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2 SHENGWEN WANG

INTRODUCTION AND OUTLINE OF THE COURSE

This is the lecture notes for LTCC course “Elliptic Partial Differential Equations (Ad-
vanced)” taught in fall Spring 2026. The course contains five 2-hour lectures. We will
focus primarily on divergence-form elliptic PDEs, which arise naturally from variational
problems and the variational structure could simplified some of the technical proofs. The
plan for the course is as follows:

In lecture 1, we gather some key regularity estimates for harmonic functions, which
are extendable to more general elliptic PDEs.

In lecture 2, we will present the Schauder estimates, which gives higher order Hélder
regularity of solutions.

In lecture 3, we will give some approaches to the existence theory of elliptic PDEs. In
modern PDE, the existence and regularity theory are usually treated separately. One first
obtain existence of weak solutions and then prove regularity of the solutions.

In lecture 4, we will go over the De Giorgi Nash-Moser theory, which provides the
initial L*>° and Holder regularity of the solutions before applying Schauder estimates.

In lecture 5, we will talk about some applications in the geometric PDE of harmonic
maps, e.g. the ¢ - regularity theorem and partial regularity theory.
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1. HARMONIC FUNCTIONS

Let u € C*(U) be a solution to the Laplace equation
(1.1) Au=0, onadomainU C R".

The existence of solutions for more general classess of elliptic PDEs could follow several
approaches, see Chapter 2 for examples.

In modern PDE theory, we usually separate existence and regularity part. First we
use the weak formulation of ([1.1)

(1.2) /uAn—O,VT]GCfO(U),
U

to get existence of solution in some Sobolev space, say Hj .(U). And then we prove the
regularity / partial regularity of the solutions.

Indeed for harmonic functions, one can improve the regularity of solutions to C'*°, and
even analytic! (See also Hilbert’s XIX problem.)

We also have quantitative bounds on all its derivatives. Let’s start with some a priori
estimates. Although there are now various ways to see the regularity of harmonic functions,
but these estimates still give models for studying more general elliptic PDEs.

1.1. Some a priori estimates. The first is an interior estimate.

Theorem 1.1 (Gradient bound). If u is a harmonic function on B,.(xo) C R™ above, then
we have

(1.3) [Vu(zg)| <

Sl e e < @HUHL?(BW(T))y

for a dimensional constant C = C(n).

Proof. By the mean value inequality, we have
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where the second last line used dB: (zo) C B, (7o) and the mean value inequality.
U

In a similar way, one can obtain interior bounds on all higher derivatives by the L'
norm, this will be left as an exercise.

Exercise 1.2. Under the same assumption as in Theorem [I.T], we have

N C
D%u(zo) < = llull o sag )
with the norm of multiindex a being |a| = k.

As a consequence of this gradient estimates, we have the Liouville Theorem for entire
harmonic function.

Corollary 1.3 (Liouville’s Theorem). Let C' < co,e > 0. If u : R” — R is a harmonic
function with supp ) lu| < Crk=¢ for some positive integer k € N, then u must be a
polynomial of degree at most k — 1.

In particular, entire harmonic functions with sub-linear growth must be constant.

Proof. The proof is an easy exercise from the derivative estimate above. O

Remark 1.4. This will be used later to give a version of proof of Schauder estimate for
higher regularity.

Next, we provide a global Holder regularity estimate up to the boundary.

Theorem 1.5. Let u be a harmonic function on Bi(0) with ulap, ) = ¢. Suppose ¢ €
C*(0B1(0)) for some o € (0,1), then we have

(1.4) il o oy, < Cllbllenomon:

for some constant C' = C(n, ).

Proof. Without loss of generality, up to translation, we assume z, = (1,0,...,0) and
¢»(0) = 0. For x € 0B;(zy), we then have

’.CU2| = 2%‘1.
We denote by

K =: sup W(i)’,

2€0B1(x0) ‘l"

and .
v(z) =22 Kz?.
Then
Av(z) =23 K - %(% 1)z <0 = Au,

UlaBl(wo) IQ%KxE = K‘x’a > ¢($) = u’aBl(IO)'
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Applying maximum principle to the subharmonic function © — v we then get
[u(@)] < o()] =% Kaf Vo € Bi(xo),
namely
- 0 o —_— 0
(1.5) sup —]u(x) ui ) <22 sup —lqb(x) ¢§ )‘
v€Bi(zo) | — 0|2 w€dBi(zo) [T — 0|

Here 0 can be replaced by arbitrary point on the boundary dB;(xy) by translation and
rotation.
We will leave the rest of the proof as an exercise. O

Exercise 1.6. Prove that (1.5 implies ((1.4)).

