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Introduction and outline of the course

This is the lecture notes for LTCC course “Elliptic Partial Differential Equations (Ad-
vanced)” taught in fall Spring 2026. The course contains five 2-hour lectures. We will
focus primarily on divergence-form elliptic PDEs, which arise naturally from variational
problems and the variational structure could simplified some of the technical proofs. The
plan for the course is as follows:

In lecture 1, we gather some key regularity estimates for harmonic functions, which
are extendable to more general elliptic PDEs.

In lecture 2, we will present the Schauder estimates, which gives higher order Hölder
regularity of solutions.

In lecture 3, we will give some approaches to the existence theory of elliptic PDEs. In
modern PDE, the existence and regularity theory are usually treated separately. One first
obtain existence of weak solutions and then prove regularity of the solutions.

In lecture 4, we will go over the De Giorgi Nash-Moser theory, which provides the
initial L∞ and Hölder regularity of the solutions before applying Schauder estimates.

In lecture 5, we will talk about some applications in the geometric PDE of harmonic
maps, e.g. the ε - regularity theorem and partial regularity theory.
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1. Harmonic functions

Let u ∈ C2(U) be a solution to the Laplace equation

∆u = 0, on a domain U ⊂ Rn.(1.1)

The existence of solutions for more general classess of elliptic PDEs could follow several
approaches, see Chapter 2 for examples.

In modern PDE theory, we usually separate existence and regularity part. First we
use the weak formulation of (1.1)ˆ

U

u∆η = 0, ∀η ∈ C∞c (U),(1.2)

to get existence of solution in some Sobolev space, say H1
loc(U). And then we prove the

regularity / partial regularity of the solutions.
Indeed for harmonic functions, one can improve the regularity of solutions to C∞, and

even analytic! (See also Hilbert’s XIX problem.)
We also have quantitative bounds on all its derivatives. Let’s start with some a priori

estimates. Although there are now various ways to see the regularity of harmonic functions,
but these estimates still give models for studying more general elliptic PDEs.

1.1. Some a priori estimates. The first is an interior estimate.

Theorem 1.1 (Gradient bound). If u is a harmonic function on Br(x0) ⊂ Rn above, then
we have

|∇u(x0)| ≤ C

rn+1
‖u‖L1(Bx0 (r)) ≤

C

r
n+2
2

‖u‖L2(Bx0 (r)),(1.3)

for a dimensional constant C = C(n).

Proof. By the mean value inequality, we have

|Uxi(x0)| =

∣∣∣∣∣ 2n

ωnrn

ˆ
B r

2 (x0)

uxidx

∣∣∣∣∣
=

∣∣∣∣∣ 2n

ωnrn

ˆ
B r

2 (x0)

div(uei)dx

∣∣∣∣∣
=

∣∣∣∣∣ 2n

ωnrn

ˆ
∂B r

2 (x0)

〈uei,n〉dS

∣∣∣∣∣
≤
∣∣∣∣ 2n

ωnrn
ωn−1

(r
2

)n−1

‖u‖L∞(∂B r
2

(x0))

∣∣∣∣
≤
∣∣∣∣ 2n

ωnrn
ωn−1

(r
2

)n−1 2n

ωnrn
‖u‖L1(Br(x0))

∣∣∣∣
=
C(n)

rn+1
‖u‖L1(Br(x0)),



4 SHENGWEN WANG

where the second last line used ∂B r
2
(x0) ⊂ Br(x0) and the mean value inequality.

�

In a similar way, one can obtain interior bounds on all higher derivatives by the L1

norm, this will be left as an exercise.

Exercise 1.2. Under the same assumption as in Theorem 1.1, we have

Dαu(x0) ≤ C

rn+k
‖u‖L1(Bx0 (r)),

with the norm of multiindex α being |α| = k.

As a consequence of this gradient estimates, we have the Liouville Theorem for entire
harmonic function.

Corollary 1.3 (Liouville’s Theorem). Let C < ∞, ε > 0. If u : Rn → R is a harmonic
function with supBr(0) |u| ≤ Crk−ε for some positive integer k ∈ N, then u must be a
polynomial of degree at most k − 1.

In particular, entire harmonic functions with sub-linear growth must be constant.

Proof. The proof is an easy exercise from the derivative estimate above. �

Remark 1.4. This will be used later to give a version of proof of Schauder estimate for
higher regularity.

Next, we provide a global Hölder regularity estimate up to the boundary.

Theorem 1.5. Let u be a harmonic function on B1(0) with u|∂B1(0) = φ. Suppose φ ∈
Cα(∂B1(0)) for some α ∈ (0, 1), then we have

‖u‖
C
α
2 (B1(0))

≤ C‖φ‖Cα(∂B1(0)),(1.4)

for some constant C = C(n, α).

Proof. Without loss of generality, up to translation, we assume x0 = (1, 0, . . . , 0) and
φ(0) = 0. For x ∈ ∂B1(x0), we then have

|x2| = 2x1.

We denote by

K =: sup
x∈∂B1(x0)

|φ(x)|
|x|α

,

and

v(x) =: 2
α
2Kx

α
2
1 .

Then

∆v(x) =2
α
2K · α

2
(
α

2
− 1)x

α
2
−2

1 < 0 = ∆u,

v|∂B1(x0) =2
α
2Kx

α
2
1 = K|x|α ≥ φ(x) = u|∂B1(x0).
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Applying maximum principle to the subharmonic function u− v we then get

|u(x)| ≤ |v(x)| =
α
2 Kx

α
2
1 ,∀x ∈ B1(x0),

namely

sup
x∈B1(x0)

|u(x)− u(0)|
|x− 0|α2

≤ 2
α
2 sup
x∈∂B1(x0)

|φ(x)− φ(0)|
|x− 0|2

.(1.5)

Here 0 can be replaced by arbitrary point on the boundary ∂B1(x0) by translation and
rotation.

We will leave the rest of the proof as an exercise. �

Exercise 1.6. Prove that (1.5) implies (1.4).

1.2. Maximum principle and barriers. The maximum principle is a key tool in elliptic
PDEs that plays an important role in a priori estimates and regularity theory.

We consider operators of divergence form (they arise from variational problems natu-
ally)

Lu = ∂i(a
ij(x)∂ju) + c(x)u,(1.6)

It is said to be elliptic in U ⊂ Rn if there exists a λ > 0 so that

aij(x)ξiξj ≥ λ|ξ|2, ∀x ∈ U, ξ ∈ Rn.

We further assume that aij, c ∈ C0,α(U) are Hölder continuous.
The maximum principles are true for operators of non-divergence form too. But here

by making use of the divergence form and variational structure, we have a simple proof of
weak maximum principle.

Theorem 1.7 (Weak Maximum Principle). Let L be an elliptic operator as above and the
coefficient c(x) ≤ 0. If

Lu ≥0 in U

u|∂U ≤0,

then we have
u ≤ 0, in U.

