
istic of the probability distribution that is influenced
by the decisions:

• Class A - Decision-dependent probabilities. In
this subclass, decisions modify the probabilities
of each possible outcome or scenario. A base-
line, decision-independent set of probabilities is
estimated in advance. The coupling function or
decision-dependent distortion function [8] speci-
fies the functional form (e.g., linear, exponential,
multiplicative) under which the decisions distort
the decision-independent set of probabilities. In
some cases, the coupling function defines a lin-
ear or convex combination of several decision-
independent set of probabilities, resulting in a
mixture distribution.

• Class B - Decision-dependent support. The de-
cisions influence the support of the random vari-
ables. Similar to Class A, the coupling function
defines how the baseline (decision-independent)
support of the distribution is modified based on
the decisions made.

• Class C – Decision-dependent parameters. De-
cisions determine the parameterization (e.g.,
mean, variance) of the probability distribution
governing the random variables. The coupling
function specifies how decisions map to the val-
ues of these parameters (e.g., arrival rate of a
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Poisson process). This subclass is well-suited
for continuous distributions.

• Class D – Decision-dependent distribution func-
tion. In this subclass, integer decision variables
select a particular probability distribution from
a predefined set of candidate distributions. The
coupling function is a logic and combinatorial
function that maps the decisions made to one of
the candidate probability distributions.

In addition to Type 1 and Type 2, a third form of
decision-dependent uncertainty — Type 3 — arises
in the context of distributionally robust optimization
(DRO). In Type 3 DRO problems, decisions directly
influence the size of the ambiguity set (e.g., radius of
ambiguity ball) [5, 6], and, by corollary, the degree of
conservativeness of the DRO problem.

Several key observations emerge from the existing lit-
erature on SP under decision-dependent uncertainty:

• Prevalence of Type 2 problems. A large part
of the extant literature addresses Type 2 prob-
lems, which involve decision-dependent informa-
tion structures.

• Predominance of risk-neutral models. Most
SP models with decision-dependent uncertainty
have a risk-neutral perspective and rely on
expectation-based risk measures. Risk-averse
formulations incorporating for example chance
constraints, stochastic dominance, or condi-
tional value-at-risk (CVaR) remain underex-
plored.

• Emphasis on recourse and multistage models.
SP models with decision-dependent uncertainty
are predominantly formulated as SP problems
with recourse. In the case of Type 2 uncertainty,
they are typically multi-stage SP problems, re-
flecting the sequential nature of information rev-
elation.

• Network problem application focus. Although
decision-dependent uncertainty is pervasive and
relevant to a wide range of real-world applica-
tions in business and industry, much of the cur-
rent research is concentrated on network-based
problems, such as network interdiction, fortifi-
cation, and infrastructure protection.

In the remainder of this article, we show that SP
models with decision-dependent uncertainty can be
formulated, solved, and applied to a broader range
of problems than those traditionally studied in the
literature. We highlight the widespread presence of
decision-dependent uncertainty across diverse appli-
cation domains, the various mechanisms by which

decisions influence probability distributions, and the
potential for integration into risk-averse SP mod-
els. To illustrate these points, we present three
recent studies [4, 7, 8] that propose novel chance-
constrained optimization models involving Type 1
decision-dependent uncertainty. The three studies
are based on different Type 1 decision-dependent un-
certainty subclasses – decision-dependent probabil-
ities in [8], decision-dependent support in [7], and
decision-dependent parameters in [4] – and are devel-
oped for three markedly different application areas –
medical evacuation of injured soldiers [4], impact of
wildfires on power systems [8], and yield management
[7].

