
LECTURE 4: DE GOIRGI NASH-MOSER THEORY

SHENGWEN WANG

The De Giorgi-Nash-Moser theory in elliptic PDE is providing the initial L∞ and C0,α

regularity, before higher regularity theory like Schauder theory applies. We will present
here the Moser’s approach for getting the local boundedness (which is iteration on the
exponents of Lp norms, while De Giorgi’s approach is iteration on the super-level sets).

1. Initial L∞ bound and Moser iteration

Let
Lu = ∂i(a

ij(x)∂ju) + c(x)u

be an elliptic operator of divergence form and U ⊂ Rn a bounded open domain as before.
Suppose the coefficients satisfies

‖aij‖L∞(U), ‖c‖Lq(U) ≤ L0

and

λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ2|, λ,Λ > 0.(1.1)

Our first theorem is the local boundedness of u, which only requires Lp boundedness of the
coefficients and inhomogeneous term.

We will present a simplified case with c = 0 for the homogeneous equation, the general
case follows by exactly the same argument with more technicality involved in absorbing
the extra terms.

Theorem 1.1 (Lp → L∞ estimate). Suppose u ∈ H1(B1) is a subsolution, i.e.ˆ
B1

aijDiuDjφ ≤ 0, ∀φ ∈ H1
0 (B1), φ ≥ 0.(1.2)

Then for any θ ∈ (0, 1), we have in the smaller ball Bθ that

sup
Bθ

u+ ≤ C
‖u+‖Lp(B1)

(1− θ)
n
p

,

for some positive constant C = C(n.λ,Λ, p, q).

Proof. For k > 0 to be determined and m ∈ N, we define

ū = u+ + k,

and

ūm =

{
ū, u < m

k +m, u ≥ m
.
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Then one observes
k ≤ ūm ≤ m+ k,

and
ūm ≡ Constant, Dūm = 0, when u < 0 or u > m.

We choose the following non-netative test function

0 ≤ φ = ζ2(ūβmū− kβ+1) ∈ H1
0 (B1),

for some β ≥ 0, ζ ∈ C1
0(B1).

We compute

Dφ =2ζDζ(ūβmū− kβ+1) + ζ2βūβ−1m Dūmū+ ζ2ūβmDū

=2ζDζ(ūβmū− kβ+1) + ζ2ūβm(βDūm +Dū),

where we used that ūm = ū when Dūm 6= 0. Plugging into the equation (1.2) we get

0 ≥
ˆ
B1

aijDiuDjφ(1.3)

=

ˆ
B1∩{u>0}

aijDiuDjφ

=

ˆ
B1∩{u>0}

aijDiu · 2ζDζ(ūβmū− kβ+1) + aijDiu · ζ2ūβm(βDūm +Dū)

≥
ˆ
B1∩{u>0}

−Λ|Dū| · 2ζ|Dζ| · ūβmū+ λβζ2|Dūm|2ūβm + λζ2|Dū|2ūβm

≥
ˆ
B1∩{u>0}

[−1

2
λζ2|Dū|2ūβm −

1

2

Λ2

λ
· 4|Dζ|2ūβmū2] + λβζ2|Dūm|2ūβm + λζ2|Dū|2ūβm

(Here we used Cauchy-Schwarz for the first term in the previous line)

=

ˆ
B1∩{u>0}

−2
Λ2

λ
· |Dζ|2ūβmū2 + λβζ2|Dūm|2ūβm +

1

2
λζ2|Dū|2ūβm.

Thus

β

ˆ
B1

ζ2|Dūm|2ūβm +

ˆ
B1

ζ2|Dū|2ūβm ≤ C

ˆ
B1

|Dζ|2ūβmū2,(1.4)

for some C = C(β,Λ, λ).
(Notice that if c 6= 0 or there is an inhomogeneous term for the equation, then the

LHS of (1.3) is not zero and one needs a few more steps in the absorption of terms.)
We see the RHS (1.4) is “roughly” an L2 norm of the function

w = ū
β
2
mū,

whose L2 norm of derivative is “roughly” bounded by the LHS of (1.4) as follows

|Dw|2 =|β
2
ū
β
2
−1

m ū∇ūm + ū
β
2
m∇ū|2
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=|β
2
ū
β
2
m∇ūm + ū

β
2
m∇ū|2

≤(1 + β)(β|Dūm|2ūβm + |Dū|2ūβm).

Namely (1.4) reads ˆ
B1

|Dw|2ζ2 ≤ (1 + β)

ˆ
B1

|Dζ|2w2.

By Sobolev inequality applied to the compactly supported ζw, we get

[

ˆ
B1

|ζw|
2n
n−2 ]

n−2
2n ≤ [

ˆ
B1

|D(ζw)|2]
1
2 ≤
ˆ
B1

|Dw|2ζ2+

ˆ
B1

|Dζ|2w2]
1
2 ≤ [(2+β)

ˆ
B1

|Dζ|2w2]
1
2 .

Now we choose the cut-off function ζ ∈ C1
0(B1) so that for 0 < r < R ≤ 1 there holds

ζ ≡ 1, in Br

0 ≤ ζ ≤ 1, in BR

|Dζ| ≤ 2

R− r
.

Noticing ūm ≤ ū and ζ ≡ 1 in Br, we obtain

[

ˆ
Br

ū
(β+2) n

n−2
m ]

n−2
2n =[

ˆ
Br

ū
β+2
2

2n
n−2

m ]
n−2
2n

≤[

ˆ
Br

(ū
β
2
mū)

2n
n−2 ]

n−2
2n

≤[

ˆ
Br

w
2n
n−2 ]

n−2
2n

≤(

ˆ
B1

|ζw|
2n
n−2 )

n−2
2n

≤[(2 + β)

ˆ
B1

|Dζ|2w2]
1
2

≤2
√

2 + β

(R− r)
[

ˆ
B1

w2]
1
2

≤2
√

2 + β

(R− r)
[

ˆ
B1

ūβ+2]
1
2 .

