LECTURE 3: EXISTENCE THEORY FOR ELLIPTIC PDES

SHENGWEN WANG

We treat the existence theory and regularity theory separately in many PDE problems.
First we need to obtain the existence of weak solution in some larger space, and then we
proceed to prove the regularity / partial regularity of the solution. There are several
approaches using abstract tools from functional analysis or topological arguments. We will
present the Lax-Milgram theorem for existence of solutions to linear PDE and a fixed point
argument that can be applied to non-linear problems.

1. LAX-MILGRAM AND WEAK SOLUTIONS
Consider an elliptic operator of divergence form defined before,
Lu = 8;(a” (z)0;u) + c(z)u,
i.e. the coefficients satysfying
aij(x)&fj 2 )\|§|2, A> 0.
W define the bilinear form associated to L by
(1.1) By lu,v] =: / u - Lvdx = / —a" (2) Uy, v, + c(x)u(z)v(z)de
U U
for u,v € HY}(U),U C R™.
Definition 1.1. A weak solution u € H'(U) of the Dirichlet problem

(1.2) Lu=f
ulpr =0,
if
(13) BL[U7’U] = <faU>L2(U)7 Yu € H&(U)

The following functional analytic theorem will give existence of weak solutions.
Theorem 1.2 (Lax-Milgram). Let H be a real Hilbert space and B a bilinear form on H :
B:Hx H—R,

satisfying
(1.4) | Blu, v]| <aullllv]l,  Vu,ve H,
(1.5) Bllul|* <Blu,u], Yue€ H,

for some o, 8 > 0. Then for any f € H, there exists a unique uw € H so that

Blu,v] = (f,v).
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Sketch of Proof: The existence of u is a consequence of Riesz Representation theorem for
bounded (by (1.4)) linear functional, and the uniqueness part follows from the coercivity

) O

Indeed, we can characterise exactly when the coercivity condition in the Lax-Milgram
theorem fails.

Theorem 1.3 (Fredholm alternative). For an elliptic operator L satisfying the conditions
stated at the beginning of the section, one of the following items hold:

e For each f € L\U), there eizsts a unique weak solution u of the boundary value

problem
Lu=f, U
u=0, ondU
o There exists a nontrivial weak solution u % 0 to the homogenous problem
Lu=0, U
u=0, ondU

Indeed, when ¢(z) < 0, the first case always happens.
Corollary 1.4. If the elliptic operator Lu = 9;(a"” (x)0;u) + c(z)u satisfies c(x) <0, then

the first case in Fredholm alternative holds.

Proof. The second case does not happen, because the weak maximum principle proved in
Lecture 1 (for ¢ < 0) guarantees the uniqueness of solutions. U

We can also deal with the case with non-zero boundary data.

Proposition 1.5. Suppose L is an elliptic operator Lu = 9;(a" (2)0;u) + c(z)u satisfying
c(x) <0 and U C R"™ is a smooth bounded domain. Then the following boundary value
problem has a unique solution for any f € CO*(U), € C**(U):

Lu=f, U
(16) {u =¢, ondU

Proof. We can extend ¢ to a ® € C?%(U) so that ®|gy = ¢, as U is smooth.Then by the
previous Corollary, there exists a unique solution for the following problem

Lv=f—L¥Y, inU
v=0, ondU

Then we see that f — LU € C%*(U) C L?(U) because the operator is second order, and
thus u = v + W is a solution (1.6). O

Combining the existence of a weak solution (1.3)) in Hj for linear elliptic equations,
we can apply the De Giorgi Nash Moser Moser theory in Lecture 4 to gain L* and Holder
regularity, and then apply Schauder theory to get higher regularity for such solutions.
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2. LERAY-SCHAUDER EXISTENCE THEORY

The second existence theory is based on fixed point argument and can be applied to
quasi-linear PDEs, e.g. minimal surface equation.

Recall the classical Brouwer’s fixed point theorem, which states that “a continuous
map from closed unit ball in R"™ to itself must have have a fixed point”, can be generalised
to maps of compact convex sets of Banach spaces.

Theorem 2.1 (Schauder’s fixed point theorem, Generlised Brouwer’s). Let K be a compact
conver set in a Banach space B and let T : K — K be continuous. Then T has a fized
point.

As a corollary, one gets
Corollary 2.2. Let B be a Banach space and B C B is its open unit ball. Suppose

T : B — B is a continuous map such that

e The map T is compact, i.e. images of any compact set is precompact.

e T'(0B) C B.

Then T has a fized point.

Sketch of Proof: Apply the Schauder’s fixed point theorem to the map 7% : B — B defined
by

o T, for @) <1
(@) = {T—> for |T(z)| >1
1T ()l =

and notice that the fixed point cannot happen at 0B because |T'(y)| < 1 = |y|,Yy € 0B. O

The fixed point theorem can be

Theorem 2.3 (Leray-Schauder fixed point theorem). Let B be a Banach space and
T:Bx[0,1] — B
a compact map such that:
e T(x,0) =0 for each x € B;

e There exists a constant M > 0 so that for each (z,t) € B x [0,1] which satisfies
x =T(x,t), there holds ||x|| < M.

