
LECTURE 3: EXISTENCE THEORY FOR ELLIPTIC PDES

SHENGWEN WANG

We treat the existence theory and regularity theory separately in many PDE problems.
First we need to obtain the existence of weak solution in some larger space, and then we
proceed to prove the regularity / partial regularity of the solution. There are several
approaches using abstract tools from functional analysis or topological arguments. We will
present the Lax-Milgram theorem for existence of solutions to linear PDE and a fixed point
argument that can be applied to non-linear problems.

1. Lax-Milgram and weak solutions

Consider an elliptic operator of divergence form defined before,

Lu = ∂i(a
ij(x)∂ju) + c(x)u,

i.e. the coefficients satysfying

aij(x)ξiξj ≥ λ|ξ|2, λ > 0.

W define the bilinear form associated to L by

BL[u, v] =:

ˆ
U

u · Lvdx =

ˆ
U

−aij(x)uxivxj + c(x)u(x)v(x)dx(1.1)

for u, v ∈ H1
0 (U), U ⊂ Rn.

Definition 1.1. A weak solution u ∈ H1(U) of the Dirichlet problem

Lu =f(1.2)

u|∂U =0,

if

BL[u, v] = 〈f, v〉L2(U), ∀v ∈ H1
0 (U).(1.3)

The following functional analytic theorem will give existence of weak solutions.

Theorem 1.2 (Lax-Milgram). Let H be a real Hilbert space and B a bilinear form on H:

B : H ×H → R,
satisfying

|B[u, v]| ≤α‖u‖‖v‖, ∀u, v ∈ H,(1.4)

β‖u‖2 ≤B[u, u], ∀u ∈ H,(1.5)

for some α, β > 0. Then for any f ∈ H, there exists a unique u ∈ H so that

B[u, v] = 〈f, v〉.
1
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Sketch of Proof: The existence of u is a consequence of Riesz Representation theorem for
bounded (by (1.4)) linear functional, and the uniqueness part follows from the coercivity
(1.4). �

Indeed, we can characterise exactly when the coercivity condition in the Lax-Milgram
theorem fails.

Theorem 1.3 (Fredholm alternative). For an elliptic operator L satisfying the conditions
stated at the beginning of the section, one of the following items hold:

• For each f ∈ L(U), there eixsts a unique weak solution u of the boundary value
problem {

Lu = f, in U

u = 0, on ∂U
.

• There exists a nontrivial weak solution u 6≡ 0 to the homogenous problem{
Lu = 0, in U

u = 0, on ∂U
.

Indeed, when c(x) ≤ 0, the first case always happens.

Corollary 1.4. If the elliptic operator Lu = ∂i(a
ij(x)∂ju) + c(x)u satisfies c(x) ≤ 0, then

the first case in Fredholm alternative holds.

Proof. The second case does not happen, because the weak maximum principle proved in
Lecture 1 (for c ≤ 0) guarantees the uniqueness of solutions. �

We can also deal with the case with non-zero boundary data.

Proposition 1.5. Suppose L is an elliptic operator Lu = ∂i(a
ij(x)∂ju) + c(x)u satisfying

c(x) ≤ 0 and U ⊂ Rn is a smooth bounded domain. Then the following boundary value
problem has a unique solution for any f ∈ C0,α(U), φ ∈ C2,α(U):{

Lu = f, in U

u = φ, on ∂U
.(1.6)

Proof. We can extend φ to a Φ ∈ C2,α(U) so that Φ|∂U = φ, as U is smooth.Then by the
previous Corollary, there exists a unique solution for the following problem{

Lv = f − LΨ, in U

v = 0, on ∂U
.

Then we see that f − LΨ ∈ C0,α(U) ⊂ L2(U) because the operator is second order, and
thus u = v + Ψ is a solution (1.6). �

Combining the existence of a weak solution (1.3) in H1
0 for linear elliptic equations,

we can apply the De Giorgi Nash Moser Moser theory in Lecture 4 to gain L∞ and Hölder
regularity, and then apply Schauder theory to get higher regularity for such solutions.
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2. Leray-Schauder existence theory

The second existence theory is based on fixed point argument and can be applied to
quasi-linear PDEs, e.g. minimal surface equation.

