LECTURE 4: DE GOIRGI NASH-MOSER THEORY

SHENGWEN WANG

The De Giorgi-Nash-Moser theory in elliptic PDE is providing the initial L> and C'%
regularity, before higher regularity theory like Schauder theory applies. We will present
here the Moser’s approach for getting the local boundedness (which is iteration on the
exponents of L? norms, while De Giorgi’s approach is iteration on the super-level sets).

1. INITIAL L°° BOUND AND MOSER ITERATION

Let
Lu = 9;(a”(z)0;u) + c(z)u
be an elliptic operator of divergence form and U C R™ a bounded open domain as before.
Suppose the coefficients satisfies

1a”]| Loy, llell Loy < Lo
and
(1.1) MEP? < a8 < MEPLA A > 0.

Our first theorem is the local boundedness of u, which only requires L? boundedness of the
coefficients and inhomogeneous term.

We will present a simplified case with ¢ = 0 for the homogeneous equation, the general
case follows by exactly the same argument with more technicality involved in absorbing
the extra terms.

Theorem 1.1 (LP — L™ estimate). Suppose u € H'(By) is a subsolution, i.e.

(1.2) / a’DiuDj¢ <0, V¢ € Hy(Bi), ¢ > 0.
B
Then for any 6 € (0,1), we have in the smaller ball By that
+
suput < CHU ||LP(B;)7
By (1—0)»

for some positive constant C' = C(n.\, A\, p,q).
Proof. For k > 0 to be determined and m € N, we define
u=u"+k,

and

_ U, u<m
Uy, =
k+m, u>m
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Then one observes
k<, <m-+k,

and
Uy, = Constant, Du,, =0, when u <0 or u > m.

We choose the following non-netative test function
0<¢=_Cudu— k") e Hy(By),

for some 8> 0,¢ € CY(By).
We compute

D¢ =2¢ D¢ (alu — k°tY) + ¢*pul Da,,u + (*al, Du
=20 D¢ (wp,u — K + ¢Pa, (8D, + D),
where we used that ,, = © when Du,, # 0. Plugging into the equation (|1.2)) we get

(1.3) 0 2/ a” DyuD;é
B

_ / DD,
Blﬂ{u>0}

/ a” Dyu - 2¢D¢(al @ — k) 4 a¥ Dy - ¢2aP (8D, + D)
Bin{u>0}

2/ —A|Da| - 2¢|D¢| - @ a + A\BC?| Dy, |*a?, + AP Daf*a?,
Bin{u>0}

1 1A?
/ [— =A% Dul*a’, — == - 4| D¢|*a? @?) + M\BCE| Dy, |*al, + M| Dul*a?,
Bin{u>0} 2 2 A

Vv

(Here we used Cauchy-Schwarz for the first term in the previous line)

A2 1
/ —o™ I DCRaB a2 + ABCH Dy 2P, + SAC2| Daftad.
Bin{u>0} A 2

Thus

(1.4) B | C|Duy)*a? + | G|Dufu?, < C/ |D¢|*a? a?,
B1 By By

for some C' = C(5, A, \).

(Notice that if ¢ # 0 or there is an inhomogeneous term for the equation, then the
LHS of ([1.3)) is not zero and one needs a few more steps in the absorption of terms.)

We see the RHS (1.4]) is “roughly” an L? norm of the function

8
W = Up i,

whose L? norm of derivative is “roughly” bounded by the LHS of ([1.4)) as follows

B_ B
|Dwl? —\gafn YV Ly, + 02 V]
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8__ B
Ui VU, + U VU

|
— [\3|Q

<(1+

+ B)(B| Dt |*y, + |Df*a,).

Namely (1.4) reads
[ pupe <@+ [ ppur
Bl Bl
By Sobolev inequality applied to the compactly supported (w, we get
20 n—2 1 1 1
[ IQwl==]= < [[ [D(Cw)[’]z < [ [Dwl*¢*+ [ |DCPw?]z < [(2+8) [ [D¢[*w’]=.
B1 Bl B1 Bl Bl
Now we choose the cut-off function ¢ € C3(B;) so that for 0 < r < R < 1 there holds
(=1, in B,
0 < C < 17 in BR
2

