

LECTURE 1: HARMONIC FUNCTIONS AND A PRIORI ESTIMATES

SHENGWEN WANG

Let $u \in C^2(U)$ be a solution to the Laplace equation

$$(0.1) \quad \Delta u = 0, \quad \text{on a domain } U \subset \mathbb{R}^n.$$

The existence of solutions for more general classes of elliptic PDEs could follow several approaches, see Lecture 3 for examples.

In modern PDE theory, we usually separate existence and regularity part. First we use the weak formulation of (0.1)

$$(0.2) \quad \int_U u \Delta \eta = 0, \quad \forall \eta \in C_c^\infty(U),$$

to get existence of solution in some Sobolev space, say $H_{loc}^1(U)$. And then we prove the regularity / partial regularity of the solutions.

Indeed for harmonic functions, one can improve the regularity of solutions to C^∞ , and even analytic! (See also Hilbert's XIX problem.)

We also have quantitative bounds on all its derivatives. Let's start with some a priori estimates. Although there are now various ways to see the regularity of harmonic functions, but these estimates still give models for studying more general elliptic PDEs.

1. SOME A PRIORI ESTIMATES

The first is an interior estimate.

Theorem 1.1 (Gradient bound). *If u is a harmonic function on $B_r(x_0) \subset \mathbb{R}^n$ above, then we have*

$$(1.1) \quad |\nabla u(x_0)| \leq \frac{C}{r^{n+1}} \|u\|_{L^1(B_{x_0}(r))} \leq \frac{C}{r^{\frac{n+2}{2}}} \|u\|_{L^2(B_{x_0}(r))},$$

for a dimensional constant $C = C(n)$.

Proof. By the mean value inequality, we have

$$\begin{aligned} |U_{x_i}(x_0)| &= \left| \frac{2^n}{\omega_n r^n} \int_{B_{\frac{r}{2}}(x_0)} u_{x_i} dx \right| \\ &= \left| \frac{2^n}{\omega_n r^n} \int_{B_{\frac{r}{2}}(x_0)} \operatorname{div}(u \mathbf{e}_i) dx \right| \\ &= \left| \frac{2^n}{\omega_n r^n} \int_{\partial B_{\frac{r}{2}}(x_0)} \langle u \mathbf{e}_i, \mathbf{n} \rangle dS \right| \end{aligned}$$

$$\begin{aligned}
&\leq \left| \frac{2^n}{\omega_n r^n} \omega_{n-1} \left(\frac{r}{2} \right)^{n-1} \|u\|_{L^\infty(\partial B_{\frac{r}{2}}(x_0))} \right| \\
&\leq \left| \frac{2^n}{\omega_n r^n} \omega_{n-1} \left(\frac{r}{2} \right)^{n-1} \frac{2^n}{\omega_n r^n} \|u\|_{L^1(B_r(x_0))} \right| \\
&= \frac{C(n)}{r^{n+1}} \|u\|_{L^1(B_r(x_0))},
\end{aligned}$$

where the second last line used $\partial B_{\frac{r}{2}}(x_0) \subset B_r(x_0)$ and the mean value inequality. \square

In a similar way, one can obtain interior bounds on all higher derivatives by the L^1 norm, this will be left as an exercise.

Exercise 1.2. Under the same assumption as in Theorem 1.1, we have

$$D^\alpha u(x_0) \leq \frac{C}{r^{n+k}} \|u\|_{L^1(B_{x_0}(r))},$$

with the norm of multiindex α being $|\alpha| = k$.

As a consequence of this gradient estimates, we have the Liouville Theorem for entire harmonic function.

Corollary 1.3 (Liouville's Theorem). *Let $C < \infty, \varepsilon > 0$. If $u : \mathbb{R}^n \rightarrow \mathbb{R}$ is a harmonic function with $\sup_{B_r(0)} |u| \leq Cr^{k-\varepsilon}$ for some positive integer $k \in \mathbb{N}$, then u must be a polynomial of degree at most $k - 1$.*

In particular, entire harmonic functions with sub-linear growth must be constant.

Proof. The proof is an easy exercise from the derivative estimate above. \square

Remark 1.4. This will be used later to give a version of proof of Schauder estimate for higher regularity.

Next, we provide a global Hölder regularity estimate up to the boundary.