1.2. Maximum principle and barriers. The maximum principle is a key tool in elliptic
PDEs that plays an important role in a priori estimates and regularity theory.
We consider operators of divergence form (they arise from variational problems natu-

ally)

(1.6) Lu = 9;(a” (z)0;u) + c(x)u,

It is said to be elliptic in U C R"™ if there exists a A > 0 so that
a’(z)&& > NP, Vo € U, € € R™.

We further assume that a/,c € C%%(U) are Holder continuous.

The maximum principles are true for operators of non-divergence form too. But here
by making use of the divergence form and variational structure, we have a simple proof of
weak maximum principle.

Theorem 1.7 (Weak Maximum Principle). Let L be an elliptic operator as above and the
coefficient c(x) < 0. If

Lu>0 inU
u|8U §07
then we have
u<0, n U
Proof. We use the test function
ut = max{u,0}.

Using integration by parts and ellipticity, we get
/ [0;(a" (2)0;u™ + c(x)u]u™dz >0
U

t@MW@MN+¢WNWW20

/U a3 ()t Ot + () (uh))da 20
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(1.7) / AVt + o)t )dz >0,
U
which forces u™ = 0 (namely u < 0) because ¢ < 0 and X\ > 0. O

Remark 1.8. Notice that the proof works for weak solutions v € H'.

Moreover, if the volume of region U is small, we can remove the assumption on nega-
tivity of c.

Theorem 1.9 (Small Volume Maximum Principle). Let L be an elliptic operator as above.
There exists a 6 > 0 so that the following hold: If

Lu>0 inU
ulgy <0
U <,
then we have

u<0, inU

Proof. By Faber-Krahn, the first eigenvalue of the region U satisfies
CTL
M(U) = M(Br) = i

where Bp is a round disk of radius R so that its volume |B| = |U|. Namely

/U\vuﬂ?zA )/)\]u 2> R2/A|u+\2.

Plugging into (1.7) we get

> 0,

ey,
/_ 72 v w2+ e(z)(ut)?]de >0.
U
This again forces u™ = 0 (namely u < 0) when the volume |Q)| = w,R" is small enough

(namely R is small enough). O

Remark 1.10. The conclusion is in general not true if ¢ does not have a sign and the
volume of domain is not small. For example u(x) = sinx in (0, 27) achieves both maximum
and minimum in the interior.

At the points that u achieves maximum on the boundary, we have the following prop-
erties on outer derivative

Theorem 1.11 (Hopf Lemma). Let L be an elliptic operator as above and the coefficient
c(x) <0. If

Lu>0 n U,

uly < max u in the interior of U,
U
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and xog € OU be a point that achieves non-negative maximum

o) = uw>0
u(zo) I%%XLL_ ,

such that xo satisfies the interior ball condition (namely there is a ball B.(yo) C U so that
xo € 0B, (yo)), then we have
ou (
v

where v 1s the unit outer normal at xg.

l’o) > 07

Zo

Proof.
Counsider a barrier function

v(z) =u(w) = ulzo) +ele " — ™" in B, (y0) \ By (yo)-
We then have
Lv =Lu — cu(zg) + e Leelv—ol?

>0+ el 4020V () (2 — o) (z; — o ) —QZaa )+ ad;a” (z)(z; — yo,) + c(x)]

(Here we used ¢ < 0,u(xg) > 0) so that —cu(z) 2 0.)

ce—lr— yol? [4a2/\|x_y0| —QZaa —}-a@a ( )( i_yO,i)]

=1

>ee—olmwl (g2 02 — QZaa ) + adja” (z)(z; — yo,)]-

By choosing o > 0 large enough, we get
(1.8) Lv>0 in B.(y0) \ Bz (vo).

2

Moreover, on the boundary of the annulus B, (yo) \ Bz (yo) we get
(1.9)  vlp o) =ulz) = u(zo) <0

U|BT (o) < ajrgna(gc)u(x) —u(xg) +eC(a, A\, r) <0, for e chosen small enough.

