

LECTURE 5: ε - REGULARITY THEOREM AND PARTIAL REGULARITY FOR HARMONIC MAPS

SHENGWEN WANG

Let $u : \Omega \subset \mathbb{R}^n \rightarrow (N, h)$ be a map into a compact Riemannian manifold N (isometrically embedded in \mathbb{R}^k). The *Dirichlet energy* is

$$E(u; \Omega) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx,$$

and its critical points under compactly supported variations are the *harmonic maps*. In extrinsic form (with $N \hookrightarrow \mathbb{R}^k$), the Euler–Lagrange equation becomes

$$\Delta u = A(u)(\nabla u, \nabla u),$$

where A is the second fundamental form of $N \subset \mathbb{R}^k$.

Let $u : \Omega \subset \mathbb{R}^n \rightarrow N$ be a smooth harmonic map, and set

$$e := |\nabla u|^2.$$

Then the Bochner identity for harmonic maps gives

$$(0.1) \quad \Delta e = 2|\nabla^2 u|^2 - 2\langle R^N(\nabla u, \nabla u)\nabla u, \nabla u \rangle,$$

where R^N denotes the Riemann curvature tensor of the target manifold N .

Since N is compact, its curvature is bounded, and hence

$$(0.2) \quad -\Delta e \leq C e^2 \quad \text{in } \Omega,$$

for a constant $C > 0$ depending only on the geometry of N . The inequality (0.2) is understood in the weak (distributional) sense for $u \in W^{1,2}$.

1. EPSILON-REGULARITY

Theorem 1.1 (Epsilon-regularity in dimension 2). *There exists $\varepsilon_0 > 0$ such that the following holds. If $u : B_1 \subset \mathbb{R}^2 \rightarrow N$ is a weak harmonic map satisfying*

$$\int_{B_1} |\nabla u|^2 \leq \varepsilon_0,$$

then

$$\|\nabla u\|_{L^\infty(B_{1/2})} \leq C \left(\int_{B_1} |\nabla u|^2 \right)^{1/2},$$

where C depends only on the geometry of N . In particular, $u \in C^\infty(B_{1/2})$.

Proof. We want to apply Moser iteration to (0.1)

Fix $0 < \rho < R \leq 1$, and let $\eta \in C_c^\infty(B_R)$ satisfy

$$\eta \equiv 1 \text{ on } B_\rho, \quad 0 \leq \eta \leq 1, \quad |\nabla \eta| \leq \frac{2}{R - \rho}.$$

For $p \geq 1$, multiply (0.1) by $\eta^2 e^{p-1}$ and integrate by parts, we get

$$\begin{aligned} \int \Delta e \eta^2 e^{p-1} &\leq \int C \eta^2 e^{p+1} \\ \int 2\eta e^{p-1} \langle \nabla e, \nabla \eta \rangle + \int (p-1)\eta^2 e^{p-2} |\nabla e|^2 &\leq \int C \eta^2 e^{p+1} \\ -2 \int |\nabla e| |\nabla \eta| \eta e^{p-1} + \int (p-1)\eta^2 e^{p-2} |\nabla e|^2 &\leq \int C \eta^2 e^{p+1} \\ - \int \frac{2}{p-1} |\nabla \eta|^2 e^p - \int \frac{p-1}{2} \eta^2 e^{p-2} |\nabla e|^2 + \int (p-1)\eta^2 e^{p-2} |\nabla e|^2 &\leq \int C \eta^2 e^{p+1} \end{aligned}$$

Namely

$$(1.1) \quad \int |\nabla(\eta e^{p/2})|^2 \leq C \int |\nabla \eta|^2 e^p + C \int \eta^2 e^{p+1}.$$

By Sobolev embedding $W^{1,2} \mapsto L^q$ compactly for $q = \frac{2n}{n-2}$, we have

$$\|e\|_{L^{\frac{p}{2} \cdot \frac{2n-\delta}{n-2}}(B_r)} \leq C_\eta \|e\|_{L^{p+1}(B_R)}.$$

In dimension $n = 2$, this directly implies L^q bound of u for any $q > 1$

In dimension $n \geq 3$, by choosing $\delta < \frac{4p+4-2n}{p}$ we get an improvement as

$$\frac{p}{2} \cdot \frac{2n-\delta}{n-2} > p+1.$$

Moser iteration then implies L^∞ bound of e by L^{p+1} bound of e . (Although the energy bound only implies L^1 norm of e , so we don't a priori have L^{p+1} bound of u to get L^∞ by the Dirichlet energy.)

□

This can be generalized to the case of minimizing harmonic maps in higher dimensions.