Lejeune et al. [4] propose an integer nonlinear
joint chance-constrained problem that incorporates
both exogenous and parameter-dependent uncer-
tainty (Type 1, Subclass C). The study is motivated
by the medical evacuation (MEDEVAC) of severely
wounded soldiers. The objective is to design a reliable
evacuation network to quickly extricate the soldiers
from the battlefield and to maximize their chance
of survival and functional recovery. The model de-
termines the location of medical treatment facilities
(MTF), the deployment of air ambulances, and their
assignment to casualty collection points (CCP). The
objective function maximizes the number of critically
injured soldiers who can be evacuated without delay
(i.e., defined as the probability that an assigned air
ambulance is immediately available upon a MEDE-
VAC request, avoiding queuing) with a prescribed re-
liability level.

Two sources of exogenous uncertainty are considered,
namely (i) the availability of medical personnel and
supplies at each MTF and (ii) the number of evac-
uation requests originating from each CCP. A key
feature of the model is the decision-dependent un-
certainty in air ambulance availability, modeled as
parameter-dependent uncertainty. The availability of
each air ambulance is modelled as a Bernoulli random
variable, whose success probability (i.e., probability
of being available) is endogenously determined as a
function of assignment and workload decisions. This
relationship is captured via a linear coupling func-
tion that links the probability of availability to the
workload of the air ambulance. To handle the joint
chance constraint, the authors develop a Boolean re-
formulation that yields a compact and equivalent rep-
resentation of the feasible region. They devise a
mixed-integer nonlinear programming (MINLP) so-
lution framework that features a multiterm convexi-
fication method, a second-order cone relaxation and
bounding scheme, and a novel branching rule coined
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the smallest domain branching rule. The authors also
propose the value of endogenous uncertainty frame-
work to assess the benefits of accounting for decision-
dependent uncertainty.

Zhang et al. [8] propose a mixed-integer
joint chance-constrained optimization model with
decision-dependent probabilities (Type 1, Subclass
A). The study is motivated by the operation of power
distribution systems under wildfire risk – an increas-
ingly critical challenge, as wildfires can severely com-
promise network reliability and trigger power line fail-
ures within the network. The model simultaneously
reconfigures the network topology and determines op-
timal operational decisions in the face of wildfire ig-
nition risks. The objective is to minimize the total
system costs, including those associated with power
generation, switching actions, and power imbalance
penalties, while ensuring operational reliability.

The relationship between wildfire risk and power line
availability is multifaceted and complex. The fail-
ure status of power lines is modeled as a multivari-
ate random variable whose finitely supported distri-
bution reflects both exogenous uncertainty (wildfire
occurrence and propagation) and endogenous uncer-
tainty (decisions affecting power flow levels). Wild-
fires may be initiated by arc-induced ignition fol-
lowing a line fault, and once ignited, can propagate
rapidly due to environmental factors such as wind,
vegetation, and fuel moisture—potentially causing
cascading line failures across the network. Impor-
tantly, line failure probabilities are also driven by op-
erational decisions, specifically, the power flow lev-
els. To model this, the authors introduce a decision-
dependent distortion function, which, in this prob-
lem, is a piecewise linear function that maps line
loading percentages (i.e., ratio of power flow to ca-
pacity) to power line failure probabilities. The base-
line (decision-independent) scenario probabilities are
modified in a two-step process. First, the distor-
tion function adjusts the marginal failure probabil-
ities for individual lines based on power flow deci-
sions. Second, an Archimedean copula function is
used to model the joint dependence structure among
line failures and furnishes a distorted multivariate
distribution (i.e., distorted scenario probabilities) of
network-wide power line availability that reflects both
exogenous wildfire risk and decision-induced effects.

Nguyen and Lejeune [7] study a distributionally
robust chance-constrained problem with support-
dependent uncertainty (Type 1, Subclass B), where
the support of the underlying distribution is shifted
by decision variables. The study is motivated by a
yield management problem aiming to determine a

production strategy that maximizes the worst-case
probability that the total profit exceeds a specified
threshold. The model determines the optimal pro-
duction quantities while satisfying operational con-
straints related to cost, yield capacity, and demand
fulfillment, and explicitly captures how increased pro-
duction may degrade product quality.