Theorem 1.5. *Let u be a harmonic function on $\overline{B_1(0)}$ with $u|_{\partial B_1(0)} = \phi$. Suppose $\phi \in C^\alpha(\partial B_1(0))$ for some $\alpha \in (0, 1)$, then we have*

$$(1.2) \quad \|u\|_{C^{\frac{\alpha}{2}}(\overline{B_1(0)})} \leq C \|\phi\|_{C^\alpha(\partial B_1(0))},$$

for some constant $C = C(n, \alpha)$.

Proof. Without loss of generality, up to translation, we assume $x_0 = (1, 0, \dots, 0)$ and $\phi(0) = 0$. For $x \in \partial B_1(x_0)$, we then have

$$|x^2| = 2x_1.$$

We denote by

$$K =: \sup_{x \in \partial B_1(x_0)} \frac{|\phi(x)|}{|x|^\alpha},$$

and

$$v(x) =: 2^{\frac{\alpha}{2}} K x_1^{\frac{\alpha}{2}}.$$

Then

$$\begin{aligned}\Delta v(x) &= 2^{\frac{\alpha}{2}} K \cdot \frac{\alpha}{2} \left(\frac{\alpha}{2} - 1 \right) x_1^{\frac{\alpha}{2}-2} < 0 = \Delta u, \\ v|_{\partial B_1(x_0)} &= 2^{\frac{\alpha}{2}} K x_1^{\frac{\alpha}{2}} = K|x|^\alpha \geq \phi(x) = u|_{\partial B_1(x_0)}.\end{aligned}$$

Applying maximum principle to the subharmonic function $u - v$ we then get

$$|u(x)| \leq |v(x)| = 2^{\frac{\alpha}{2}} K x_1^{\frac{\alpha}{2}}, \forall x \in B_1(x_0),$$

namely

$$(1.3) \quad \sup_{x \in B_1(x_0)} \frac{|u(x) - u(0)|}{|x - 0|^{\frac{\alpha}{2}}} \leq 2^{\frac{\alpha}{2}} \sup_{x \in \partial B_1(x_0)} \frac{|\phi(x) - \phi(0)|}{|x - 0|^2}.$$

Here 0 can be replaced by arbitrary point on the boundary $\partial B_1(x_0)$ by translation and rotation.

We will leave the rest of the proof as an exercise. \square

Exercise 1.6. Prove that (1.3) implies (1.2).

2. MAXIMUM PRINCIPLE AND BARRIERS

The maximum principle is a key tool in elliptic PDEs that plays an important role in a priori estimates and regularity theory.

We consider operators of divergence form (they arise from variational problems naturally)

$$(2.1) \quad Lu = \partial_i (a^{ij}(x) \partial_j u) + c(x)u,$$

It is said to be elliptic in $U \subset \mathbb{R}^n$ if there exists a $\lambda > 0$ so that

$$a^{ij}(x) \xi_i \xi_j \geq \lambda |\xi|^2, \forall x \in U, \xi \in \mathbb{R}^n.$$

We further assume that $a^{ij}, c \in C^{0,\alpha}(U)$ are Hölder continuous.

The maximum principles are true for operators of non-divergence form too. But here by making use of the divergence form and variational structure, we have a simple proof of weak maximum principle.

Theorem 2.1 (Weak Maximum Principle). *Let L be an elliptic operator as above and the coefficient $c(x) \leq 0$. If*

$$\begin{aligned}Lu &\geq 0 \quad \text{in } U \\ u|_{\partial U} &\leq 0,\end{aligned}$$

then we have

$$u \leq 0, \quad \text{in } U.$$

Proof. We use the test function

$$u^+ = \max\{u, 0\}.$$

Using integration by parts and ellipticity, we get

$$\begin{aligned}
 (2.2) \quad & \int_U [\partial_i(a^{ij}(x)\partial_j u^+ + c(x)u)u^+]dx \geq 0 \\
 & \int_U [\partial_i(a^{ij}(x)\partial_j u^+ + c(x)u^+)u^+]u^+dx \geq 0 \\
 & \int_U [-a^{ij}(x)\partial_j u^+\partial_i u^+ + c(x)(u^+)^2]dx \geq 0 \\
 & \int_U -\lambda|\nabla u^+|^2 + c(x)(u^+)^2]dx \geq 0,
 \end{aligned}$$

which forces $u^+ = 0$ (namely $u \leq 0$) because $c \leq 0$ and $\lambda > 0$. \square

Remark 2.2. Notice that the proof works for weak solutions $u \in H^1$.