Here in the second bound, we used that u < u(z¢) in the interior of U and that dB: (o)
is compact.



8 SHENGWEN WANG

Combining ([1.8)) and ([1.9) we get by the weak maximum principle that
v<0=uv(xy) inU.

As a consequence, by continuity of v, we know

“—(x0) >2eare " > 0.
v

As a consequence we have the strong maximum principle

Theorem 1.12 (Strong Maximum Principle). Let L be an elliptic operator as above and
the coefficient ¢(x) < 0. If

Lu>0 U,
then

uly <r%axu =maxu n the interior of U,
A 2

unless u 18 a constant.

The maximum principle has important geometric applications on proving uniqueness
/ rigidity / symmetry of solutions.

Theorem 1.13 (The moving plane method). If u € C*(Bg) satisfies

Au =f(u),
u >0, n Bg
u=0. on OBg,

then u is rotational symmetric, i,e. u(x) = u(re?), v € R.
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E>\0 = BR N {l’l > )\0}

> 11 E)\O*EO = BR N {xl > )\0 — 60}

l’lz)\o

Proof. 71 = Ao — €0
We will prove that u is reflexive symmetric about any hyperplanes passing through
the origin, which implies rotational symmetry. Without loss of generality (up to rotation),

we only need to prove symmetric about the plane z; = 0.
For any A € [0, R], define

E\ = BrnN{z > A},
and the function
vy = u(z) —u(2Xe; —x) on E).
Notice that for A > R — ¢ close enough to R, we have |E,| < § (so that the small volume
maximum principle is applicable). And
UA|oBrn{zi>23 () <O —u(2Xe; —2) <0
Ux|Bpn{zi=2} =0.

So valom, < 0 as OF\ = [0Bgr N {zx1 > A}JU [Bg N {x; = A}]. Thus the small volume
maximum principle combined with strong maximum principle gives vy|g, < 0for A > R—¢

when ¢ small enough.
We denote by

)\0 = inf A.

vy <0,VA>

The proof will then be finished by the following claim:
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Claim 1.14.
)\0 = 0

Proof of Claim. Suppose not, then \g > 0. We then choose a compact subset K C FE), so
that |E), \ K| < 2. Since K is compact and vy|x < 0, we can choose a ¢y > 0 so that
ua|x < —co < 0. Next, we choose €y small enough so that

‘E)\O*EO - (K - 861)‘ <9,

and

Co
’U)\’K—ael < —5 < 0.

The small volume maximum principle applied to the region E),_., — (K —¢ce;) then implies
U)\|EAO,€O <0,

which is a contradiction to the definition of Ag. ]

With this claim in hand, we see that vy < 0 with A = 0. And by reflection, we see that

vy > 0 too. So vp = 0 and thus wu is reflexive symmetric about the planes {z; = 0}. Since

the choice of such planes is arbitrary, we see the rotational symmetry in the disk Bp.
O
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2. SCHAUDER ESTIMATES AND HIGHER REGULARITY

We will present the proof given by Simon [2] using blow-up argument and Liouville’s
(rigidity) theorem.
Denote by

u(z) — u(y)
[ulcoowy = sup  ———=
zyelUay |x - y|
the Holder semi-norm and

||U||Ck’°‘ = Z ||u||L°°(U) + [Dk]co,a(U)
1BI<k

the Holder C** norm.
First, let’s prove the interior estimate for Laplace operator.

Proposition 2.1 (Interior estimate for Laplace). Let U C R™ be a bounded open domain.If
u € C**(U) satisfies
Au = f,
i an open domain U C R™, then for any pre-compact open subset K € U we have
[HeSSu]CO,a(K) S C[Au]co,a([]) = C[f]co,a(U),
for some constant C = C'(n,a, K,U).
Proof. We will reduce it to case in a disk by the following claim.

Claim 2.2. [t suffices to prove that
[HeSSu]CO,Q(Bl) S C[AU]CO,&(BR) = C[f]co,a(BR),

for some constant C' = C'(n,«) and large enough R.

Proof of Claim. We will leave this as an exercise (using covering argument by using disks
contained in U and with centres in K). O

Indeed, by scaling, it suffices to prove the Claim with » = 1.
Suppose the claim does not hold, then there exists sequences uy € C**(Bg,), fr €
C%*(Bg,) and Ry > k,so that

[HGSSuk]CO,a(Bl) > k[fk]co’a(BRk)7 k=1,2,....