The random yield is modeled as a decision-dependent
variable whose support shifts based on the yield rate,
which is defined as the proportion of units that are
non-defective and saleable, and which depends on
production quantity. The authors use affine and ex-
ponential coupling functions to model the monotone
decreasing relationship connecting yield rate and pro-
duction quantities, since, as production volume in-
creases, the yield rate tends to decline, reflecting
quality deterioration. Exogenous uncertainty in yield
stems from external factors, such as variations in raw
material quality, supplier reliability, environmental
conditions, and unplanned production disruptions.
The authors construct a decision-independent distri-
bution using a finite set of scenarios generated ex-
ante to reflect the impact of external factors on yield.
The scenarios are then endogenously modified by the
decision-dependent yield rate.

The authors consider both moment-based (three vari-
ants) and Wasserstein ambiguity sets to represent
the partial knowledge of the yield distribution. The
generic formulation is a semi-infinite distribution-
ally robust chance-constrained problem with adaptive
chance constraints in which the probability level itself
is a decision variable. For each ambiguity set and cou-
pling function, the problem is reformulated in a finite-
dimensional space as a nonconvex: (i) continuous op-
timization problem for the moment-based ambiguity
sets and (ii) MINLP problem for the Wasserstein am-
biguity set. In both cases, nonconvexity arises from
bilinear terms involving products of bounded contin-
uous variables. For the affine coupling, the feasible
region is defined by linear constraints and a rotated
second-order cone constraint. For the exponential
coupling, an additional exponential cone constraint
is introduced. The solution method relies on (i) the
derivation of the envelope of the bilinear terms which
are defined on specific (different from a box) domains
with non-trivial bounds, and (ii) the embedding of
the envelope-defining inequalities in a specialized cut-
ting plane algorithm that progressively tightens the
relaxation of the problem and guarantees finite con-
vergence.
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Executive Summary: Modeling uncertainty is a
major challenge in real-world decision-making prob-
lems. Traditional stochastic optimization literature
does not explicitly consider (i) contextual informa-
tion that may influence uncertainty, and (ii) decision-
dependent uncertainty, where the decisions being op-
timized can also significantly impact the uncertainty.
A few recent papers have investigated the combina-
tion of these features by studying contextual stochastic
optimization under decision-dependent uncertainty.
In this article, we introduce the challenges faced by
this class of problems, summarize some existing ap-
proaches to model and approximate such problems
with desirable theoretical guarantees, and end with fu-
ture research directions in this exciting and important
area of research.

Decision making under uncertainty is prevalent in
many business, engineering, and scientific domains.
In many important real-world applications, (i) uncer-
tainty is often influenced by contextual information
(also known as covariates, features, or side informa-
tion), and (ii) the decisions being optimized can, in
turn, also significantly affect that uncertainty, lead-
ing to the so-called decision-dependent uncertainty.

In this article, we briefly discuss contextual decision-
making problems under decision-dependent uncer-
tainty, provide some existing approaches to model
and approximate such problems, and end with fu-
ture research directions. Let us begin with several
real-world examples of this type of problems.

Example 1 [Facility Location]. The decision
maker needs to determine where to open new facil-
ities in order to maximize total revenue under de-
mand uncertainty. Demand could be affected by con-
textual information (e.g., seasonality, advertisements,
promotions) as well as the facility location decisions
themselves. For instance, opening a facility in an area
could increase the demand in that area. One example

yu.3610@osu.edu
bayraksan.1@osu.edu
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of this class of problems is the Electric Vehicle (EV)
charging station location problem, where opening a
new charging station could increase the EV demand
in that area [9].

Example 2 [Portfolio Management]. Incorpo-
rating contextual information such as economic indi-
cators and company performance is critical to better
predict uncertain stock returns and thus make bet-
ter investment decisions. At the same time, decisions
regarding when and how often to buy or sell stocks
can influence returns, particularly in the case of high-
volume trades or actions by major market partici-
pants.