Proof. We use the test function
u+ = max{u, 0}.

Using integration by parts and ellipticity, we getˆ
U

[∂i(a
ij(x)∂ju

+ + c(x)u]u+dx ≥0

ˆ
U

[∂i(a
ij(x)∂ju

+ + c(x)u+]u+dx ≥0

ˆ
U

−aij(x)∂ju
+∂iu

+ + c(x)(u+)2]dx ≥0
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ˆ
U

−λ|∇u+|2 + c(x)(u+)2]dx ≥0,(1.7)

which forces u+ = 0 (namely u ≤ 0) because c ≤ 0 and λ > 0. �

Remark 1.8. Notice that the proof works for weak solutions u ∈ H1.

Moreover, if the volume of region U is small, we can remove the assumption on nega-
tivity of c.

Theorem 1.9 (Small Volume Maximum Principle). Let L be an elliptic operator as above.
There exists a δ > 0 so that the following hold: If

Lu ≥0 in U

u|∂U ≤0

|U | <δ,

then we have

u ≤ 0, in U.

Proof. By Faber-Krahn, the first eigenvalue of the region U satisfies

λ1(U) ≥ λ1(BR) =
cn
R2

> 0,

where BR is a round disk of radius R so that its volume |B| = |U |. Namelyˆ
U

|∇u+|2 ≥ λ1(U)

ˆ
U

λ|u+|2 ≥ cn
R2

ˆ
U

λ|u+|2.

Plugging into (1.7) we get ˆ
U

−λcn
R2
|u+|2 + c(x)(u+)2]dx ≥0.

This again forces u+ = 0 (namely u ≤ 0) when the volume |Ω| = ωnR
n is small enough

(namely R is small enough). �

Remark 1.10. The conclusion is in general not true if c does not have a sign and the
volume of domain is not small. For example u(x) = sin x in (0, 2π) achieves both maximum
and minimum in the interior.

At the points that u achieves maximum on the boundary, we have the following prop-
erties on outer derivative

Theorem 1.11 (Hopf Lemma). Let L be an elliptic operator as above and the coefficient
c(x) ≤ 0. If

Lu ≥0 in U,

u|U <max
∂U

u in the interior of U,
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and x0 ∈ ∂U be a point that achieves non-negative maximum

u(x0) = max
∂U

u ≥ 0,

such that x0 satisfies the interior ball condition (namely there is a ball Br(y0) ⊂ U so that
x0 ∈ ∂Br(y0)), then we have

∂u

∂ν
(x0) > 0,

where ν is the unit outer normal at x0.

Proof.

U
y0

r
x0

Consider a barrier function

v(x) =u(x)− u(x0) + ε[e−α|x−y0|
2 − e−αr2 ] in Br(y0) \B r

2
(y0).

We then have

Lv =Lu− cu(x0) + εLe−α|x−y0|
2

≥0 + εe−α|x−y0|
2

[4α2aij(x)(xi − y0,i)(xj − y0,j)− 2
n∑
i=1

αaii(x) + α∂ja
ij(x)(xi − y0,i) + c(x)]

(Here we used c < 0, u(x0) ≥ 0) so that −cu(x0) ≥ 0.)

≥εe−α|x−y0|2 [4α2λ|x− y0|2 − 2
n∑
i=1

αaii(x) + α∂ja
ij(x)(xi − y0,i)]

≥εe−α|x−y0|2 [α2λr2 − 2
n∑
i=1

αaii(x) + α∂ja
ij(x)(xi − y0,i)].

By choosing α > 0 large enough, we get

Lv > 0 in Br(y0) \B r
2
(y0).(1.8)

Moreover, on the boundary of the annulus Br(y0) \B r
2
(y0) we get

v|Br(y0) =u(x)− u(x0) ≤ 0(1.9)

v|B r
2

(y0) ≤ max
∂B r

2
(y0)

u(x)− u(x0) + εC(α, λ, r) < 0, for ε chosen small enough.

Here in the second bound, we used that u < u(x0) in the interior of U and that ∂B r
2
(y0)

is compact.
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Combining (1.8) and (1.9) we get by the weak maximum principle that

v ≤ 0 = v(x0) in U.

As a consequence, by continuity of v, we know

∂v

∂ν
(x0) ≥0

∂u

∂ν
(x0) + ε[−2αre−αr

2

] ≥0

∂u

∂ν
(x0) ≥2εαre−αr

2

> 0.

�

As a consequence we have the strong maximum principle

Theorem 1.12 (Strong Maximum Principle). Let L be an elliptic operator as above and
the coefficient c(x) ≤ 0. If

Lu ≥ 0 in U,

then

u|U <max
∂U

u = max
U

u in the interior of U,

unless u is a constant.

The maximum principle has important geometric applications on proving uniqueness
/ rigidity / symmetry of solutions.

Theorem 1.13 (The moving plane method). If u ∈ C2(BR) satisfies

∆u =f(u),

u >0, in BR

u =0. on ∂BR,

then u is rotational symmetric, i,e. u(x) = u(xeiθ),∀θ ∈ R.
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Proof.

x1
R

x1 = λ0

x1 = λ0 − ε0

K

K − ε0

Eλ0 = BR ∩ {x1 > λ0}

Eλ0−ε0 = BR ∩ {x1 > λ0 − ε0}

We will prove that u is reflexive symmetric about any hyperplanes passing through
the origin, which implies rotational symmetry. Without loss of generality (up to rotation),
we only need to prove symmetric about the plane x1 = 0.

For any λ ∈ [0, R], define

Eλ = BR ∩ {x1 > λ},
and the function

vλ = u(x)− u(2λe1 − x) on Eλ.

Notice that for λ > R − ε close enough to R, we have |Eλ| < δ (so that the small volume
maximum principle is applicable). And

vλ|∂BR∩{x1≥λ}(x) ≤0− u(2λe1 − x) < 0

vλ|BR∩{x1=λ} =0.

So vλ|∂Eλ ≤ 0 as ∂Eλ = [∂BR ∩ {x1 ≥ λ}] ∪ [BR ∩ {x1 = λ}]. Thus the small volume
maximum principle combined with strong maximum principle gives vλ|Eλ < 0 for λ > R−ε
when ε small enough.

We denote by

λ0 = inf
vλ≤0,∀λ>λ̄

λ̄.

The proof will then be finished by the following claim:
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Claim 1.14.
λ0 = 0.

Proof of Claim. Suppose not, then λ0 > 0. We then choose a compact subset K ⊂ Eλ0 so
that |Eλ0 \ K| < δ

2
. Since K is compact and vλ|K < 0, we can choose a c0 > 0 so that

vλ|K < −c0 < 0. Next, we choose ε0 small enough so that

|Eλ0−ε0 − (K − εe1)| < δ,

and
vλ|K−εe1 < −

c0

2
< 0.

