
LECTURE 1: HARMONIC FUNCTIONS AND A PRIORI ESTIMATES

SHENGWEN WANG

Let u ∈ C2(U) be a solution to the Laplace equation

∆u = 0, on a domain U ⊂ Rn.(0.1)

The existence of solutions for more general classess of elliptic PDEs could follow several
approaches, see Lecture 3 for examples.

In modern PDE theory, we usually separate existence and regularity part. First we
use the weak formulation of (0.1)ˆ

U

u∆η = 0, ∀η ∈ C∞c (U),(0.2)

to get existence of solution in some Sobolev space, say H1
loc(U). And then we prove the

regularity / partial regularity of the solutions.
Indeed for harmonic functions, one can improve the regularity of solutions to C∞, and

even analytic! (See also Hilbert’s XIX problem.)
We also have quantitative bounds on all its derivatives. Let’s start with some a priori

estimates. Although there are now various ways to see the regularity of harmonic functions,
but these estimates still give models for studying more general elliptic PDEs.

1. Some a priori estimates

The first is an interior estimate.

Theorem 1.1 (Gradient bound). If u is a harmonic function on Br(x0) ⊂ Rn above, then
we have

|∇u(x0)| ≤ C

rn+1
‖u‖L1(Bx0 (r)) ≤

C

r
n+2
2

‖u‖L2(Bx0 (r)),(1.1)

for a dimensional constant C = C(n).

Proof. By the mean value inequality, we have

|Uxi(x0)| =

∣∣∣∣∣ 2n

ωnrn

ˆ
B r

2 (x0)

uxidx

∣∣∣∣∣
=

∣∣∣∣∣ 2n

ωnrn

ˆ
B r

2 (x0)

div(uei)dx

∣∣∣∣∣
=

∣∣∣∣∣ 2n

ωnrn

ˆ
∂B r

2 (x0)

〈uei,n〉dS

∣∣∣∣∣
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≤
∣∣∣∣ 2n

ωnrn
ωn−1

(r
2

)n−1

‖u‖L∞(∂B r
2

(x0))

∣∣∣∣
≤
∣∣∣∣ 2n

ωnrn
ωn−1

(r
2

)n−1 2n

ωnrn
‖u‖L1(Br(x0))

∣∣∣∣
=
C(n)

rn+1
‖u‖L1(Br(x0)),

where the second last line used ∂B r
2
(x0) ⊂ Br(x0) and the mean value inequality.

�

In a similar way, one can obtain interior bounds on all higher derivatives by the L1

norm, this will be left as an exercise.

Exercise 1.2. Under the same assumption as in Theorem 1.1, we have

Dαu(x0) ≤ C

rn+k
‖u‖L1(Bx0 (r)),

with the norm of multiindex α being |α| = k.

As a consequence of this gradient estimates, we have the Liouville Theorem for entire
harmonic function.

Corollary 1.3 (Liouville’s Theorem). Let C < ∞, ε > 0. If u : Rn → R is a harmonic
function with supBr(0) |u| ≤ Crk−ε for some positive integer k ∈ N, then u must be a
polynomial of degree at most k − 1.

In particular, entire harmonic functions with sub-linear growth must be constant.

Proof. The proof is an easy exercise from the derivative estimate above. �

Remark 1.4. This will be used later to give a version of proof of Schauder estimate for
higher regularity.

Next, we provide a global Hölder regularity estimate up to the boundary.

Theorem 1.5. Let u be a harmonic function on B1(0) with u|∂B1(0) = φ. Suppose φ ∈
Cα(∂B1(0)) for some α ∈ (0, 1), then we have

‖u‖
C
α
2 (B1(0))

≤ C‖φ‖Cα(∂B1(0)),(1.2)

for some constant C = C(n, α).

Proof. Without loss of generality, up to translation, we assume x0 = (1, 0, . . . , 0) and
φ(0) = 0. For x ∈ ∂B1(x0), we then have

|x2| = 2x1.

We denote by

K =: sup
x∈∂B1(x0)

|φ(x)|
|x|α

,
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and

v(x) =: 2
α
2Kx

α
2
1 .

Then

∆v(x) =2
α
2K · α

2
(
α

2
− 1)x

α
2
−2

1 < 0 = ∆u,

v|∂B1(x0) =2
α
2Kx

α
2
1 = K|x|α ≥ φ(x) = u|∂B1(x0).