Example 3 [Power System Expansion]. Elec-
tricity demand and renewable electricity production
are affected by contextual factors such as seasonal-
ity, temperature, solar irradiation, wind speed, and
so forth. Moreover, long-term investment decisions
regarding electricity generation, expansion, and dis-
tribution can significantly influence the future elec-
tricity demand.

As the above examples demonstrate, accounting for
both the contextual information and the impact of
decisions on the underlying uncertainty is essential
in many real-world applications. Let us now discuss
a general stochastic optimization formulation to ad-
dress such problems and the challenging aspects of
this class of problems.

1. Decision-Dependent Con-
textual Stochastic Programs

Let us begin by introducing contextual stochas-
tic programs without decision-dependent uncertainty.
This class of problems can be modeled as

min
z∈Z

E[c(z, Y )|X = x], (CSP)

where z denotes the decision vector, Z ⊆ Rdz repre-
sents the feasibility set, X ∈ X ⊆ Rdx denotes the
random vector of covariates with x being its realiza-
tion, and the random vector Y ∈ Y ⊆ Rdy denotes
the model uncertainty. The expectation is taken with
respect to the conditional distribution of Y given
X = x. In the above setup, the decision maker typ-
ically has access to joint observations of (X,Y ), and
a new covariate x is observed before the optimiza-
tion model is solved. Note that the above contex-
tual model is different than the traditional stochastic
programs due to the conditioning on the covariates
X = x. In recent years, there has been a stream of

works that focus on solving the above (CSP). We re-
fer interested readers to the recent survey [7] for an
extensive review on this topic.

The decision-dependent variant of the above contex-
tual stochastic program is then given by

v∗(x) := min
z∈Z

E[c(z, Y )|X = x, Z = z]. (DD-CSP)

Note that, among the decisions z, some may influence
the random parameters Y , while others may have no
effect. The above general form is used for notational
convenience.

1.1 Challenges

Decision-dependent contextual stochastic programs
pose several nontrivial challenges.

Challenge 1 [Need for Approximations]. In
(DD-CSP), the conditional distribution of Y given
the covariates x and decisions z is typically
unknown—albeit assumed to exist—and the result-
ing conditional expectation, while assumed to be well
defined and finite, typically cannot be calculated even
for a fixed decision z. Consequently, (DD-CSP) can-
not be solved exactly. Therefore, one must resort to
data-driven approximations.

Challenge 2 [Learning Decision Dependency].
Because the decisions also affect the distribution of
Y , learning this latent dependency can be challeng-
ing. For instance, implementing the decisions can be
very costly (e.g., opening a facility); therefore, there
may be scant data to learn the impact of decisions
on the uncertain parameters. In many real-world ap-
plications, data is only available after a decision is
made (factual), but its counterfactual (when an al-
ternative decision was made) is not available, further
complicating the estimation/learning.

Challenge 3 [Computationally Challenging
Optimization]. Even if (DD-CSP) can be approxi-
mated and the impact of decisions on the random pa-
rameters can be estimated, the resulting models often
lead to computationally challenging nonconvex prob-
lems. Incorporating nonparametric regression models
or modern machine learning methods into a contex-
tual optimization problem is not straightforward in
the decision-dependent setting, as many such models
lack a simple functional form.

Even for those whose structural properties allow for
integration into optimization, the resulting models
are often large-scale mixed-integer nonlinear formu-
lations that remain computationally intractable.
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Despite the above challenges, a small but a growing
body of work investigate (DD-CSP) [2, 6, 10, 3]. In
the next section, we will briefly go over these works,
focusing on data-driven approximations of (DD-CSP)
and then discuss several desired theoretical properties
of such approximations.

1.2 Approximations of (DD-CSP)

Let Dn := {(xk, zk, yk)}nk=1 denote the joint ob-
servations of (X,Z, Y ). Utilizing this dataset, we
first summarize some existing approximations to
(DD-CSP) based on the Sample Average Approxi-
mation (SAA) approach.