The small volume maximum principle applied to the region Eλ0−ε0−(K−εe1) then implies

vλ|Eλ0−ε0 ≤ 0,

which is a contradiction to the definition of λ0. �

With this claim in hand, we see that v0 ≤ 0 with λ = 0. And by reflection, we see that
v0 ≥ 0 too. So v0 ≡ 0 and thus u is reflexive symmetric about the planes {x1 = 0}. Since
the choice of such planes is arbitrary, we see the rotational symmetry in the disk BR.

�
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2. Schauder estimates and higher regularity

We will present the proof given by Simon [2] using blow-up argument and Liouville’s
(rigidity) theorem.

Denote by

[u]C0,α(U) = sup
x,y∈U,x 6=y

u(x)− u(y)

|x− y|α
the Hölder semi-norm and

‖u‖Ck,α =
∑
|β|≤k

‖u‖L∞(U) + [Dk]C0,α(U)

the Hölder Ck,α norm.
First, let’s prove the interior estimate for Laplace operator.

Proposition 2.1 (Interior estimate for Laplace). Let U ⊂ Rn be a bounded open domain.If
u ∈ C2,α(U) satisfies

∆u = f,

in an open domain U ⊂ Rn, then for any pre-compact open subset K b U we have

[Hessu]C0,α(K) ≤ C[∆u]C0,α(U) = C[f ]C0,α(U),

for some constant C = C(n, α,K, U).

Proof. We will reduce it to case in a disk by the following claim.

Claim 2.2. It suffices to prove that

[Hessu]C0,α(B1) ≤ C[∆u]C0,α(BR) = C[f ]C0,α(BR),

for some constant C = C(n, α) and large enough R.

Proof of Claim. We will leave this as an exercise (using covering argument by using disks
contained in U and with centres in K). �

Indeed, by scaling, it suffices to prove the Claim with r = 1.
Suppose the claim does not hold, then there exists sequences uk ∈ C2,α(BRk), fk ∈

C0,α(BRk) and Rk > k,so that

[Hessuk ]C0,α(B1) > k[fk]C0,α(BRk ), k = 1, 2, . . . .

We can replace uk, fk by uk
‖Hessuk‖C0,α(B1)

, fk
‖Hessuk‖C0,α(B1)

and assume without loss of generality

that

[Hessuk ]C0,α(B1) =1

[fk]C0,α(BRk ) <
1

k
→ 0.

By the definition of Hölder norm, there exists xk, yk ∈ B1, so that

|D2
ijuk(yk)−D2

ijuk(xk)|
|yk − xk|α

> cn > 0,
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for some dimensional constant cn.
Since Rk > k →∞ and uk, by Arzela-Ascoli, we can extract a subsequence (which we

still index by k without loss of generality) so that

uk → u in C2,β, β < α,

xk → x∞ ∈ B2.

Without loss of generality again, we can subtract the function uk by a degree-2 polyno-
mial (degree-2 polynomial has Hölder norms of Hessian being 0, thus not affecting these
inequalities) so that the above still hold and moreover

u(xk) =0,

∇u(xk) =0,

Hessu(xk) =0.

Combining these, we have that the limit satisfies

∆u =0,(2.1)

|Hessu|α ≤1,

u(x∞) =0,

∇u(x∞) =0,

Hessu(x∞) =0,

and one of the following holds:

Case 1: yk → y∞ 6= x∞. In this case Hessu(y∞) > cn|y∞ − x∞|α 6= 0.
Case 2: yk → x∞. In this case, we can rescale consider the rescaled sequence ũk(x) =

1
|yk−xk|2+α

uk(xk + |yk − xk|x) defined in a ball of radius Rk
|yk−xk|

that also converges

to an entire harmonic function satisfying (2.1) with 0 in place of x∞ and that
Hessu(

y∞−x∞
|y∞−x∞|) 6= 0.

In either case above, we get an entire harmonic function that has distinct Hessian at 2
different points and that

sup
Br

|u| ≤ Cr2+α ≤ C3−ε, ε =
1− α

2
.

On the other hand, by the Liouville Theorem (Corollary 1.3), u is a polynomial of degree at
most 2, which is a contradiction to either case above that have non-constant Hessian! �

Next, we generalise the above interior Schauder estimates for Laplace operator to
general elliptic operators.

Theorem 2.3 (Interior Schauder for elliptic operators). Let U ⊂ Rn be a bounded open
domain and we consider an elliptic operator as in (1.6) Lu = ∂i(a

ij(x)∂ju) + c(x)u with
aij(x)ξiξj ≥ λ|ξ|2,∀x ∈ U, ξ ∈ Rn and aij, c ∈ C0,α(U). If u ∈ C2,α(U) satisfies

Lu = f,
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in an open domain U ⊂ Rn, then for any pre-compact open subset K b U we have

‖u‖C2,α(K) ≤ C(‖Lu‖C0,α(U) + ‖u‖L∞(U)) = C(‖f‖C0,α(U) + ‖u‖L∞(U)),

for some constant C = C(n, α,K, U).

Proof. Again it suffices to prove the estimate for disks. We choose K = Br and U = B2r

and then use covering argument to extend to general K,U as in the previous proposition.
Choose a fixed x0 ∈ Br. Since the coefficietns aij, c are Hölder continuous, we have

aij(x0)∂i∂ju = Lu− (aij(x)− aij(x0))∂i∂ju− ∂iaij(x)∂ju− c(x)u.

By ellipticity of aij and compactness of B2r we get

Λ|ξ|2 ≥ aij(x0)ξiξj ≥ λ|ξ|2.
And thus by the previous Proposition 2.1 (applied with K = Br, U = B2r) we have

[Hessu]C0,α(Br) ≤C[∆u]C0,α(B2r)

≤C(λ,Λ)[aij(x0)∂i∂ju]C0,α(B2r)

≤C(λ,Λ, ‖aij‖C0,α(B2r))
(
[Lu]C0,α(B2r) + rα[Hessu]C0,α(B2r) + ‖u‖C2(B2r)

)
.

By choosing r < 1
2C(λ,Λ,‖aij‖C0,α(B2r)

)
small enough we then have

[Hessu]C0,α(Br) ≤C
(
[Lu]C0,α(B2r) + ‖u‖C2(B2r)

)
.(2.2)

Finally, we close the argument by applying the following interpolation inequality.

Lemma 2.4 (Interpolation inequality).