Recall the classical Brouwer’s fixed point theorem, which states that “a continuous
map from closed unit ball in Rn to itself must have have a fixed point”, can be generalised
to maps of compact convex sets of Banach spaces.

Theorem 2.1 (Schauder’s fixed point theorem, Generlised Brouwer’s). Let K be a compact
convex set in a Banach space B and let T : K → K be continuous. Then T has a fixed
point.

As a corollary, one gets

Corollary 2.2. Let B be a Banach space and B ⊂ B is its open unit ball. Suppose
T : B̄ → B is a continuous map such that

• The map T is compact, i.e. images of any compact set is precompact.
• T (∂B) ⊂ B.

Then T has a fixed point.

Sketch of Proof: Apply the Schauder’s fixed point theorem to the map T ? : B̄ → B̄ defined
by

T ?(x) =

{
T (x), for ‖T (x)‖ ≤ 1
T (x)
‖T (x)‖ , for ‖T (x)‖ ≥ 1

,

and notice that the fixed point cannot happen at ∂B because |T (y)| < 1 = |y|,∀y ∈ ∂B. �

The fixed point theorem can be

Theorem 2.3 (Leray-Schauder fixed point theorem). Let B be a Banach space and

T : B × [0, 1]→ B
a compact map such that:

• T (x, 0) = 0 for each x ∈ B;
• There exists a constant M > 0 so that for each (x, t) ∈ B × [0, 1] which satisfies
x = T (x, t), there holds ‖x‖ < M .

Then there is a fixed point y ∈ B of the map T (·, 1) : B → B given by T (y, 1) = y.

Proof. Without loss of generality, we may assume M = 1. Otherwise one can just rescale
the norm on Banach space by a factor of 1

M
and notice that a fixed point is unchanged by

this norm scaling. For any ε ∈ (0, 1), we define a map from the closed unit ball,

Tε : B̄ → B

Tε(x) =:

{
T ( x
‖x‖ ,

1−‖x‖
ε

), if 1− ε ≤ ‖x‖ ≤ 1

T ( x
1−ε , 1), if ‖x‖ ≤ 1− ε

.
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For each ε, we see the image of ∂B by Tε is

Tε(∂B) = T (∂B,
1− 1

ε
) = T (∂B, 0) = 0,

by the definition of T (·, 0). So the Corollary 2.2 implies that there is a fixed point xε of Tε
for any ε. We define further that

tε =:

{
1−‖xε‖

ε
, if 1− ε ≤ ‖xε‖ ≤ 1

1, if ‖xε‖ ≤ 1− ε
,

which is the second parameter of Tε for this fixed point.
By compactness of T , we can find a subsequence so that

(xεk , tεk)→ (x̂, t̂) ∈ B̄ × [0, 1].

There are 2 possible cases:

• If t < 1, then for εk small enough, there holds tεk < 1, and thus

‖xεk‖ ≥ 1− εk → 1 = ‖x‖.

But this is a contradiction to the second condition that ‖x‖ < M = 1 as a fixed
point x = T (x, t).
• If t = 1, and thus x = T (x, 1) gives a fixed point for T (·, 1) as desired.

�

We want to apply the Leray-Schauder theorem to the existence theory of quasi-linear
elliptic PDEs of the form:

∂i(a
ij(x, u,∇u)∂ju) + c(x)u = 0, in U ⊂ R,(2.1)

where the coefficients aij, c are C0,α about every components of their variable and c(x) ≤ 0.

Theorem 2.4 (Quasi-linear existence). Let α ∈ (0, 1), U ⊂ Rn a bounded smooth open
domain and φ ∈ C2,α(Ū). Suppose further that for some β ∈ (0, 1), there exists M > 0
constant so that the following holds: For every t ∈ [0, 1], each C2,α solution u (not assuming
it exists) of {

∂i(a
ij(x, u,∇u)∂ju) + c(x)u = 0 in U, c ≤ 0,

u = tφ on ∂U,
(2.2)

satisfies the a priori estimate

‖u‖C1,β(Ū) < M.