Reweighted SAA. [2] proposed assigning a weight
to each data point based on the historical dataset Dn.
In a decision-dependent setting, the reweighted SAA
can be written as

min
z∈Z

n∑
k=1

wn,k(x, z)c(z, y
k),

where wn,k(x, z) is the data-driven weight assigned
to data point k that depends on the covariate x and
decision z. [2] provided several options for choosing
the weights based on nonparametric regression mod-
els, including k nearest neighbors, kernel methods,
and classification and regression trees.

Empirical Residuals Based SAA. [1, 8] proposed
using residuals from the prediction model to con-
struct an empirical residuals-based distribution in the
optimization model. [5] formalized and investigated
the theoretical properties of the so-called empirical
residuals-based SAA (ER-SAA) approach. This ap-
proach, adapted to the decision-dependent setting,
assumes the random parameter Y has the form Y =
f∗(X,Z) + ϵ, where f∗(x, z) := E[Y |X = x, Z = z]
represents the true regression function, which does
not need to be linear, and ϵ denotes the regression
error with zero mean. Here, the additive error ϵ is
assumed to be independent of bothX and Z, but gen-
eralizations are possible. If one learns the true regres-
sion function f∗(x, z) on data Dn, thereby obtaining

an estimated regression function f̂n(x, z), the empiri-
cal residuals can be calculated from each observation
k through ϵ̂kn := yk − f̂n(x

k, zk). Then, given a new
covariate realization x ∈ X , the empirical residuals-
based decision-dependent SAA (ER-DD-SAA) can be
formed by

min
z∈Z

1

n

n∑
k=1

c
(
z, f̂n(x, z) + ϵ̂kn

)
.

Above, it is possible to project each point f̂n(x, z)+ϵ̂kn
used in ER-DD-SAA onto the support set Y or a
known superset of Y (e.g., nonnegative orthant).

This changes each point to projY(f̂n(x, z) + ϵ̂kn) for
k = 1, . . . , n, where projS(y) denotes orthogonal pro-
jection of y onto set S. Note that this method can
accommodate a variety of learning methods.

Distributionally Robust Empirical Residuals
Based SAA. To account for the estimation error in
the empirical distribution, [4] proposed an empirical
residuals-based distributionally robust optimization
(ER-DRO) by constructing ambiguity sets around
the empirical distribution. In a decision-dependent
setting, the empirical distribution can be constructed
as P̂ER

n (x, z) := 1
n

∑n
k=1 δf̂n(x,z)+ϵ̂kn

, where δ denotes

the Dirac measure. Again, it is possible to use pro-
jected values instead. In this setting, the estimation
error in approximating the conditional distribution
of Y given x and z through P̂ER

n (x, z) can be sub-
stantial, particularly in light of Challenge 2 discussed
above. To mitigate this issue, [10] proposed the fol-
lowing empirical residuals-based decision-dependent
DRO (ER-D3RO)

min
z∈Z

sup
Q∈P̂n(x,z)

EY∼Q[c(z, Y (x, z))]

aimed at finding optimal decisions against the worst-
case expectation taken with respect to a distribu-
tion Q from the ambiguity set P̂n(x, z). The am-
biguity set P̂n(x, z) can be constructed via (i) the
Wasserstein distance, i.e., by selecting all distribu-
tions that are sufficiently close to the empirical distri-
bution P̂ER

n (x, z) according to p-Wasserstein distance
for some p ∈ [1,∞], (ii) a sample robust approach that

can perturb the atoms f̂n(x, z) + ϵ̂kn of the empirical
distribution P̂ER

n (x, z) while keeping their probabil-
ities the same (1/n), or (iii) with same-support ap-
proaches such as ϕ-divergences that keep the atoms of
P̂ER
n (x, z) the same while potentially changing their

probabilities.