For any ε ∈ (0, 1) there exists Cε so that the following holds for any u ∈ C2(B2ρ) and
ρ ∈ (0, 1):

ρ2‖u‖C2(Bρ) ≤ ερ2+α‖u‖C2,α(B2ρ) + Cε‖u‖L∞(B2ρ).(2.3)

Proof of Lemma. This is also proved by compactness (contradiction argument) using Arzela-
Ascoli. See Problem set 2. �

We denote by
Q := sup

x∈B2

dist(x, ∂B2)2|Hessu(x)|,

and notice that the supremum is attained in the interior (dist(x, ∂B2)2|D2u(x)| = 0 on ∂B2)
for some x0 ∈ B2. Let ρ = 1

3
dist(x0, ∂B2), we get B2ρ(x0) ⊂ B2 and

Q =9ρ2|Hessu(x0)|
≤9ρ2‖Hessu‖L∞(Bρ(x0))

≤9ερ2+α‖u‖C2,α(B2ρ(x0)) + 9Cε‖u‖L∞(B2ρ(x0)) by (2.3)

≤9ερ2+α
(
[Hessu]C0,α(B2ρ(x0)) + ‖u‖C2(B2ρ(x0))

)
+ 9Cε‖u‖L∞(B2ρ(x0))

≤9ερ2+α
[
C‖Lu‖C0,α((B2ρ(x0)) + C‖u‖C2(B2ρ(x0))

]
+ 9Cε‖u‖L∞(B2ρ(x0)) by (2.2)

≤9ερ2+α
[
C‖Lu‖C0,α((B2ρ(x0)) + C[Hessu]C0,α(B2ρ(x0)) + ‖u‖L∞(B2ρ(x0))

]
+ 9Cε‖u‖L∞(B2ρ(x0))
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≤(9εC + 9Cε)
[
‖Lu‖C0,α((B2ρ(x0)) + ‖u‖L∞(B2ρ(x0))

]
+ 9Cερ2[Hessu]L∞(B2ρ(x0))

≤C̃(ε, C)
[
‖Lu‖C0,α((B2ρ(x0)) + ‖u‖L∞(B2ρ(x0))

]
+ 9Cε sup

x∈B2ρ(x0))

dist(x, ∂B2)2[Hessu]L∞(B2ρ(x0))

≤C̃
[
‖Lu‖C0,α((B2ρ(x0)) + ‖u‖L∞(B2ρ(x0))

]
+ 9CεQ.

By choosing ε < 1
18C

and absorbing the second term on the right hand side to the left, we
get

Q ≤ C̃
[
‖Lu‖C0,α((B2ρ(x0)) + ‖u‖L∞(B2ρ(x0))

]
≤ C̃[‖Lu‖C0,α(B2) + ‖u‖L∞(B2)].

Applying (2.2) on compact subsets of bounded open sets (could easily see by covering
argument), we get

|u‖C2,α(B1) =|u‖C2(B1) + [Hessu]C0,α(B1)

≤|u‖C2(B1) + C[‖Lu‖C0,α(B 3
2

) + ‖u‖C2(B 3
2

)]

≤C1[‖Lu‖C0,α(B 3
2

) + ‖u‖L∞(B 3
2

) + 2(
3

2
)2[Hessu]L∞(B 3

2 r
(x0))]

≤C2[‖Lu‖C0,α(B 3
2

) + ‖u‖L∞(B 3
2

) +Q]

≤C̃[‖Lu‖C0,α(B2) + ‖u‖L∞(B2)].

�
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3. Existence theory for elliptic PDEs

We treat the existence theory and regularity theory separately in many PDE problems.
First we need to obtain the existence of weak solution in some larger space, and then we
proceed to prove the regularity / partial regularity of the solution. There are several
approaches using abstract tools from functional analysis or topological arguments. We will
present the Lax-Milgram theorem for existence of solutions to linear PDE and a fixed point
argument that can be applied to non-linear problems.

3.1. Lax-Milgram and weak solutions. Consider an elliptic operator of divergence form
defined before,

Lu = ∂i(a
ij(x)∂ju) + c(x)u,

i.e. the coefficients satysfying

aij(x)ξiξj ≥ λ|ξ|2, λ > 0.

W define the bilinear form associated to L by

BL[u, v] =:

ˆ
U

u · Lvdx =

ˆ
U

−aij(x)uxivxj + c(x)u(x)v(x)dx(3.1)

for u, v ∈ H1
0 (U), U ⊂ Rn.

Definition 3.1. A weak solution u ∈ H1(U) of the Dirichlet problem

Lu =f(3.2)

u|∂U =0,

if

BL[u, v] = 〈f, v〉L2(U), ∀v ∈ H1
0 (U).(3.3)

The following functional analytic theorem will give existence of weak solutions.

Theorem 3.2 (Lax-Milgram). Let H be a real Hilbert space and B a bilinear form on H:

B : H ×H → R,
satisfying

|B[u, v]| ≤α‖u‖‖v‖, ∀u, v ∈ H,(3.4)

β‖u‖2 ≤B[u, u], ∀u ∈ H,(3.5)

for some α, β > 0. Then for any f ∈ H, there exists a unique u ∈ H so that

B[u, v] = 〈f, v〉.

Sketch of Proof: The existence of u is a consequence of Riesz Representation theorem for
bounded (by (3.4)) linear functional, and the uniqueness part follows from the coercivity
(3.4). �

Indeed, we can characterise exactly when the coercivity condition in the Lax-Milgram
theorem fails.
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Theorem 3.3 (Fredholm alternative). For an elliptic operator L satisfying the conditions
stated at the beginning of the section, one of the following items hold:

• For each f ∈ L(U), there eixsts a unique weak solution u of the boundary value
problem {

Lu = f, in U

u = 0, on ∂U
.

• There exists a nontrivial weak solution u 6≡ 0 to the homogenous problem{
Lu = 0, in U

u = 0, on ∂U
.

Indeed, when c(x) ≤ 0, the first case always happens.

Corollary 3.4. If the elliptic operator Lu = ∂i(a
ij(x)∂ju) + c(x)u satisfies c(x) ≤ 0, then

the first case in Fredholm alternative holds.

Proof. The second case does not happen, because the weak maximum principle proved in
Lecture 1 (for c ≤ 0) guarantees the uniqueness of solutions. �

We can also deal with the case with non-zero boundary data.

Proposition 3.5. Suppose L is an elliptic operator Lu = ∂i(a
ij(x)∂ju) + c(x)u satisfying

c(x) ≤ 0 and U ⊂ Rn is a smooth bounded domain. Then the following boundary value
problem has a unique solution for any f ∈ C0,α(U), φ ∈ C2,α(U):{

Lu = f, in U

u = φ, on ∂U
.(3.6)

Proof. We can extend φ to a Φ ∈ C2,α(U) so that Φ|∂U = φ, as U is smooth.Then by the
previous Corollary, there exists a unique solution for the following problem{

Lv = f − LΨ, in U

v = 0, on ∂U
.