Moreover, if the volume of region U is small, we can remove the assumption on negativity of c .

Theorem 2.3 (Small Volume Maximum Principle). *Let L be an elliptic operator as above. There exists a $\delta > 0$ so that the following hold: If*

$$\begin{aligned}
 & Lu \geq 0 \quad \text{in } U \\
 & u|_{\partial U} \leq 0 \\
 & |U| < \delta,
 \end{aligned}$$

then we have

$$u \leq 0, \quad \text{in } U.$$

Proof. By Faber-Krahn, the first eigenvalue of the region U satisfies

$$\lambda_1(U) \geq \lambda_1(B_R) = \frac{c_n}{R^2} > 0,$$

where B_R is a round disk of radius R so that its volume $|B| = |U|$. Namely

$$\int_U |\nabla u^+|^2 \geq \lambda_1(U) \int_U \lambda |u^+|^2 \geq \frac{c_n}{R^2} \int_U \lambda |u^+|^2.$$

Plugging into (2.2) we get

$$\int_U -\frac{\lambda c_n}{R^2} |u^+|^2 + c(x)(u^+)^2]dx \geq 0.$$

This again forces $u^+ = 0$ (namely $u \leq 0$) when the volume $|\Omega| = \omega_n R^n$ is small enough (namely R is small enough). \square

Remark 2.4. The conclusion is in general not true if c does not have a sign and the volume of domain is not small. For example $u(x) = \sin x$ in $(0, 2\pi)$ achieves both maximum and minimum in the interior.

At the points that u achieves maximum on the boundary, we have the following properties on outer derivative

Theorem 2.5 (Hopf Lemma). *Let L be an elliptic operator as above and the coefficient $c(x) \leq 0$. If*

$$\begin{aligned} Lu &\geq 0 \quad \text{in } U, \\ u|_U &< \max_{\partial U} u \quad \text{in the interior of } U, \end{aligned}$$

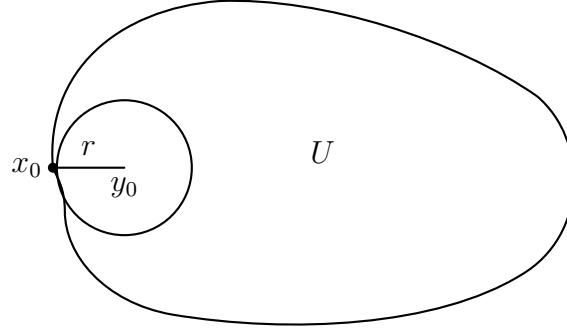
and $x_0 \in \partial U$ be a point that achieves non-negative maximum

$$u(x_0) = \max_{\partial U} u \geq 0,$$

such that x_0 satisfies the interior ball condition (namely there is a ball $B_r(y_0) \subset U$ so that $x_0 \in \partial B_r(y_0)$), then we have

$$\frac{\partial u}{\partial \nu}(x_0) > 0,$$

where ν is the unit outer normal at x_0 .



Proof.

Consider a barrier function

$$v(x) = u(x) - u(x_0) + \varepsilon [e^{-\alpha|x-y_0|^2} - e^{-\alpha r^2}] \quad \text{in } B_r(y_0) \setminus B_{\frac{r}{2}}(y_0).$$

We then have

$$\begin{aligned} Lv &= Lu - cu(x_0) + \varepsilon L e^{-\alpha|x-y_0|^2} \\ &\geq 0 + \varepsilon e^{-\alpha|x-y_0|^2} [4\alpha^2 a^{ij}(x)(x_i - y_{0,i})(x_j - y_{0,j}) - 2 \sum_{i=1}^n \alpha a^{ii}(x) + \alpha \partial_j a^{ij}(x)(x_i - y_{0,i}) + c(x)] \\ &\geq \varepsilon e^{-\alpha|x-y_0|^2} [4\alpha^2 \lambda |x - y_0|^2 - 2 \sum_{i=1}^n \alpha a^{ii}(x) + \alpha \partial_j a^{ij}(x)(x_i - y_{0,i})] \\ &\geq \varepsilon e^{-\alpha|x-y_0|^2} [\alpha^2 \lambda r^2 - 2 \sum_{i=1}^n \alpha a^{ii}(x) + \alpha \partial_j a^{ij}(x)(x_i - y_{0,i})]. \end{aligned}$$