In addition to the above approximations, [6] de-
veloped a local linear regression model to learn
the decision-dependent uncertainty; however, their
model did not incorporate any non-decision co-
variates X. [3] analyzed the statistical proper-
ties of two approaches for solving (DD-CSP): (i)
predict-then-optimize, which first learns the depen-
dence between decisions, covariates, and the uncer-
tainty and then feeds the prediction model into the
downstream optimization step (like the SAA app-
proaches outlined above); and (ii) estimate-then-
optimize, which directly estimates the conditional ex-
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pectation E[c(z, Y )|X = x, Z = z] in the objective of
(DD-CSP).

2. Desirable Theoretical Guar-
antees

Before we outline desired theoretical properties of
data-driven approximations of (DD-CSP), let us in-
troduce some notation. We denote the optimal solu-
tion set and optimal objective value to the original
problem (DD-CSP) as S∗(x) and v∗(x), respectively.
The objective function of (DD-CSP) is denoted by
g(z, x) := E[c(z, Y )|X = x, Z = z]. Similarly, the
optimal objective value of the above approximations
using data Dn is denoted as v̂n(x), and an optimal
solution to these approximations is represented by
ẑn(x). Distance between a point a and set S is given
by dist(a,S) := infb∈S ∥a− b∥ using Euclidean norm
∥ · ∥. For sequences of random variables Xn and real
values an, Xn = Op(an) denotes Xn/an is bounded

in probability, and
P−→ denotes convergence in proba-

bility. In the following, we present several statistical
guarantees that one could seek for these approxima-
tion problems. Note that it is possible to pursue other
asymptotic and finite-sample properties.
1. Consistency and asymptotic optimality:

The optimal value v̂n(x) and solution ẑn(x) of
the approximation problem converge to the true
ones in probability, i.e.,

v̂n(x)
P−→ v∗(x), dist(ẑn(x), S

∗(x))
P−→ 0,

and g(ẑn(x), x))
P−→ v∗(x).

2. Rate of convergence: For some constant r ∈
(0, 1], the optimal value v̂n(x) and solution ẑn(x)
of the approximation problem converge to the
true ones at a certain rate, i.e.,

|v̂n(x)− v∗(x)| = Op(n
−r/2) and

|g(ẑn(x), x)− v∗(x)| = Op(n
−r/2).

3. Finite sample solution guarantee: The so-
lution ẑn(x) of the approximation problem sat-
isfies for a.e. x ∈ X , given η > 0, there exists
constants Γ(η, x) > 0, γ(η, x) > 0 such that

P
{
dist(ẑn(x), S

∗(x)) ≥ η
}
≤ Γ(η, x)e−nγ(η,x).

4. Finite sample certificate guarantee:
For a given risk level α ∈ (0, 1), the opti-
mal value v̂n(x) provides a high-confidence

upper bound on the out-of-sample cost of
ẑn(x), i.e.,

P
{
g(ẑn(x), x) ≤ v̂n(x)

}
≥ 1− α.

Note that each of the three approximation problems
discussed in Section 1.2 has been shown to satisfy a
part of these theoretical guarantees, with consistency
and asymptotic optimality being the most commonly
studied one. The finite sample certificate guarantee
is typically shown for distributionally robust variants.
For example, [2] showed the consistency and asymp-
totic optimality of the reweighted SAA problem; [9]
presented the consistency and asymptotic optimality
of the ER-DD-SAA problem under a two-stage fa-
cility location problem; and [10] provided conditions
under which all the above properties are satisfied for
the ER-D3RO problem.

3. Concluding Remarks and
Future Work on (DD-CSP)

In this article, we briefly discussed recent ad-
vances in contextual stochastic optimization under
decision-dependent uncertainty. We summarized
three approximation frameworks to handle decision-
dependent uncertainty and presented several desir-
able theoretical properties, including consistency and
asymptotic optimality, rates of convergence, and fi-
nite sample guarantees.