Then we see that f − LΨ ∈ C0,α(U) ⊂ L2(U) because the operator is second order, and
thus u = v + Ψ is a solution (3.6). �

Combining the existence of a weak solution (3.3) in H1
0 for linear elliptic equations,

we can apply the De Giorgi Nash Moser Moser theory in Lecture 4 to gain L∞ and Hölder
regularity, and then apply Schauder theory to get higher regularity for such solutions.

3.2. Leray-Schauder existence theory. The second existence theory is based on fixed
point argument and can be applied to quasi-linear PDEs, e.g. minimal surface equation.

Recall the classical Brouwer’s fixed point theorem, which states that “a continuous
map from closed unit ball in Rn to itself must have have a fixed point”, can be generalised
to maps of compact convex sets of Banach spaces.
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Theorem 3.6 (Schauder’s fixed point theorem, Generlised Brouwer’s). Let K be a compact
convex set in a Banach space B and let T : K → K be continuous. Then T has a fixed
point.

As a corollary, one gets

Corollary 3.7. Let B be a Banach space and B ⊂ B is its open unit ball. Suppose
T : B̄ → B is a continuous map such that

• The map T is compact, i.e. images of any compact set is precompact.
• T (∂B) ⊂ B.

Then T has a fixed point.

Sketch of Proof: Apply the Schauder’s fixed point theorem to the map T ? : B̄ → B̄ defined
by

T ?(x) =

{
T (x), for ‖T (x)‖ ≤ 1
T (x)
‖T (x)‖ , for ‖T (x)‖ ≥ 1

,

and notice that the fixed point cannot happen at ∂B because |T (y)| < 1 = |y|,∀y ∈ ∂B. �

The fixed point theorem can be

Theorem 3.8 (Leray-Schauder fixed point theorem). Let B be a Banach space and

T : B × [0, 1]→ B
a compact map such that:

• T (x, 0) = 0 for each x ∈ B;
• There exists a constant M > 0 so that for each (x, t) ∈ B × [0, 1] which satisfies
x = T (x, t), there holds ‖x‖ < M .

Then there is a fixed point y ∈ B of the map T (·, 1) : B → B given by T (y, 1) = y.

Proof. Without loss of generality, we may assume M = 1. Otherwise one can just rescale
the norm on Banach space by a factor of 1

M
and notice that a fixed point is unchanged by

this norm scaling. For any ε ∈ (0, 1), we define a map from the closed unit ball,

Tε : B̄ → B

Tε(x) =:

{
T ( x
‖x‖ ,

1−‖x‖
ε

), if 1− ε ≤ ‖x‖ ≤ 1

T ( x
1−ε , 1), if ‖x‖ ≤ 1− ε

.

For each ε, we see the image of ∂B by Tε is

Tε(∂B) = T (∂B,
1− 1

ε
) = T (∂B, 0) = 0,

by the definition of T (·, 0). So the Corollary 3.7 implies that there is a fixed point xε of Tε
for any ε. We define further that

tε =:

{
1−‖xε‖

ε
, if 1− ε ≤ ‖xε‖ ≤ 1

1, if ‖xε‖ ≤ 1− ε
,
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which is the second parameter of Tε for this fixed point.
By compactness of T , we can find a subsequence so that

(xεk , tεk)→ (x̂, t̂) ∈ B̄ × [0, 1].

There are 2 possible cases:

• If t < 1, then for εk small enough, there holds tεk < 1, and thus

‖xεk‖ ≥ 1− εk → 1 = ‖x‖.
But this is a contradiction to the second condition that ‖x‖ < M = 1 as a fixed
point x = T (x, t).
• If t = 1, and thus x = T (x, 1) gives a fixed point for T (·, 1) as desired.

�

We want to apply the Leray-Schauder theorem to the existence theory of quasi-linear
elliptic PDEs of the form:

∂i(a
ij(x, u,∇u)∂ju) + c(x)u = 0, in U ⊂ R,(3.7)

where the coefficients aij, c are C0,α about every components of their variable and c(x) ≤ 0.

Theorem 3.9 (Quasi-linear existence). Let α ∈ (0, 1), U ⊂ Rn a bounded smooth open
domain and φ ∈ C2,α(Ū). Suppose further that for some β ∈ (0, 1), there exists M > 0
constant so that the following holds: For every t ∈ [0, 1], each C2,α solution u (not assuming
it exists) of {

∂i(a
ij(x, u,∇u)∂ju) + c(x)u = 0 in U, c ≤ 0,

u = tφ on ∂U,
(3.8)

satisfies the a priori estimate
‖u‖C1,β(Ū) < M.

Then the Dirichlet problem{
∂i(a

ij(x, u,∇u)∂ju) + c(x)u = 0 in U,

u = φ on ∂U
(3.9)

has a solution in C2,α(Ū).

Proof. We define an operator

T :C1,β(Ū)× [0, 1]→ C1,β(Ū)

T (v, t) =u,

where u = T (v, t) is the unique solution of the linear problem obtained by replacing u,∇u
with v,∇v in the coefficients aij.{

∂i(a
ij(x, v,∇v)∂ju) + tc(x)u = 0 in U,

u = tφ on ∂U,
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We see that any solution u of (3.8) is a fixed point of T . And by the assumption of the
theorem, any such fixed point u = T (u, t), t ∈ [0, 1] must satisfies

‖v‖C1,β(Ū) < M.

So the Leray-Schauder fixed point theorem implies the existence of a fixed point for the
map T (·, 1), namely a solution to (3.9).

The C2,α regularity of the solution is coming from Schauder estimates, as the coeffi-
cients are now in C0,β (as u is in C1,β). �

3.3. Example: Existence of solution to minimal surface equation. The area of
graph of u over U ⊂ Rn is

Au(U) =

ˆ
U

√
1 + |∇u|2dx.

For any compactly supported variation φ ∈ C∞0 (U) we have the first variation formula

0 =
d

dt
|t=0Au+tφ(U)

=

ˆ
U

d

dt

√
1 + |∇u+ t∇φ|2dx|t=0

=

ˆ
U

1

2
√

1 + |∇u+ t∇φ|2
2〈∇u+ t∇φ,∇φ〉dx|t=0

=

ˆ
U

〈 ∇u√
1 + |∇u|2

,∇φ〉dx

=−
ˆ
U

div

(
∇u√

1 + |∇u|2

)
φdx.

So the Euler-Lagrange equation of the area functional is the minimal surface equation:

div

(
∇u√

1 + |∇u|2

)
= 0.(3.10)

To apply the Leray-Schauder estimate above, we need to prove a priori gradient estimates.

Lemma 3.10. Let U ⊂ Rn be a mean convex bounded smooth domain and φ ∈ C∞(Ū).
Then any solution to the boundary value minimal surface equation:

div

(
∇u√

1 + |∇u|2

)
=0 in U(3.11)

u =φ on ∂U,

satisfies the gradient estimate

‖∇u‖C0,β(Ū) < M,

for some M > 0 and β ∈ (0, 1).
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The proof of this Hölder bounds of gradient will use De Goirgi - Nash - Moser theory,
which is the material of next lecture.