Applying maximum principle to the subharmonic function u− v we then get

|u(x)| ≤ |v(x)| =
α
2 Kx

α
2
1 ,∀x ∈ B1(x0),

namely

sup
x∈B1(x0)

|u(x)− u(0)|
|x− 0|α2

≤ 2
α
2 sup
x∈∂B1(x0)

|φ(x)− φ(0)|
|x− 0|2

.(1.3)

Here 0 can be replaced by arbitrary point on the boundary ∂B1(x0) by translation and
rotation.

We will leave the rest of the proof as an exercise. �

Exercise 1.6. Prove that (1.3) implies (1.2).

2. Maximum principle and barriers

The maximum principle is a key tool in elliptic PDEs that plays an important role in
a priori estimates and regularity theory.

We consider operators of divergence form (they arise from variational problems natu-
ally)

Lu = ∂i(a
ij(x)∂ju) + c(x)u,(2.1)

It is said to be elliptic in U ⊂ Rn if there exists a λ > 0 so that

aij(x)ξiξj ≥ λ|ξ|2, ∀x ∈ U, ξ ∈ Rn.

We further assume that aij, c ∈ C0,α(U) are Hölder continuous.
The maximum principles are true for operators of non-divergence form too. But here

by making use of the divergence form and variational structure, we have a simple proof of
weak maximum principle.

Theorem 2.1 (Weak Maximum Principle). Let L be an elliptic operator as above and the
coefficient c(x) ≤ 0. If

Lu ≥0 in U

u|∂U ≤0,

then we have

u ≤ 0, in U.
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Proof. We use the test function
u+ = max{u, 0}.

Using integration by parts and ellipticity, we getˆ
U

[∂i(a
ij(x)∂ju

+ + c(x)u]u+dx ≥0

ˆ
U

[∂i(a
ij(x)∂ju

+ + c(x)u+]u+dx ≥0

ˆ
U

−aij(x)∂ju
+∂iu

+ + c(x)(u+)2]dx ≥0

ˆ
U

−λ|∇u+|2 + c(x)(u+)2]dx ≥0,(2.2)

which forces u+ = 0 (namely u ≤ 0) because c ≤ 0 and λ > 0. �

Remark 2.2. Notice that the proof works for weak solutions u ∈ H1.

Moreover, if the volume of region U is small, we can remove the assumption on nega-
tivity of c.

Theorem 2.3 (Small Volume Maximum Principle). Let L be an elliptic operator as above.
There exists a δ > 0 so that the following hold: If

Lu ≥0 in U

u|∂U ≤0

|U | <δ,
then we have

u ≤ 0, in U.

Proof. By Faber-Krahn, the first eigenvalue of the region U satisfies

λ1(U) ≥ λ1(BR) =
cn
R2

> 0,

where BR is a round disk of radius R so that its volume |B| = |U |. Namelyˆ
U

|∇u+|2 ≥ λ1(U)

ˆ
U

λ|u+|2 ≥ cn
R2

ˆ
U

λ|u+|2.

Plugging into (2.2) we get ˆ
U

−λcn
R2
|u+|2 + c(x)(u+)2]dx ≥0.

This again forces u+ = 0 (namely u ≤ 0) when the volume |Ω| = ωnR
n is small enough

(namely R is small enough). �

Remark 2.4. The conclusion is in general not true if c does not have a sign and the volume
of domain is not small. For example u(x) = sinx in (0, 2π) achieves both maximum and
minimum in the interior.
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At the points that u achieves maximum on the boundary, we have the following prop-
erties on outer derivative

Theorem 2.5 (Hopf Lemma). Let L be an elliptic operator as above and the coefficient
c(x) ≤ 0. If

Lu ≥0 in U,

u|U <max
∂U

u in the interior of U,

and x0 ∈ ∂U be a point that achieves non-negative maximum

u(x0) = max
∂U

u ≥ 0,

such that x0 satisfies the interior ball condition (namely there is a ball Br(y0) ⊂ U so that
x0 ∈ ∂Br(y0)), then we have

∂u

∂ν
(x0) > 0,

where ν is the unit outer normal at x0.

Proof.

U
y0

r
x0

Consider a barrier function

v(x) =u(x)− u(x0) + ε[e−α|x−y0|
2 − e−αr2 ] in Br(y0) \B r

2
(y0).