By letting m→∞, we can replace ūm by ū and so

‖ū‖Lpχ(B1) ≤ [
2(p− 1)

(R− r)2
]
1
p‖ū‖LpBR ,

where p = β + 2, χ = n
n−2 .
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Here pχ > γ so we get an improvement from Lp to Lpχ, as pχ > p. After iterating i
times with

pi = 2χi →∞, ri = θ +
1

2i
(1− θ)→ θ, i ∈ N,

we get

‖ū‖Lpi (Bri ) ≤[
4i · 2(pi − 1)

(1− θ)2
]

1
pi ‖ū‖Lpi−1 (ri−1)

≤Πi
k=1

[
4i · 2(pi − 1)

] 1
pi · Πi

k=1

[
1

(1− θ)2

] 1
pi

· ‖ū‖L2(B1).

Taking the limit we get

‖ū‖L∞(Bθ) ≤ C · 1

(1− θ)2
‖ū‖L2(B1)

�

2. Harnack inequality and Hölder regularity

As a consequence of Theorem 1.1, we also have Inf bound for non-negative super
solutions.

Theorem 2.1. Suppose u ∈ H1(B1) is a non-negative supersolution, i.e.ˆ
B1

aijDiuDjφ ≥ 0, ∀φ ∈ H1
0 (B1), φ ≥ 0.(2.1)

Then for any θ ∈ (0, 1), p ≤ n
n−2 , we have in the smaller ball Bθ that

inf
Bθ
u ≥ C‖u‖Lp(B1),

for some positive constant C = C(n.λ,Λ, p, q).

Idea of Proof: Apply Theorem 1.1 to u−β (so that a super-solution becomes a subsolution).
The detail is left as an exercise. �

So combining Theorem 1.1 and Theorem 2.1, we have the Harnack inequality for actual
non-negative solutions.

Theorem 2.2 (Moser-Harnack Inequality). Suppose u ∈ H1(B1) is a non-negative weak
solution, i.e. ˆ

B1

aijDiuDjφ = 0, ∀φ ∈ H1
0 (BR), φ ≥ 0.(2.2)

We have
sup
BR

u ≤ C inf
BR

u,

for some uniform constant C = C(n, λ,Λ).

The Moser-Harnack inequality will then give us oscillation decay when the radius of
balls shrinks, providing Hölder regularity (by standard iteration argument of Campanato).
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Theorem 2.3 (Hölder continuity of weak solutions). If u ∈ H1(U) is a weak solution to
Lu = 0 in a bounded open domain U ⊂ Rn, then for any BR(x0) b Ω we have the following:

• For all r ≤ R we have

oscBr(x0)u ≤ C
( r
R

)α
oscBR(x0)u,

for some α = µ(n, λ,Λ) ∈ (0, 1) and C = C(n, λ,Λ) > 0. Here

oscBρu = sup
Bρ

u− inf
Bρ
u.

• u is Hölder in a smaller ball, with the estimate

Rα [u]C0,α(BR/4(x0)) ≤ C‖u‖L∞(BR).

Proof. First we prove the oscillation decay. Let

M := sup
BR

u, m := inf
BR

u, ω := M −m.

Define
v := u−m ≥ 0, w := M − u ≥ 0 in BR.

Since the operator is linear and Lu = 0, we have Lv = Lw = 0.
By Moser’s Harnack inequality, there exists CH > 1 such that

sup
BR/2

v ≤ CH inf
BR/2

v, sup
BR/2

w ≤ CH inf
BR/2

w.

Set
A := sup

BR/2

u, B := inf
BR/2

u.

Applying Harnack to v = u−m gives

A−m ≤ CH(B −m),

and applying it to w = M − u gives

M −B ≤ CH(M − A).

Adding the above 2 bounds we get

(A−m) + (M −B) ≤ CH
[
(B −m) + (M − A)

]
.

Using

(A−m) + (M −B) = ω + (A−B), (B −m) + (M − A) = ω − (A−B),

we obtain
ω + (A−B) ≤ CH

(
ω − (A−B)

)
.

Rearranging,
(CH + 1)(A−B) ≤ (CH − 1)ω,

hence

oscBR/2 u = A−B ≤ CH − 1

CH + 1
ω.
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Setting σ =
CH − 1

CH + 1
∈ (0, 1) completes the proof of first part on oscillation decay.

From the oscillation decay theorem, there exists σ ∈ (0, 1) such that

oscBR/2 u ≤ σ oscBR u.

Iterating this estimate, we obtain for all k ∈ N,

(1) oscB
R/2k

u ≤ σk oscBR u.

Choose α > 0 such that

σ = 2−α, i.e. α = − log σ

log 2
.

Let 0 < ρ ≤ R and choose k ∈ N satisfying

R

2k+1
< ρ ≤ R

2k
.

Then, by monotonicity of oscillation in the radius,

oscBρ u ≤ oscB
R/2k

u ≤ σk oscBR u = 2−αk oscBR u.

Since ρ ≤ R/2k, we have 2−k ≤ ρ/R, and hence

oscBρ u ≤
( ρ
R

)α
oscBR u.

Finally, for any x, y ∈ BR/2, setting ρ = |x− y| yields

|u(x)− u(y)| ≤ oscBρ u ≤ C|x− y|α,

which proves u ∈ C0,α
loc (Ω).
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