We can replace uy, fi
that

b Uk k and assume without loss of generalit
Y Tessur ooz, THeSSw, lcoe (1) & y

[Hessy, |co.ep,) =1

1
[fk]co,a(BRk) <E — 0.

By the definition of Holder norm, there exists zy, yx € B1, so that
| DZur(yx) — Djun ()]

|y — xk|®

>c, >0,



12 SHENGWEN WANG

for some dimensional constant c,,.
Since Ry > k — oo and uy, by Arzela-Ascoli, we can extract a subsequence (which we
still index by k without loss of generality) so that

w, — u in C%° B < a,
Tp — Too € Bo.

Without loss of generality again, we can subtract the function u; by a degree-2 polyno-
mial (degree-2 polynomial has Hélder norms of Hessian being 0, thus not affecting these
inequalities) so that the above still hold and moreover

u(zy) =0,
Vu(zy) =0,
Hess,, (zx) =0.

Combining these, we have that the limit satisfies

(2.1) Au =0,
|Hess,|o <1,

u(Zos) =0,

Vu(zy) =0,

Hess, () =0,
and one of the following holds:

Case 1: Y = Yoo # Too. In this case Hessy (Yoo) > nl¥Yoo — Too|® # 0.
Case 2: yp — ZToo. In this case, we can rescale consider the rescaled sequence ug(z) =
up(Tr + [yp — :Ek|:E) defined in a ball of radius ‘ylfi - that also converges

1

[yx —zp |2 T
to an entire harmonic function satisfying with 0 in place of z,, and that
Hess, (1==72) # 0.

In either case above, we get an entire harmonic function that has distinct Hessian at 2
different points and that

1l -«
2

sup u| < Cr*te < 03¢ e =
On the other hand, by the Liouville Theorem (Corollary|1.3|), u is a polynomial of degree at
most 2, which is a contradiction to either case above that have non-constant Hessian! [

Next, we generalise the above interior Schauder estimates for Laplace operator to
general elliptic operators.

Theorem 2.3 (Interior Schauder for elliptic operators). Let U C R™ be a bounded open
domain and we consider an elliptic operator as in (L.6) Lu = 9;(a¥ (x)d;u) + c(z)u with
a¥(x)&& > MEE Ve € U, € € R™ and a¥,c € CO(U). If u € C**(U) satisfies

Lu = f,
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i an open domain U C R™, then for any pre-compact open subset K € U we have
[ullcza(xy < C[Lullcoe@) + ullLew)) = C[fllcos@) + [ull o)),
for some constant C = C(n, o, K,U).

Proof. Again it suffices to prove the estimate for disks. We choose K = B, and U = B,
and then use covering argument to extend to general K, U as in the previous proposition.
Choose a fixed zy € B,. Since the coefficietns a¥, ¢ are Holder continuous, we have

a”’(20)0i0;u = Lu — (a" (x) — a" (2¢))9;0;u — 9;a” (z)0ju — c(x)u.
By ellipticity of a¥ and compactness of Bs, we get
AJEPP > a¥ (z0)&i&; = e
And thus by the previous Proposition (applied with K = B,,U = Bs,) we have
[Hessu]coe(s,) <ClAu]coe(s,,)
<O\, N)]a? (w0)0,0ulco.a By,

SC\ A, la” || coapyy) ([Lt]coa(s,,) + r[Hessy]coa s,y + ullc2s,,)) -

1
XA o0 ()

By choosing r < 501 small enough we then have

(22) [Hessu]oo,a(Br) SC ([Lu]co,a(BQT) + HuHCa(BQT)) .

Finally, we close the argument by applying the following interpolation inequality.
Lemma 2.4 (Interpolation inequality).