We then have

Lv =Lu− cu(x0) + εLe−α|x−y0|
2

≥0 + εe−α|x−y0|
2

[4α2aij(x)(xi − y0,i)(xj − y0,j)− 2
n∑
i=1

αaii(x) + α∂ja
ij(x)(xi − y0,i) + c(x)]

≥εe−α|x−y0|2 [4α2λ|x− y0|2 − 2
n∑
i=1

αaii(x) + α∂ja
ij(x)(xi − y0,i)]

≥εe−α|x−y0|2 [α2λr2 − 2
n∑
i=1

αaii(x) + α∂ja
ij(x)(xi − y0,i)].

By choosing α > 0 large enough, we get

Lv > 0 in Br(y0) \B r
2
(y0).(2.3)
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Moreover, on the boundary of the annulus Br(y0) \B r
2
(y0) we get

v|Br(y0) =u(x)− u(x0) ≤ 0(2.4)

v|B r
2

(y0) ≤ max
∂B r

2
(y0)

u(x)− u(x0) + εC(α, λ, r) < 0, for ε chosen small enough.

Here in the second bound, we used that u < u(x0) in the interior of U and that ∂B r
2
(y0)

is compact.
Combining (2.3) and (2.4) we get by the weak maximum principle that

v ≤ 0 = v(x0) in U.

As a consequence, by continuity of v, we know

∂v

∂ν
(x0) ≥0

∂u

∂ν
(x0) + ε[−2αre−αr

2

] ≥0

∂u

∂ν
(x0) ≥2εαre−αr

2

> 0.

�

As a consequence we have the strong maximum principle

Theorem 2.6 (Strong Maximum Principle). Let L be an elliptic operator as above and
the coefficient c(x) ≤ 0. If

Lu ≥ 0 in U,

then

u|U <max
∂U

u = max
U

u in the interior of U,

unless u is a constant.

The maximum principle has important geometric applications on proving uniqueness
/ rigidity / symmetry of solutions.

Theorem 2.7 (The moving plane method). If u ∈ C2(BR) satisfies

∆u =f(u),

u >0, in BR

u =0. on ∂BR,

then u is rotational symmetric, i,e. u(x) = u(xeiθ),∀θ ∈ R.
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Proof.

x1
R

x1 = λ0

x1 = λ0 − ε0

K

K − ε0

Eλ0 = BR ∩ {x1 > λ0}

Eλ0−ε0 = BR ∩ {x1 > λ0 − ε0}

We will prove that u is reflexive symmetric about any hyperplanes passing through the ori-
gin, which implies rotational symmetry. Without loss of generality (up to rotation), we
only need to prove symmetric about the plane x1 = 0.

For any λ ∈ [0, R], define

Eλ = BR ∩ {x1 > λ},
and the function

vλ = u(x)− u(2λe1 − x) on Eλ.

Notice that for λ > R − ε close enough to R, we have |Eλ| < δ (so that the small volume
maximum principle is applicable). And

vλ|∂BR∩{x1≥λ}(x) ≤0− u(2λe1 − x) < 0

vλ|BR∩{x1=λ} =0.

So vλ|∂Eλ ≤ 0 as ∂Eλ = [∂BR ∩ {x1 ≥ λ}] ∪ [BR ∩ {x1 = λ}]. Thus the small volume
maximum principle combined with strong maximum principle gives vλ|Eλ < 0 for λ > R−ε
when ε small enough.

We denote by

λ0 = inf
vλ≤0,∀λ>λ̄

λ̄.

The proof will then be finished by the following claim:
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Claim 2.8.
λ0 = 0.

Proof of Claim. Suppose not, then λ0 > 0. We then choose a compact subset K ⊂ Eλ0 so
that |Eλ0 \ K| < δ

2
. Since K is compact and vλ|K < 0, we can choose a c0 > 0 so that

vλ|K < −c0 < 0. Next, we choose ε0 small enough so that

|Eλ0−ε0 − (K − εe1)| < δ,

and
vλ|K−εe1 < −

c0

2
< 0.

The small volume maximum principle applied to the region Eλ0−ε0−(K−εe1) then implies

vλ|Eλ0−ε0 ≤ 0,

which is a contradiction to the definition of λ0. �

With this claim in hand, we see that v0 ≤ 0 with λ = 0. And by reflection, we see that
v0 ≥ 0 too. So v0 ≡ 0 and thus u is reflexive symmetric about the planes {x1 = 0}. Since
the choice of such planes is arbitrary, we see the rotational symmetry in the disk BR.

�
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