As a application of Theorem 3.9 and Lemma 3.10, we have

Theorem 3.11. Let U ⊂ Rn and φ satisfy the same conditions as in Lemma 3.10. There
exists a unique smooth solution to (3.11).

Remark 3.12. One gets C2,α regularity by Leray-Schauder, then the higher regularity
follows from Schauder estimates from Lecture 2.

Remark 3.13. This is actually a minimising solution (i.e. the surface with least area with
that prescribed boundary). In general, minimising hypersurfaces with prescribe boundary
are only smooth up to dimension 8 (and in higher dimension may have singular set of
codimension 8). However, when they are graphical, we know that they are actually smooth
in all dimensions.

3.4. Variational method. Another approach to the existence of minimal surface is through
a variational method. Let uk be a minimizing sequence of the area functional so that

Auk(U)→ inf
u∈C∞(U),u|∂U=φ

Au(U).

In order to get a subsequence converging to a limit, we need some estimates and compact-
ness in function space.

Since the minimising sequence have uniformly bounded area, we haveˆ
U

|∇uk| ≤
ˆ
U

√
1 + |∇uk|2 ≤ A0.

And by Poincare inequality and that uk − Φ = 0 on ∂U (where Ψ is an extension of φ to
the interior of U), we get ˆ

U

|uk −Ψ| ≤
ˆ
U

|∇uk| ≤ A0,

and so ˆ
U

|uk| ≤ C(A0, φ).

Thus the sequence is uniformly bounded in W 1,1(U). Sobolev inequality gives that W 1,1 7→
L

n
n−1 compactly. So the existence of a solution in Lp for p ≤ n

n−1
follows by taking a sub-

sequential limit
ukk → u0.

For higher regularity, we need to Apply De Goirgi Nash - Moser theory from next
lecture and Schauder theory from the last lecture.
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4. De Giorgi Nash-Moser theory

The De Giorgi-Nash-Moser theory in elliptic PDE is providing the initial L∞ and C0,α

regularity, before higher regularity theory like Schauder theory applies. We will present
here the Moser’s approach for getting the local boundedness (which is iteration on the
exponents of Lp norms, while De Giorgi’s approach is iteration on the super-level sets).

4.1. Initial L∞ bound and Moser iteration. Let

Lu = ∂i(a
ij(x)∂ju) + c(x)u

be an elliptic operator of divergence form and U ⊂ Rn a bounded open domain as before.
Suppose the coefficients satisfies

‖aij‖L∞(U), ‖c‖Lq(U) ≤ L0

and

λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ2|, λ,Λ > 0.(4.1)

Our first theorem is the local boundedness of u, which only requires Lp boundedness of the
coefficients and inhomogeneous term.

We will present a simplified case with c = 0 for the homogeneous equation, the general
case follows by exactly the same argument with more technicality involved in absorbing
the extra terms.

Theorem 4.1 (Lp → L∞ estimate). Suppose u ∈ H1(B1) is a subsolution, i.e.ˆ
B1

aijDiuDjφ ≤ 0, ∀φ ∈ H1
0 (B1), φ ≥ 0.(4.2)

Then for any θ ∈ (0, 1), we have in the smaller ball Bθ that

sup
Bθ

u+ ≤ C
‖u+‖Lp(B1)

(1− θ)
n
p

,

for some positive constant C = C(n.λ,Λ, p, q).

Proof. For k > 0 to be determined and m ∈ N, we define

ū = u+ + k,

and

ūm =

{
ū, u < m

k +m, u ≥ m
.

Then one observes

k ≤ ūm ≤ m+ k,

and

ūm ≡ Constant, Dūm = 0, when u < 0 or u > m.
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We choose the following non-netative test function

0 ≤ φ = ζ2(ūβmū− kβ+1) ∈ H1
0 (B1),

for some β ≥ 0, ζ ∈ C1
0(B1).

We compute

Dφ =2ζDζ(ūβmū− kβ+1) + ζ2βūβ−1
m Dūmū+ ζ2ūβmDū

=2ζDζ(ūβmū− kβ+1) + ζ2ūβm(βDūm +Dū),

where we used that ūm = ū when Dūm 6= 0. Plugging into the equation (4.2) we get

0 ≥
ˆ
B1

aijDiuDjφ(4.3)

=

ˆ
B1∩{u>0}

aijDiuDjφ

=

ˆ
B1∩{u>0}

aijDiu · 2ζDζ(ūβmū− kβ+1) + aijDiu · ζ2ūβm(βDūm +Dū)

≥
ˆ
B1∩{u>0}

−Λ|Dū| · 2ζ|Dζ| · ūβmū+ λβζ2|Dūm|2ūβm + λζ2|Dū|2ūβm

≥
ˆ
B1∩{u>0}

[−1

2
λζ2|Dū|2ūβm −

1

2

Λ2

λ
· 4|Dζ|2ūβmū2] + λβζ2|Dūm|2ūβm + λζ2|Dū|2ūβm

(Here we used Cauchy-Schwarz for the first term in the previous line)

=

ˆ
B1∩{u>0}

−2
Λ2

λ
· |Dζ|2ūβmū2 + λβζ2|Dūm|2ūβm +

1

2
λζ2|Dū|2ūβm.

Thus

β

ˆ
B1

ζ2|Dūm|2ūβm +

ˆ
B1

ζ2|Dū|2ūβm ≤ C

ˆ
B1

|Dζ|2ūβmū2,(4.4)

for some C = C(β,Λ, λ).
(Notice that if c 6= 0 or there is an inhomogeneous term for the equation, then the

LHS of (4.3) is not zero and one needs a few more steps in the absorption of terms.)
We see the RHS (4.4) is “roughly” an L2 norm of the function

w = ū
β
2
mū,

whose L2 norm of derivative is “roughly” bounded by the LHS of (4.4) as follows

|Dw|2 =|β
2
ū
β
2
−1

m ū∇ūm + ū
β
2
m∇ū|2

=|β
2
ū
β
2
m∇ūm + ū

β
2
m∇ū|2

≤(1 + β)(β|Dūm|2ūβm + |Dū|2ūβm).
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Namely (4.4) reads ˆ
B1

|Dw|2ζ2 ≤ (1 + β)

ˆ
B1

|Dζ|2w2.

By Sobolev inequality applied to the compactly supported ζw, we get

[

ˆ
B1

|ζw|
2n
n−2 ]

n−2
2n ≤ [

ˆ
B1

|D(ζw)|2]
1
2 ≤
ˆ
B1

|Dw|2ζ2+

ˆ
B1

|Dζ|2w2]
1
2 ≤ [(2+β)

ˆ
B1

|Dζ|2w2]
1
2 .