D¢l < .
D( < ——

Noticing u,, < u and ( = 1 in B,, we obtain

[ an PP o a s

2n n—2
S( ’CU}’”72) 2n

B

<[(2+5) IDCI2 )2
Nﬁ/

M\H

2ZFB [ sy
<l

By letting m — oo, we can replace u,, by u and so

_ 2(p—1),1,, _
@l Loxpy) < [m]p“uHLwR,

where p =3+ 2,x = "5
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Here px > 7 so we get an improvement from LP to LPX, as pxy > p. After iterating i
times with .
pi:2xi—>oo,ri:9+§(1—9)—>9, e N,
we get
- 4% 2(p; — 1),2
; <|— 2P
@l e (Br;) <[ (1—6)2 ]

ﬁHLPifl(T‘ifl)

i i - i 1 P
SHk:l [4 . 2(?1 - 1)] Pi . k=1 {m] . HUHLQ(Bl)'

Taking the limit we get

_ 1 _
@l Loy < C'- mHUHB(BI)

2. HARNACK INEQUALITY AND HOLDER REGULARITY

As a consequence of Theorem we also have Inf bound for non-negative super
solutions.

Theorem 2.1. Suppose u € H'(By) is a non-negative supersolution, i.e.
2.1 [ aibupje=0. voe Hi(B). 620
By

Then for any 0 € (0,1),p < -2, we have in the smaller ball By that

n—27

infu > C|lulles,),
By

for some positive constant C' = C(n.\, A, p,q).

Idea of Proof: Apply Theorem to u~? (so that a super-solution becomes a subsolution).
The detail is left as an exercise. Il

So combining Theorem [I.T]and Theorem [2.1], we have the Harnack inequality for actual
non-negative solutions.

Theorem 2.2 (Moser-Harnack Inequality). Suppose u € H(By) is a non-negative weak
solution, 1i.e.

(2.2 | a"Dubio =0, Vo€ H(Br).6 2 0.
B

We have

supu < C'inf u,
Br Br

for some uniform constant C = C(n, A\, A).

The Moser-Harnack inequality will then give us oscillation decay when the radius of
balls shrinks, providing Hélder regularity (by standard iteration argument of Campanato).
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Theorem 2.3 (Holder continuity of weak solutions). If u € H*(U) is a weak solution to
Lu = 0 in a bounded open domain U C R", then for any Br(xo) € 2 we have the following:

e For allr < R we have

r (0%
08CR, (o)t < C (}—%) OSCBy(w0)Us

for some a = p(n, \,A) € (0,1) and C = C(n,\,A) > 0. Here

0SCp,U = SUpP U — igfu.
B, P

e u is Holder in a smaller ball, with the estimate
R [U]Cova(BR/zl(l‘o)) < CHU'HLOO(BR)‘

Proof. First we prove the oscillation decay. Let

M = supu, m := inf u, w:=M—m.
Bgr Br

Define
vi=u—m >0, w:=M-—u>0 in Bpg.
Since the operator is linear and Lu = 0, we have Lv = Lw = 0.
By Moser’s Harnack inequality, there exists C'y > 1 such that

sup v < Cy inf v, sup w < Cy inf w.
Br/a Br/2 Br2 Bpr/2

Set

A = sup u, B := inf u.
Br/2 Bry2

Applying Harnack to v = u — m gives

A—m < Cgx(B—m),
and applying it to w = M — u gives

M — B < Cyx(M — A).

Adding the above 2 bounds we get
(A—m)+ (M —B) <Cy[(B—m)+ (M- A)].
Using
(A—m)+ (M - B)=w+ (A— B), (B=m)+ (M —-A)=w-(A—B),
we obtain
w4+ (A—B) <Cy(w—(A-DB)).
Rearranging,
(Cy+1)(A-B) < (Cqx— 1w,

hence

Cg—1
OSCBR/QUZA—BSCH+1

Ww.
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Cy—1
C’H | € (0,1) completes the proof of first part on oscillation decay.
H

From the oscillation decay theorem, there exists o € (0, 1) such that

Setting o =

0SCRy, , U < 0 0sCgy U.

Iterating this estimate, we obtain for all £ € N,

(1) 0SCB,, ;U < o* oscp, u.
Choose @ > 0 such that
e log o
oc=2"% ie a=-— .
log 2

Let 0 < p < R and choose k € N satisfying

o <P S 5p
Then, by monotonicity of oscillation in the radius,
oscg, u < 0SCB, .\ U <ok 0SCB, U = g—ak 0SCh U.
Since p < R/2*, we have 27% < p/R, and hence
p (0%
0SCp, U < (}—%> 0SCp, U.
Finally, for any x,y € Bg/s, setting p = |z — y| yields
lu(z) — u(y)| < oscp,u < Clr —y|%,

which proves u € CSJS(Q)
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