LECTURE 1: HARMONIC FUNCTIONS AND A PRIORI ESTIMATES

SHENGWEN WANG

Let u € C%(U) be a solution to the Laplace equation
(0.1) Au =0, onadomain U C R".

The existence of solutions for more general classess of elliptic PDEs could follow several
approaches, see Lecture 3 for examples.

In modern PDE theory, we usually separate existence and regularity part. First we
use the weak formulation of (0.1)

(0.2) / ulAn =0,vn e CX(U),
U

to get existence of solution in some Sobolev space, say H} .
regularity / partial regularity of the solutions.

Indeed for harmonic functions, one can improve the regularity of solutions to C'*°, and
even analytic! (See also Hilbert’s XIX problem.)

We also have quantitative bounds on all its derivatives. Let’s start with some a priori
estimates. Although there are now various ways to see the regularity of harmonic functions,
but these estimates still give models for studying more general elliptic PDEs.

(U). And then we prove the

1. SOME A PRIORI ESTIMATES
The first is an interior estimate.

Theorem 1.1 (Gradient bound). If u is a harmonic function on B,.(xo) C R" above, then
we have

(1.1) [Vu(zg)| <

Sl e e < @HUHL?(B%(?«))y

for a dimensional constant C' = C(n).

Proof. By the mean value inequality, we have
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where the second last line used dB: (z0) C B, (7o) and the mean value inequality.
U

In a similar way, one can obtain interior bounds on all higher derivatives by the L'
norm, this will be left as an exercise.

Exercise 1.2. Under the same assumption as in Theorem [I.1], we have

D%u(xg) < rntk [ull L2 (B2 ()

with the norm of multiindex « being |a| = k.

As a consequence of this gradient estimates, we have the Liouville Theorem for entire
harmonic function.

Corollary 1.3 (Liouville’s Theorem). Let C' < co,e > 0. If u : R” — R is a harmonic
function with supp ) |u| < Cr¥== for some positive integer k € N, then u must be a
polynomial of degree at most k — 1.

In particular, entire harmonic functions with sub-linear growth must be constant.

Proof. The proof is an easy exercise from the derivative estimate above. O

Remark 1.4. This will be used later to give a version of proof of Schauder estimate for
higher regularity.

Next, we provide a global Holder regularity estimate up to the boundary.

Theorem 1.5. Let u be a harmonic function on By(0) with ulsp, ) = ¢. Suppose ¢ €
C*(0B1(0)) for some o € (0,1), then we have

(1.2) lull o8 @y < Clidllca om0,
for some constant C' = C(n, ).

Proof. Without loss of generality, up to translation, we assume zy = (1,0,...,0) and
¢(0) = 0. For € 0By (zy), we then have

2% = 22;.
We denote by
P ]

2€0B1 (o) ‘x|a ’
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and

Then

vlaBl(wo) :2%K‘T1§ = K‘x’a > ¢($) = u’aBl(l'O)'
Applying maximum principle to the subharmonic function u — v we then get
u(z)| < [v(2)| =% Kaf,Va € Bi(w),
namely

(1.3) sup ) O o o 19(2) — 4(0)]

x€B1(z0) |JI - 0‘% x€0B1(x0) |$ - 0’2

Here 0 can be replaced by arbitrary point on the boundary 0B;(z() by translation and
rotation.
We will leave the rest of the proof as an exercise. O

Exercise 1.6. Prove that (1.3]) implies (1.2)).

2. MAXIMUM PRINCIPLE AND BARRIERS

The maximum principle is a key tool in elliptic PDEs that plays an important role in
a priori estimates and regularity theory.
We consider operators of divergence form (they arise from variational problems natu-

ally)

(2.1) Lu = 8;(a” (z)0;u) + c(z)u,

It is said to be elliptic in U C R"™ if there exists a A > 0 so that
a’(z)&& > NEP, Vo € U, € € R™.

We further assume that a/,c € C%%(U) are Holder continuous.

The maximum principles are true for operators of non-divergence form too. But here
by making use of the divergence form and variational structure, we have a simple proof of
weak maximum principle.

Theorem 2.1 (Weak Maximum Principle). Let L be an elliptic operator as above and the
coefficient c(x) < 0. If

Lu>0 inU
U|3U §07

then we have
u<0, n U
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Proof. We use the test function

ut = max{u,0}.

Using integration by parts and ellipticity, we get

[0 @0y + ey as 0
/U[ai(aij (2)0;u™ + c(z)uTutdz >0
/U —a" (z)O;u out + c(z)(uh)?]dx >0

(2.2) / AN Vut? + c(x)(uh)?)dz >0,
U
which forces ut = 0 (namely u < 0) because ¢ < 0 and A > 0. O

Remark 2.2. Notice that the proof works for weak solutions v € H'.

Moreover, if the volume of region U is small, we can remove the assumption on nega-
tivity of c.

Theorem 2.3 (Small Volume Maximum Principle). Let L be an elliptic operator as above.
There exists a 6 > 0 so that the following hold: If

Lu>0 inU
ulpy <0
U] <o,
then we have
u<0, n U

Proof. By Faber-Krahn, the first eigenvalue of the region U satisfies

)\1(U)ZA1(BR) R2 > 0,

where Bp is a round disk of radius R so that its volume |B| = |U|. Namely

/U\Vu+|22)\ )/)\]u 2> RQ/AW\?.