Now we choose the cut-off function ζ ∈ C1
0(B1) so that for 0 < r < R ≤ 1 there holds

ζ ≡ 1, in Br

0 ≤ ζ ≤ 1, in BR

|Dζ| ≤ 2

R− r
.

Noticing ūm ≤ ū and ζ ≡ 1 in Br, we obtain

[

ˆ
Br

ū
(β+2) n

n−2
m ]

n−2
2n =[

ˆ
Br

ū
β+2
2

2n
n−2

m ]
n−2
2n

≤[

ˆ
Br

(ū
β
2
mū)

2n
n−2 ]

n−2
2n

≤[

ˆ
Br

w
2n
n−2 ]

n−2
2n

≤(

ˆ
B1

|ζw|
2n
n−2 )

n−2
2n

≤[(2 + β)

ˆ
B1

|Dζ|2w2]
1
2

≤2
√

2 + β

(R− r)
[

ˆ
B1

w2]
1
2

≤2
√

2 + β

(R− r)
[

ˆ
B1

ūβ+2]
1
2 .

By letting m→∞, we can replace ūm by ū and so

‖ū‖Lpχ(B1) ≤ [
2(p− 1)

(R− r)2
]
1
p‖ū‖LpBR ,

where p = β + 2, χ = n
n−2

.
Here pχ > γ so we get an improvement from Lp to Lpχ, as pχ > p. After iterating i

times with

pi = 2χi →∞, ri = θ +
1

2i
(1− θ)→ θ, i ∈ N,

we get

‖ū‖Lpi (Bri ) ≤[
4i · 2(pi − 1)

(1− θ)2
]

1
pi ‖ū‖Lpi−1 (ri−1)
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≤Πi
k=1

[
4i · 2(pi − 1)

] 1
pi · Πi

k=1

[
1

(1− θ)2

] 1
pi

· ‖ū‖L2(B1).

Taking the limit we get

‖ū‖L∞(Bθ) ≤ C · 1

(1− θ)2
‖ū‖L2(B1)

�

4.2. Harnack inequality and Hölder regularity. As a consequence of Theorem 4.1,
we also have Inf bound for non-negative super solutions.

Theorem 4.2. Suppose u ∈ H1(B1) is a non-negative supersolution, i.e.ˆ
B1

aijDiuDjφ ≥ 0, ∀φ ∈ H1
0 (B1), φ ≥ 0.(4.5)

Then for any θ ∈ (0, 1), p ≤ n
n−2

, we have in the smaller ball Bθ that

inf
Bθ
u ≥ C‖u‖Lp(B1),

for some positive constant C = C(n.λ,Λ, p, q).

Idea of Proof: Apply Theorem 4.1 to u−β (so that a super-solution becomes a subsolution).
The detail is left as an exercise. �

So combining Theorem 4.1 and Theorem 4.2, we have the Harnack inequality for actual
non-negative solutions.

Theorem 4.3 (Moser-Harnack Inequality). Suppose u ∈ H1(BR) is a non-negative weak
solution, i.e. ˆ

BR

aijDiuDjφ = 0, ∀φ ∈ H1
0 (BR), φ ≥ 0.(4.6)

We have
sup
BR

2

u ≤ C inf
BR

2

u,

for some uniform constant C = C(n, λ,Λ).

The Moser-Harnack inequality will then give us oscillation decay when the radius of
balls shrinks, providing Hölder regularity (by standard iteration argument of Campanato).

Theorem 4.4 (Hölder continuity of weak solutions). If u ∈ H1(U) is a weak solution to
Lu = 0 in a bounded open domain U ⊂ Rn, then for any BR(x0) b Ω we have the following:

• For all r ≤ R we have

oscBr(x0)u ≤ C
( r
R

)α
oscBR(x0)u,

for some α = µ(n, λ,Λ) ∈ (0, 1) and C = C(n, λ,Λ) > 0. Here

oscBρu = sup
Bρ

u− inf
Bρ
u.
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• u is Hölder in a smaller ball, with the estimate

Rα [u]C0,α(BR/4(x0)) ≤ C‖u‖L∞(BR).

Proof. First we prove the oscillation decay. Let

M := sup
BR

u, m := inf
BR

u, ω := M −m.

Define

v := u−m ≥ 0, w := M − u ≥ 0 in BR.

Since the operator is linear and Lu = 0, we have Lv = Lw = 0.
By Moser’s Harnack inequality, there exists CH > 1 such that

sup
BR/2

v ≤ CH inf
BR/2

v, sup
BR/2

w ≤ CH inf
BR/2

w.

Set

A := sup
BR/2

u, B := inf
BR/2

u.

Applying Harnack to v = u−m gives

A−m ≤ CH(B −m),

and applying it to w = M − u gives

M −B ≤ CH(M − A).

Adding the above 2 bounds we get

(A−m) + (M −B) ≤ CH
[
(B −m) + (M − A)

]
.

Using

(A−m) + (M −B) = ω + (A−B), (B −m) + (M − A) = ω − (A−B),

we obtain

ω + (A−B) ≤ CH
(
ω − (A−B)

)
.

Rearranging,

(CH + 1)(A−B) ≤ (CH − 1)ω,

hence

oscBR/2 u = A−B ≤ CH − 1

CH + 1
ω.

Setting σ =
CH − 1

CH + 1
∈ (0, 1) completes the proof of first part on oscillation decay.

From the oscillation decay theorem, there exists σ ∈ (0, 1) such that

oscBR/2 u ≤ σ oscBR u.

Iterating this estimate, we obtain for all k ∈ N,

(1) oscB
R/2k

u ≤ σk oscBR u.
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Choose α > 0 such that

σ = 2−α, i.e. α = − log σ

log 2
.

Let 0 < ρ ≤ R and choose k ∈ N satisfying

R

2k+1
< ρ ≤ R

2k
.

Then, by monotonicity of oscillation in the radius,

oscBρ u ≤ oscB
R/2k

u ≤ σk oscBR u = 2−αk oscBR u.

Since ρ ≤ R/2k, we have 2−k ≤ ρ/R, and hence

oscBρ u ≤
( ρ
R

)α
oscBR u.

Finally, for any x, y ∈ BR/2, setting ρ = |x− y| yields

|u(x)− u(y)| ≤ oscBρ u ≤ C|x− y|α,

which proves u ∈ C0,α
loc (Ω).