By choosing $\alpha > 0$ large enough, we get

$$(2.3) \quad Lv > 0 \quad \text{in } B_r(y_0) \setminus B_{\frac{r}{2}}(y_0).$$

Moreover, on the boundary of the annulus $B_r(y_0) \setminus B_{\frac{r}{2}}(y_0)$ we get

$$(2.4) \quad \begin{aligned} v|_{B_r(y_0)} &= u(x) - u(x_0) \leq 0 \\ v|_{B_{\frac{r}{2}}(y_0)} &\leq \max_{\partial B_{\frac{r}{2}}(y_0)} u(x) - u(x_0) + \varepsilon C(\alpha, \lambda, r) < 0, \quad \text{for } \varepsilon \text{ chosen small enough.} \end{aligned}$$

Here in the second bound, we used that $u < u(x_0)$ in the interior of U and that $\partial B_{\frac{r}{2}}(y_0)$ is compact.

Combining (2.3) and (2.4) we get by the weak maximum principle that

$$v \leq 0 = v(x_0) \quad \text{in } U.$$

As a consequence, by continuity of v , we know

$$\begin{aligned} \frac{\partial v}{\partial \nu}(x_0) &\geq 0 \\ \frac{\partial u}{\partial \nu}(x_0) + \varepsilon[-2\alpha r e^{-\alpha r^2}] &\geq 0 \\ \frac{\partial u}{\partial \nu}(x_0) &\geq 2\varepsilon \alpha r e^{-\alpha r^2} > 0. \end{aligned}$$

□

As a consequence we have the strong maximum principle

Theorem 2.6 (Strong Maximum Principle). *Let L be an elliptic operator as above and the coefficient $c(x) \leq 0$. If*

$$Lu \geq 0 \quad \text{in } U,$$

then

$$u|_U < \max_{\partial U} u = \max_U u \quad \text{in the interior of } U,$$

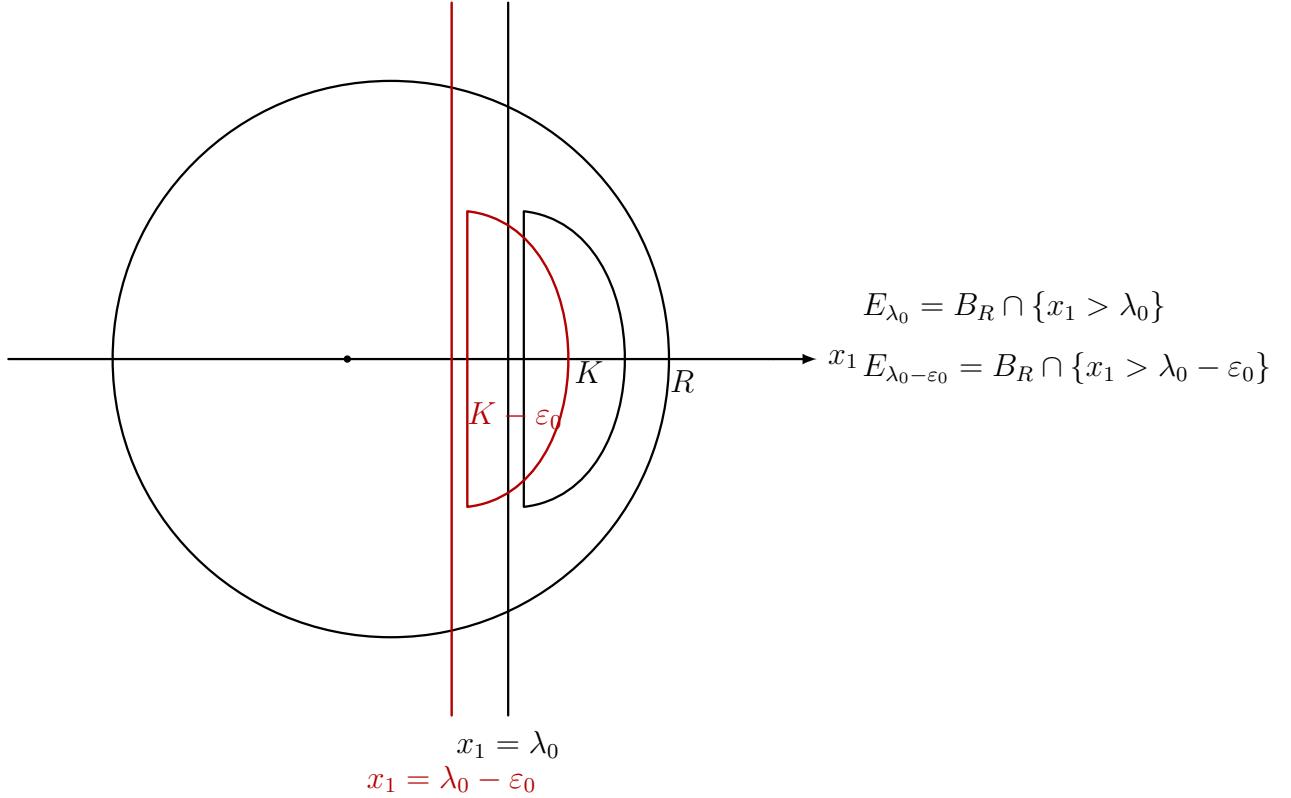
unless u is a constant.