Then there is a fived point y € B of the map T(-,1) : B — B given by T(y,1) = y.
Proof. Without loss of generality, we may assume M = 1. Otherwise one can just rescale

the norm on Banach space by a factor of % and notice that a fixed point is unchanged by
this norm scaling. For any ¢ € (0,1), we define a map from the closed unit ball,

T.:B—B
1]z o1
T.(z) =: {T(n e ), fl—e<|zf <1

xT
T

T(=, 1), if o] <1-¢
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For each ¢, we see the image of 0B by T is
1-1
T.(0B) =T(0B,——) =T(0B,0) =0,
€

by the definition of T'(+,0). So the Corollary implies that there is a fixed point z. of T,
for any . We define further that
el i e <] <1
T, if |z <1—¢ ’

which is the second parameter of T for this fixed point.
By compactness of T', we can find a subsequence so that

(ze,,t,) — (2,1) € B x [0,1].
There are 2 possible cases:
e If ¢ < 1, then for ¢4 small enough, there holds ., < 1, and thus
e, | = 1 —ex = 1= |lz]].
But this is a contradiction to the second condition that ||z|| < M =1 as a fixed

point x = T'(z,t).
e If t = 1, and thus z = T'(x, 1) gives a fixed point for T'(-, 1) as desired.

g

We want to apply the Leray-Schauder theorem to the existence theory of quasi-linear
elliptic PDEs of the form:

(2.1) di(a" (z,u, Vu)oju) + c(x)u =0, inU CR,
where the coefficients a/, ¢ are C%* about every components of their variable and ¢(x) < 0.

Theorem 2.4 (Quasi-linear existence). Let v € (0,1), U C R"™ a bounded smooth open
domain and ¢ € C*>*(U). Suppose further that for some 3 € (0,1), there exists M > 0
constant so that the following holds: For everyt € [0,1], each C*“ solution u (not assuming
it exists) of

(2.2) {&-(aij(x,u, Vu)oju) +c(z)u=0 inU,c <0,

u=tp ondU,
satisfies the a priori estimate
[ullore@y < M.
Then the Dirichlet problem
(2.3) 0;(a" (z,u, Vu)dju) + c(x)u =0 in U,
' u=¢ ondU

has a solution in C*(U).
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Proof. We define an operator
T :CYP(U) x [0,1] — C(T)
T(v,t) =u,

where u = T'(v, t) is the unique solution of the linear problem obtained by replacing u, Vu
with v, Vv in the coefficients a¥.

di(a" (x,v, Vv)dju) + te(z)u =0 in U,
u=t¢ on U,

We see that any solution u of (2.2) is a fixed point of 7. And by the assumption of the
theorem, any such fixed point v = T'(u,t),t € [0, 1] must satisfies

vllcrs@y < M.

So the Leray-Schauder fixed point theorem implies the existence of a fixed point for the
map 7'(+, 1), namely a solution to (2.3)).

The C?%“ regularity of the solution is coming from Schauder estimates, as the coeffi-
cients are now in C% (as u is in CP). O

3. EXAMPLE: EXISTENCE OF SOLUTION TO MINIMAL SURFACE EQUATION

The area of graph of u over U C R" is

Au(U):/[]\/1+\Vu|2dx.

For any compactly supported variation ¢ € C5°(U) we have the first variation formula

d
0 Ia\t:kow(U)

d
U

1
= 2(Vu+tVo,Vo)dx|—
/UQ\/1+|Vu+tV¢|2 < ¢ Vo)l

Vu
_/U<—1+|VU|27V¢>dx
. YVu
- /d (W) dde

So the Euler-Lagrange equation of the area functional is the minimal surface equation:

. Vu B
(3.1) div (W) =0

To apply the Leray-Schauder estimate above, we need to prove a priori gradient estimates.
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Lemma 3.1. Let U C R™ be a mean convexr bounded smooth domain and ¢ € C=(U).
Then any solution to the boundary value minimal surface equation:

(3.2) div (L> =0 nU
NiER T
u=¢ ondU,
satisfies the gradient estimate
IVullcos@y < M,
for some M >0 and € (0,1).

The proof of this Holder bounds of gradient will use De Goirgi - Nash - Moser theory,
which is the material of next lecture.
As a application of Theorem and Lemma |3.1 we have

Theorem 3.2. Let U C R™ and ¢ satisfy the same conditions as in Lemma |3.1. There
exists a unique smooth solution to (3.2)).

Remark 3.3. One gets C%° regularity by Leray-Schauder, then the higher regularity
follows from Schauder estimates from Lecture 2.

Remark 3.4. This is actually a minimising solution (i.e. the surface with least area with
that prescribed boundary). In general, minimising hypersurfaces with prescribe boundary
are only smooth up to dimension 8 (and in higher dimension may have singular set of
codimension 8). However, when they are graphical, we know that they are actually smooth
in all dimensions.

4. VARIATIONAL METHOD

Another approach to the existence of minimal surface is through a variational method.
Let ug be a minimizing sequence of the area functional so that

A (U) = inf AL 0).

ueC'e (U)vu‘aU:(b

In order to get a subsequence converging to a limit, we need some estimates and compact-
ness in function space.
Since the minimising sequence have uniformly bounded area, we have

/ |Vuk| < / v 1+ |Vuk|2 < A.
U U

And by Poincare inequality and that u;, — ® = 0 on QU (where V¥ is an extension of ¢ to

the interior of U), we get
[ =< [ 0] < 4
U U

/\m < C(Ao, ).
U

and so
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Thus the sequence is uniformly bounded in W1(U). Sobolev inequality gives that W11 —
LwT compactly. So the existence of a solution in L” for p < "= follows by taking a sub-
sequential limit
Uk, — UQ-
For higher regularity, we need to Apply De Goirgi Nash - Moser theory from next
lecture and Schauder theory from the last lecture.
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