�

5. Regularity theory of harmonic maps

Let u : Ω ⊂ Rn → (N, h) be a map into a compact Riemannian manifold N (isometri-
cally embedded in Rk). The Dirichlet energy is

E(u; Ω) =
1

2

ˆ
Ω

|∇u|2 dx,

and its critical points under compactly supported variations are the harmonic maps. In
extrinsic form (with N ↪→ Rk), the Euler–Lagrange equation becomes

∆u = A(u)(∇u,∇u),

where A is the second fundamental form of N ⊂ Rk.
Let u : Ω ⊂ Rn → N be a smooth harmonic map, and set

e := |∇u|2.
Then the Bochner identity for harmonic maps gives

(5.1) ∆e = 2|∇2u|2 − 2
〈
RN(∇u,∇u)∇u,∇u

〉
,

where RN denotes the Riemann curvature tensor of the target manifold N .
Since N is compact, its curvature is bounded, and hence

(5.2) −∆e ≤ C e2 in Ω,

for a constant C > 0 depending only on the geometry of N . The inequality (5.2) is
understood in the weak (distributional) sense for u ∈ W 1,2.



ELLIPTIC PDES 27

5.1. Epsilon-regularity.

Theorem 5.1 (Epsilon-regularity in dimension 2). There exists ε0 > 0 such that the
following holds. If u : B1 ⊂ R2 → N is a weak harmonic map satisfyingˆ

B1

|∇u|2 ≤ ε0,

then

‖∇u‖L∞(B1/2) ≤ C

(ˆ
B1

|∇u|2
)1/2

,

where C depends only on the geometry of N . In particular, u ∈ C∞(B1/2).

Proof. We want to apply Moser iteration to (5.1)
Fix 0 < ρ < R ≤ 1, and let η ∈ C∞c (BR) satisfy

η ≡ 1 on Bρ, 0 ≤ η ≤ 1, |∇η| ≤ 2

R− ρ
.

For p ≥ 1, multiply (5.1) by η2ep−1 and integrate by parts, we getˆ
∆eη2ep−1 ≤

ˆ
Cη2ep+1

ˆ
2ηep−1〈∇e,∇η〉+

ˆ
(p− 1)η2ep−2|∇e|2 ≤

ˆ
Cη2ep+1

−2

ˆ
|∇e||∇η|ηep−1 +

ˆ
(p− 1)η2ep−2|∇e|2 ≤

ˆ
Cη2ep+1

−
ˆ

2

p− 1
|∇η|2ep −

ˆ
p− 1

2
η2ep−2|∇e|2 +

ˆ
(p− 1)η2ep−2|∇e|2 ≤

ˆ
Cη2ep+1

Namely

(5.3)

ˆ
|∇(ηep/2)|2 ≤ C

ˆ
|∇η|2ep + C

ˆ
η2ep+1.

By Sobolev embedding W 1,2 7→ Lq compactly for q = 2n
n−2

, we have

‖e‖
L
p
2 ·

2n−δ
n−2 (Br)

≤ Cη‖e‖Lp+1(BR).

In dimension n = 2, this directly implies Lq bound of u for any q > 1
In dimension n ≥ 3, by choosing δ < 4p+4−2n

p
we get an improvement as

p

2
· 2n− δ
n− 2

> p+ 1.

Moser iteration then implies L∞ bound of e by Lp+1 bound of e. (Although the energy
bound only implies L1 norm of e, so we don’t a priori have Lp+1 bound of u to get L∞ by
the Dirichlet energy.)

�
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This can be generalized to the case of minimizing harmonic maps in higher dimensions.

Theorem 5.2 (Schoen–Uhlenbeck ε–regularity). Let n ≥ 3 and let N be a compact Rie-
mannian manifold. There exist constants ε0 > 0 and C > 0, depending only on n and the
geometry of N , such that the following holds.

If u ∈ W 1,2(Br(x0), N) is an energy-minimizing harmonic map and

(5.4) r2−n
ˆ
Br(x0)

|∇u|2 ≤ ε0,

then u is smooth in Br/2(x0) and satisfies the estimate

(5.5) sup
Br/2(x0)

|∇u| ≤ C r−1

(
r2−n

ˆ
Br(x0)

|∇u|2
)1/2

.

5.2. Estimate on the size of singular set and partial regularity. Using the epsilon
regularity result, we say that the energy minimizing harmonic maps are regular away from
a measure 0 set. Indeed, one can estimate the Hausdorff dimension of the singular set.

Theorem 5.3 (Schoen–Uhlenbeck partial regularity). Let n ≥ 3 and let N be a compact
Riemannian manifold. Suppose that

u ∈ W 1,2(Ω, N)

is an energy-minimizing harmonic map. Then there exists a closed set

Σ ⊂ Ω

such that

(1) u ∈ C∞(Ω \ Σ);
(2) the singular set Σ has Hausdorff dimension at most n− 2, i.e.

dimH(Σ) ≤ n− 2.

Proof. An important tool we use is the notion of energy density and the monotonicity
formula.

For x ∈ Ω and r > 0 with Br(x) ⊂ Ω, define the scaled energy

θ(x, r) := r2−n
ˆ
Br(x)

|∇u|2.

Since u is an energy-minimizing (hence stationary) harmonic map, the monotonicity for-
mula implies that θ(x, r) is nondecreasing in r. Therefore the limit

θ(x, 0+) := lim
r↓0

θ(x, r)

exists for every x ∈ Ω.
Let ε0 > 0 be the constant from the ε–regularity theorem and define the singular set

Σ :=
{
x ∈ Ω : θ(x, 0+) ≥ ε0

}
.
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By the ε–regularity theorem, u is smooth in Br0/2(x0). Hence

u ∈ C∞(Ω \ Σ).

It is not hard to see that the regular set is open and the singular set is closed.
Now fix a compact set Ω′ b Ω. For each x ∈ Σ∩Ω′, by definition of Σ and monotonicity,

there exists rx > 0 such that B5rx(x) ⊂ Ω and

(5.6)

ˆ
Brx (x)

|∇u|2 ≥ ε0 r
n−2
x .

The family {Brx(x)}x∈Σ∩Ω′ is a covering of Σ∩Ω′. By the Vitali covering lemma, there
exists a countable subcollection {Bri(xi)} such that

(1) the balls Bri(xi) are pairwise disjoint,
(2)

Σ ∩ Ω′ ⊂
⋃
i

B5ri(xi).

So by (5.6) and the disjointness of the balls,

ε0

∑
i

r n−2
i ≤

∑
i

ˆ
Bri (xi)

|∇u|2 =

ˆ
∪iBri (xi)

|∇u|2 ≤
ˆ

Ω

|∇u|2 <∞.

Therefore ∑
i

r n−2
i ≤ 1

ε0

ˆ
Ω

|∇u|2.

Using the covering by B5ri(xi) and the definition of Hausdorff measure, we conclude

Hn−2(Σ ∩ Ω′) ≤ C(n)
∑
i

(5ri)
n−2 ≤ C(n)

ε0

ˆ
Ω

|∇u|2 <∞.

Since Ω′ b Ω was arbitrary, it follows that Hn−2(Σ) is locally finite in Ω, and hence

dimH(Σ) ≤ n− 2.

�
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