The maximum principle has important geometric applications on proving uniqueness / rigidity / symmetry of solutions.

Theorem 2.7 (The moving plane method). *If $u \in C^2(B_R)$ satisfies*

$$\begin{aligned} \Delta u &= f(u), \\ u &> 0, \quad \text{in } B_R \\ u &= 0. \quad \text{on } \partial B_R, \end{aligned}$$

then u is rotational symmetric, i.e. $u(x) = u(xe^{i\theta})$, $\forall \theta \in \mathbb{R}$.



Proof.

We will prove that u is reflexive symmetric about any hyperplanes passing through the origin, which implies rotational symmetry. Without loss of generality (up to rotation), we only need to prove symmetric about the plane $x_1 = 0$.

For any $\lambda \in [0, R]$, define

$$E_\lambda = B_R \cap \{x_1 > \lambda\},$$

and the function

$$v_\lambda = u(x) - u(2\lambda e_1 - x) \quad \text{on } E_\lambda.$$

Notice that for $\lambda > R - \varepsilon$ close enough to R , we have $|E_\lambda| < \delta$ (so that the small volume maximum principle is applicable). And

$$\begin{aligned} v_\lambda|_{\partial B_R \cap \{x_1 \geq \lambda\}}(x) &\leq 0 - u(2\lambda e_1 - x) < 0 \\ v_\lambda|_{B_R \cap \{x_1 = \lambda\}} &= 0. \end{aligned}$$

So $v_\lambda|_{\partial E_\lambda} \leq 0$ as $\partial E_\lambda = [\partial B_R \cap \{x_1 \geq \lambda\}] \cup [B_R \cap \{x_1 = \lambda\}]$. Thus the small volume maximum principle combined with strong maximum principle gives $v_\lambda|_{E_\lambda} < 0$ for $\lambda > R - \varepsilon$ when ε small enough.

We denote by

$$\lambda_0 = \inf_{v_\lambda \leq 0, \forall \lambda > \bar{\lambda}} \bar{\lambda}.$$

The proof will then be finished by the following claim:

Claim 2.8.

$$\lambda_0 = 0.$$

Proof of Claim. Suppose not, then $\lambda_0 > 0$. We then choose a compact subset $K \subset E_{\lambda_0}$ so that $|E_{\lambda_0} \setminus K| < \frac{\delta}{2}$. Since K is compact and $v_\lambda|_K < 0$, we can choose a $c_0 > 0$ so that $v_\lambda|_K < -c_0 < 0$. Next, we choose ε_0 small enough so that

$$|E_{\lambda_0 - \varepsilon_0} - (K - \varepsilon e_1)| < \delta,$$

and

$$v_\lambda|_{K - \varepsilon e_1} < -\frac{c_0}{2} < 0.$$

The small volume maximum principle applied to the region $E_{\lambda_0 - \varepsilon_0} - (K - \varepsilon e_1)$ then implies

$$v_\lambda|_{E_{\lambda_0 - \varepsilon_0}} \leq 0,$$

which is a contradiction to the definition of λ_0 . \square

With this claim in hand, we see that $v_0 \leq 0$ with $\lambda = 0$. And by reflection, we see that $v_0 \geq 0$ too. So $v_0 \equiv 0$ and thus u is reflexive symmetric about the planes $\{x_1 = 0\}$. Since the choice of such planes is arbitrary, we see the rotational symmetry in the disk B_R . \square