Then the Dirichlet problem{
∂i(a

ij(x, u,∇u)∂ju) + c(x)u = 0 in U,

u = φ on ∂U
(2.3)

has a solution in C2,α(Ū).
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Proof. We define an operator

T :C1,β(Ū)× [0, 1]→ C1,β(Ū)

T (v, t) =u,

where u = T (v, t) is the unique solution of the linear problem obtained by replacing u,∇u
with v,∇v in the coefficients aij.{

∂i(a
ij(x, v,∇v)∂ju) + tc(x)u = 0 in U,

u = tφ on ∂U,

We see that any solution u of (2.2) is a fixed point of T . And by the assumption of the
theorem, any such fixed point u = T (u, t), t ∈ [0, 1] must satisfies

‖v‖C1,β(Ū) < M.

So the Leray-Schauder fixed point theorem implies the existence of a fixed point for the
map T (·, 1), namely a solution to (2.3).

The C2,α regularity of the solution is coming from Schauder estimates, as the coeffi-
cients are now in C0,β (as u is in C1,β). �

3. Example: Existence of solution to minimal surface equation

The area of graph of u over U ⊂ Rn is

Au(U) =

ˆ
U

√
1 + |∇u|2dx.

For any compactly supported variation φ ∈ C∞0 (U) we have the first variation formula

0 =
d

dt
|t=0Au+tφ(U)

=

ˆ
U

d

dt

√
1 + |∇u+ t∇φ|2dx|t=0

=

ˆ
U

1

2
√

1 + |∇u+ t∇φ|2
2〈∇u+ t∇φ,∇φ〉dx|t=0

=

ˆ
U

〈 ∇u√
1 + |∇u|2

,∇φ〉dx

=−
ˆ
U

div

(
∇u√

1 + |∇u|2

)
φdx.

So the Euler-Lagrange equation of the area functional is the minimal surface equation:

div

(
∇u√

1 + |∇u|2

)
= 0.(3.1)

To apply the Leray-Schauder estimate above, we need to prove a priori gradient estimates.
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Lemma 3.1. Let U ⊂ Rn be a mean convex bounded smooth domain and φ ∈ C∞(Ū).
Then any solution to the boundary value minimal surface equation:

div

(
∇u√

1 + |∇u|2

)
=0 in U(3.2)

u =φ on ∂U,

satisfies the gradient estimate
‖∇u‖C0,β(Ū) < M,

for some M > 0 and β ∈ (0, 1).

The proof of this Hölder bounds of gradient will use De Goirgi - Nash - Moser theory,
which is the material of next lecture.

As a application of Theorem 2.4 and Lemma 3.1, we have

Theorem 3.2. Let U ⊂ Rn and φ satisfy the same conditions as in Lemma 3.1. There
exists a unique smooth solution to (3.2).

Remark 3.3. One gets C2,α regularity by Leray-Schauder, then the higher regularity
follows from Schauder estimates from Lecture 2.

Remark 3.4. This is actually a minimising solution (i.e. the surface with least area with
that prescribed boundary). In general, minimising hypersurfaces with prescribe boundary
are only smooth up to dimension 8 (and in higher dimension may have singular set of
codimension 8). However, when they are graphical, we know that they are actually smooth
in all dimensions.

4. Variational method

Another approach to the existence of minimal surface is through a variational method.
Let uk be a minimizing sequence of the area functional so that

Auk(U)→ inf
u∈C∞(U),u|∂U=φ

Au(U).

In order to get a subsequence converging to a limit, we need some estimates and compact-
ness in function space.

Since the minimising sequence have uniformly bounded area, we haveˆ
U

|∇uk| ≤
ˆ
U

√
1 + |∇uk|2 ≤ A0.

And by Poincare inequality and that uk − Φ = 0 on ∂U (where Ψ is an extension of φ to
the interior of U), we get ˆ

U

|uk −Ψ| ≤
ˆ
U

|∇uk| ≤ A0,

and so ˆ
U

|uk| ≤ C(A0, φ).
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Thus the sequence is uniformly bounded in W 1,1(U). Sobolev inequality gives that W 1,1 7→
L

n
n−1 compactly. So the existence of a solution in Lp for p ≤ n

n−1
follows by taking a sub-

sequential limit
ukk → u0.

For higher regularity, we need to Apply De Goirgi Nash - Moser theory from next
lecture and Schauder theory from the last lecture.
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