Decision-dependent contextual stochastic opti-
mization is a growing field, rich in statistical, com-
putational, modeling, and optimization challenges.
Furthermore, given the many real-world applications
that fit into this framework, advances in this area
have the potential to make a real-world impact.

As noted in Section 1.1, there are many avenues
for future work, which include but are not lim-
ited to the following. First, appropriate fusion of
causal inference and optimization brings forth mod-
eling and theoretical analysis challenges that merit
future work. Moreover, as detailed in Challenge 3,
decision dependency introduces additional computa-
tional optimization challenges, which opens several
avenues for further exploration. For example, devis-
ing efficient formulations and algorithms to incorpo-
rate highly complex parametric and nonparametric
regression/machine learning models into a decision-
dependent contextual setting would be valuable. Fur-
thermore, many real-world applications naturally in-
volve a sequential cycle of learning and decision-
making, motivating the development of novel mul-
tistage frameworks that capture the contextual and
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decision-dependent dynamics. This necessitates new
modeling approaches, theoretical analyses, and com-
putational optimization tools.
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Stochastic Programming

Events in 2025-2026

Please find below the selected events over the next 12
months that we believe are of interest to our commu-
nity. Mark your calendars!

• ICCOPT 2025, International Conference on
Continuous Optimization
Where/when: Los Angeles University of South-
ern California (USA), July 19-24, 2025
More at https://sites.google.com/view/ic
copt2025/home

• LOD 2025, 11th International Conference on
Machine Learning, Optimization, and Data Sci-
ence
Where/when: Riva del Sole Resort & SPA (IT),
September 21–24, 2025
More at https://lod2025.icas.events/venu
e/

• ICSP 2025, International Conference of Stochas-
tic Programming
Where/when: Paris (France), July 28 - August
1, 2025
More at https://icsp2025.org/

• AI-OPT 2025, 2025 Workshop on AI-based Op-
timisation
Where/when: Carlton, Australia, August 7-8,
2025
More at https://optima.org.au/2025-works
hop-on-ai-based-optimisation-ai-opt-2

025/

• ODS2025, International Conference on Opti-
mization and Decision Science 2025
Where/when: Milan (IT), September 1-4, 2025
More at https://www.airoconference.it/od
s2025/

• PhD Course, Nordic PhD course in stochastic
programming
Where/when: Bergen (NO), September 22-26,
2025
More at https://www.ntnu.edu/nordab/nord
ic-phd-course-in-stochastic-programming

• CPAIOR 2025, The 22nd International Confer-
ence on the Integration of Constraint Program-
ming, Artificial Intelligence and Operations Re-
search
Where/when: Melbourne, Australia, November

https://optimization-online.org/2021/10/8634/
https://optimization-online.org/2021/10/8634/
http://dx.doi.org/10.2139/ssrn.5078715
https://sites.google.com/view/iccopt2025/home
https://sites.google.com/view/iccopt2025/home
https://lod2025.icas.events/venue/
https://lod2025.icas.events/venue/
https://icsp2025.org/
https://optima.org.au/2025-workshop-on-ai-based-optimisation-ai-opt-2025/
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10-13, 2025
More at https://sites.google.com/view/cp
aior2025

• JuMP2025, JuMP-dev 2025
Where/when: Auckland (NZ), November 17–20,
2025
More at https://jump.dev/meetings/jumpde
v2025/

• 2025 Winter Simulation Conference
Where/when: Seattle, USA, December 7-10,
2025
More at https://meetings.informs.org/wor
dpress/wsc2025/

• OP26, SIAM Conference on Optimization
Where/when: Edinburgh (UK), June 2-5, 2026
More at https://www.siam.org/conferences
-events/siam-conferences/op26/

• OL2A, International Conference on Optimiza-
tion, Learning Algorithms and Applications
Where/when: Malaga (SP), June 10-12, 2026
More at https://ol2a.ipb.pt/ui/#/home