Theorem 1.2 (Schoen–Uhlenbeck ε –regularity). *Let $n \geq 3$ and let N be a compact Riemannian manifold. There exist constants $\varepsilon_0 > 0$ and $C > 0$, depending only on n and the geometry of N , such that the following holds.*

If $u \in W^{1,2}(B_r(x_0), N)$ is an energy-minimizing harmonic map and

$$(1.2) \quad r^{2-n} \int_{B_r(x_0)} |\nabla u|^2 \leq \varepsilon_0,$$

then u is smooth in $B_{r/2}(x_0)$ and satisfies the estimate

$$(1.3) \quad \sup_{B_{r/2}(x_0)} |\nabla u| \leq C r^{-1} \left(r^{2-n} \int_{B_r(x_0)} |\nabla u|^2 \right)^{1/2}.$$

2. ESTIMATE ON THE SIZE OF SINGULAR SET AND PARTIAL REGULARITY

Using the epsilon regularity result, we say that the energy minimizing harmonic maps are regular away from a measure 0 set. Indeed, one can estimate the Hausdorff dimension of the singular set.

Theorem 2.1 (Schoen–Uhlenbeck partial regularity). *Let $n \geq 3$ and let N be a compact Riemannian manifold. Suppose that*

$$u \in W^{1,2}(\Omega, N)$$

is an energy-minimizing harmonic map. Then there exists a closed set

$$\Sigma \subset \Omega$$

such that

- (1) $u \in C^\infty(\Omega \setminus \Sigma)$;
- (2) *the singular set Σ has Hausdorff dimension at most $n - 2$, i.e.*

$$\dim_{\mathcal{H}}(\Sigma) \leq n - 2.$$

Proof. An important tool we use is the notion of energy density and the monotonicity formula.

For $x \in \Omega$ and $r > 0$ with $B_r(x) \subset \Omega$, define the scaled energy

$$\theta(x, r) := r^{2-n} \int_{B_r(x)} |\nabla u|^2.$$

Since u is an energy-minimizing (hence stationary) harmonic map, the monotonicity formula implies that $\theta(x, r)$ is nondecreasing in r . Therefore the limit

$$\theta(x, 0^+) := \lim_{r \downarrow 0} \theta(x, r)$$

exists for every $x \in \Omega$.

Let $\varepsilon_0 > 0$ be the constant from the ε -regularity theorem and define the singular set

$$\Sigma := \{x \in \Omega : \theta(x, 0^+) \geq \varepsilon_0\}.$$

By the ε -regularity theorem, u is smooth in $B_{r_0/2}(x_0)$. Hence

$$u \in C^\infty(\Omega \setminus \Sigma).$$

It is not hard to see that the regular set is open and the singular set is closed.

Now fix a compact set $\Omega' \Subset \Omega$. For each $x \in \Sigma \cap \Omega'$, by definition of Σ and monotonicity, there exists $r_x > 0$ such that $B_{5r_x}(x) \subset \Omega$ and

$$(2.1) \quad \int_{B_{r_x}(x)} |\nabla u|^2 \geq \varepsilon_0 r_x^{n-2}.$$

The family $\{B_{r_x}(x)\}_{x \in \Sigma \cap \Omega'}$ is a covering of $\Sigma \cap \Omega'$. By the Vitali covering lemma, there exists a countable subcollection $\{B_{r_i}(x_i)\}$ such that

- (1) the balls $B_{r_i}(x_i)$ are pairwise disjoint,
- (2)

$$\Sigma \cap \Omega' \subset \bigcup_i B_{5r_i}(x_i).$$

So by (2.1) and the disjointness of the balls,

$$\varepsilon_0 \sum_i r_i^{n-2} \leq \sum_i \int_{B_{r_i}(x_i)} |\nabla u|^2 = \int_{\cup_i B_{r_i}(x_i)} |\nabla u|^2 \leq \int_{\Omega} |\nabla u|^2 < \infty.$$

Therefore

$$\sum_i r_i^{n-2} \leq \frac{1}{\varepsilon_0} \int_{\Omega} |\nabla u|^2.$$

Using the covering by $B_{5r_i}(x_i)$ and the definition of Hausdorff measure, we conclude

$$\mathcal{H}^{n-2}(\Sigma \cap \Omega') \leq C(n) \sum_i (5r_i)^{n-2} \leq \frac{C(n)}{\varepsilon_0} \int_{\Omega} |\nabla u|^2 < \infty.$$

Since $\Omega' \Subset \Omega$ was arbitrary, it follows that $\mathcal{H}^{n-2}(\Sigma)$ is locally finite in Ω , and hence

$$\dim_{\mathcal{H}}(\Sigma) \leq n - 2.$$

□

REFERENCES

- [1] Qing Han and Fanghua Lin, Elliptic Partial Differential Equations, Second Edition, *Courant Lecture Notes in Mathematics*, American Mathematical Society, 2011.
- [2] Leon Simon, Schauder estimates by scaling, *Calculus of Variations and Partial Differential Equations*, Volume 5, pages 391-407, 1997
- [3] J. Sacks and K. Uhlenbeck, The Existence of Minimal Immersions of 2-Spheres, *Annals of Mathematics*, Volume 113, pages 1-24, 1981
- [4] Richard Schoen, Karen Uhlenbeck, A regularity theory for harmonic maps, *J. Differential Geom.* Volume 17, pages 307-335, 1982