Plugging into (2.2) we get

| =Gt el 20,

This again forces u™ = 0 (namely u < 0) when the volume |Q)| = w,R" is small enough
(namely R is small enough). O

Remark 2.4. The conclusion is in general not true if ¢ does not have a sign and the volume
of domain is not small. For example u(x) = sinz in (0,27) achieves both maximum and
minimum in the interior.
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At the points that u achieves maximum on the boundary, we have the following prop-
erties on outer derivative

Theorem 2.5 (Hopf Lemma). Let L be an elliptic operator as above and the coefficient
c(x) <0. If

Lu>0 in U,
uly < max u in the interior of U,
and xg € OU be a point that achieves non-negative maximum

= >
u(zo) maxu > 0,

such that xq satisfies the interior ball condition (namely there is a ball B,(yo) C U so that
xo € 0B.(y0) ), then we have

—(Z'(]) > O,

where v is the unit outer normal at xg.

Zo

Proof.
Consider a barrier function

v(z) =u(z) — u(zo) + ele™ %" — =] in B.(yo) \ Br(yo)-
We then have
Lv =Lu — cu(xg) + e Le 1ol

>0 + ce~ 0 40?0V (2) (25 — yo,) (x5 — Yoy) —2Zaa ) + ad;a’ (x)(z; — yo) + ()]

ce =0l (402 Mz — yo? _QZaa ) + ad;a (z)(z; — yo,)]

=1
de—odz—yo\ Al —2 Z aat + Oéa at ( )(Iz - yO,i)]‘

By choosing o > 0 large enough, we get
(2.3) Lv >0 in B.(y) \ Bz (yo)-
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Moreover, on the boundary of the annulus B, (yo) \ Bz (yo) we get

(2.4) vl =ulr) —ulzy) <0

U|B%(y0) < max u(z) —u(zg) +eC(a, A\, 7) <0, for e chosen small enough.

"~ 9Bz (yo)

T
2

Here in the second bound, we used that u < u(z¢) in the interior of U and that 0B: (o)
is compact.

Combining (2.3)) and ([2.4) we get by the weak maximum principle that
v<0=v(xy) inU.

As a consequence, by continuity of v, we know

ov

O r0) + £l—2are=""] 20

5 xo) + g[—2are
@ To 2250&“6_0”2 > 0.
ov

As a consequence we have the strong maximum principle

Theorem 2.6 (Strong Maximum Principle). Let L be an elliptic operator as above and
the coefficient c¢(x) < 0. If

Lu>0 U,
then

u|ly <maxu = maxu in the interior of U,
oU U

unless u 1s a constant.

The maximum principle has important geometric applications on proving uniqueness
/ rigidity / symmetry of solutions.

Theorem 2.7 (The moving plane method). If u € C?(Bg) satisfies

Au =f(u),
u >0, 1 Bg
u=0. on OBg,

then u is rotational symmetric, i,e. u(x) = u(ze?), v € R.
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E>\0 = BR N {l’l > )\0}

> 11 E)\O*EO = BrN {xl > \g — 60}

l’lz)\o

Proof. 71 = Ao — €0
We will prove that u is reflexive symmetric about any hyperplanes passing through the ori-
gin, which implies rotational symmetry. Without loss of generality (up to rotation), we

only need to prove symmetric about the plane x; = 0.
For any A € [0, R], define

E\ = BrnN{z > A},
and the function
vy = u(z) —u(2Xe; —x) on E).
Notice that for A > R — ¢ close enough to R, we have |E,| < § (so that the small volume
maximum principle is applicable). And
UA|oBrn{zi>23 () <O —u(2Xe; —2) <0
Ux|Bpn{zi=2} =0.

So valom, < 0 as OF\ = [0Bgr N {zx1 > A}JU [Bg N {x; = A}]. Thus the small volume
maximum principle combined with strong maximum principle gives vy|g, < 0for A > R—¢

when ¢ small enough.
We denote by

)\0 = inf A.

vy <0,VA>

The proof will then be finished by the following claim:
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Claim 2.8.
)\0 = 0

Proof of Claim. Suppose not, then \g > 0. We then choose a compact subset K C FE), so
that |E), \ K| < 2. Since K is compact and vy|x < 0, we can choose a ¢y > 0 so that
ua|x < —co < 0. Next, we choose €y small enough so that

‘E)\O*EO - (K - 861)‘ <9,

and

Co
’U)\’K—ael < —5 < 0.

The small volume maximum principle applied to the region E),_., — (K —¢ce;) then implies
U)\|EAO,€O <0,

which is a contradiction to the definition of Ag. ]

With this claim in hand, we see that vy < 0 with A = 0. And by reflection, we see that

vy > 0 too. So vp = 0 and thus wu is reflexive symmetric about the planes {z; = 0}. Since

the choice of such planes is arbitrary, we see the rotational symmetry in the disk Bp.
O
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