• INFORMS 2026, Advances in Decision Analysis
Conference
Where/when: Duke University, North Carolina
(USA), June 15-17, 2026
More at https://www.informs.org/Meetings
-Conferences/INFORMS-Conference-Calenda

r/2026-INFORMS-Advances-in-Decision-Ana

lysis-Conference

• IFORS2026, The 24th Conference of the In-
ternational Federation of Operational Research
Societies: Decision Support for a Sustainable
World
Where/when: Vienna (AT), July 12-17, 2026
More at https://www.ifors2026.at/home/

• Optimization 2026
Where/when: Lisbon (Portugal), July 20-22,
2026
More at https://optimization2026.iseg.ul
isboa.pt/

• INFORMS Annual Meeting 2026
Where/when: Detroit (USA), October 24-26,
2026.
More at https://www.informs.org/Meetings
-Conferences/INFORMS-Conference-Calenda

r/2026-INFORMS-Annual-Meeting

ICSP XVII
July 28 - August 1, 2025 Paris, France

Vincent Leclère

École des Ponts (France)

vincent.leclere@enpc.fr

Mark your calendars! We are going to hold the
seventeenth International Conference on Stochastic
Programming (ICSP), during the last week of July
2025: July 28 – August 1, 2025, at École des Ponts,
Noisy-le-Grand, France.

You can find the information on the website: https:
//icsp2025.org/. We have a great line-up of
plenary speakers (Francis Bach, Erick Delage, Niao
He, Jim Luedtke, Francesca Maggioni, Huifu Xu).
The mini-symposium and invited session information
has already been released on the website. We have
planned a nice visit for the social program in Château
de Fontainebleau.

Excursion at Château de Fontainebleau
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New Website for the

Stochastic Programming

Society
Wolfram Wiesemann

Imperial College London (UK)

ww@imperial.ac.uk

At the COSP Business Meeting during ISMP 2024,
we discussed the urgent need to modernize the
Stochastic Programming Society’s online presence.
The previous website—running on outdated soft-
ware—had become both difficult to maintain and a
potential security risk. As a result, it was taken of-
fline.

We used this opportunity to rebuild the site from the
ground up. Following internal iterations within the
COSP throughout late 2023 and early 2024, a work-
ing group refined the structure and engaged profes-
sional support for the relaunch. The result is now live
at www.stoprog.org.

SPS new website

The new site is clean, mobile-friendly, and easier to
update. It retains essential historical content—such
as past ICSP conferences and prize winners—while
providing a more flexible platform going forward.
Most importantly, the site is intended to evolve with
the needs of the community. Feedback is welcome
and will be incorporated where feasible.

Please contact the COSP webmaster, Wolfram
Wiesemann, at ww@imperial.ac.uk with suggestions
or contributions.

Committee on Stochastic

Programming (COSP)

Members

Merve Bodur
School of Mathematics, University of Edinburgh (UK)
merve.bodur@ed.ac.uk

Giorgio Consigli
Department of Mathematics, Khalifa University of Sci-
ence and Technology, Abu Dhabi (UAE)
giorgio.consigli@ku.ac.ae

Vincent Leclère

École des Ponts (France)

vincent.leclere@enpc.fr

Treasurer: Bernardo Pagnoncelli
SKEMA Business School (France)

bernardo.pagnoncelli@skema.edu

Secretary: Ward Romeijnders
Faculty of Economics and Business, University of Gronin-

gen (Netherlands)

w.romeijnders@rug.nl

Wim van Ackooij
EDF R&D, Osiris (France)

wim.van.ackooij@gmail.com

Chair: Phebe Vayanos
Viterbi School of Engineering, University of Southern Cal-

ifornia, Los Angeles, CA (USA)

phebe.vayanos@usc.edu

Webmaster: Wolfram Wiesemann
Business School, Imperial College, London (United King-

dom)
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Haoxiang Yang
School of Data Science, The Chinese University of Hong
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