For any ¢ € (0, 1) there exists C: so that the following holds for any u € C?(B,,) and
p€(0,1):
(2.3) Pllullez(s,) < ep® llullczas,,) + Cellullre(ss,)-

Proof of Lemma. This is also proved by compactness (contradiction argument) using Arzela-
Ascoli. See Problem set 2. 0

We denote by
Q := sup dist(x, 0By)*|Hess, ()],

zeB

and notice that the supremum is attZi;ed in the interior (dist(x, dBs)?|D*u(z)] =0 on dBsy)
for some xg € Bs. Let p = gdist(xo, dBs), we get Ba,(x) C By and
Q =9p°|Hess, (x0)|

<9p°|[Hessul| o5, (z0))

<9ep” " [[ull ez By wo)) + ICe [l (B2 wo)) DY

<92p” " ([Hessulco.o (s, wo)) + lullc2(ss,won)) + ICel o (2, o)

<9ep” ™ [C| Lullco((Boy (o)) + Cllulle2(Bay o] + IC:ull L (Baywo)y  bY

<92p” " [C| Lullco.((8sy wo)) + ClHESSU] 000 (5 w0)) + [0l L2y mop)] + ICel | o (2 w0
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§(95C’ —|— 905) [||Lu||co,a((32p(xo)) + ||U||Loo(32p(xo))] + 906p2[HeSSu]Loo(BQp(IO))

SO(& C) [HLUHCO’O‘((BQ,;(xo)) + ||u||Loo(32p(x0))] +9C¢ BSU%) ), diSt((L’, @32)2[HGSSU]LOO(BQP(IO))
TEDL2p(T0

<C [l Lull o (Bt + [lull 2 (Bay (@oy)] +9CEQ.

By choosing ¢ <
get

180 and absorbing the second term on the right hand side to the left, we

Q < C [l Lullcoa(Bapwo) + 1ullzoBapwop] < CllLullcoa(s,) + [ullres,)]-
Applying (2.2) on compact subsets of bounded open sets (could easily see by covering
argument), we get

|u||C’210‘(B1) :|u||C’2(Bl) —+ [HGSSU]CO,a(Bl)
<lullc2(s,) + C[HLUHC’O»C‘(B%) + ||U||C2(B%)]

3
<CilllLullconisy) + lullesg) + 2(5) [Hessu] x5y, o]

<C2[||LU||COa(Bg) + (||| oo (By) + Q]

l\J

<Clll Lulleosy + llull L=(5z)-
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3. EXISTENCE THEORY FOR ELLIPTIC PDES

We treat the existence theory and regularity theory separately in many PDE problems.
First we need to obtain the existence of weak solution in some larger space, and then we
proceed to prove the regularity / partial regularity of the solution. There are several
approaches using abstract tools from functional analysis or topological arguments. We will
present the Lax-Milgram theorem for existence of solutions to linear PDE and a fixed point
argument that can be applied to non-linear problems.

3.1. Lax-Milgram and weak solutions. Consider an elliptic operator of divergence form
defined before,

Lu = 9;(a” (z)0;u) + c(z)u,
i.e. the coefficients satysfying
CLi‘j(l‘)&gJ‘ 2 )\|€|2, A> 0.
W define the bilinear form associated to L by
(3.1) Byplu,v] =: / u - Lvdx = / —a" () Uy, vy, + c(@)u(z)v(z)de
U U
for u,v € HY}(U),U C R™.
Definition 3.1. A weak solution v € H'(U) of the Dirichlet problem

(3.2) Lu=f
uloy =0,
if
(3.3) Brlu,v] = {f,v) 2@y, Yo € Hy(U).

The following functional analytic theorem will give existence of weak solutions.

Theorem 3.2 (Lax-Milgram). Let H be a real Hilbert space and B a bilinear form on H:
B:Hx H—R,

satisfying

(3.4) |Blu,v]| <allulllo], Vu,ve H,

(3.5) Bllul|* <Blu,u], Yue€ H,

for some o, 8 > 0. Then for any f € H, there exists a unique w € H so that

Blu,v] = (f,v).

Sketch of Proof: The existence of u is a consequence of Riesz Representation theorem for
bounded (by (3.4))) linear functional, and the uniqueness part follows from the coercivity

B4). 0

Indeed, we can characterise exactly when the coercivity condition in the Lax-Milgram
theorem fails.
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Theorem 3.3 (Fredholm alternative). For an elliptic operator L satisfying the conditions
stated at the beginning of the section, one of the following items hold:

e For each f € L\U), there eizsts a unique weak solution u of the boundary value

problem
Lu=f, U
u=0, ondU
o There exists a nontrivial weak solution u Z 0 to the homogenous problem
Lu=0, U
u=0, ondU

Indeed, when ¢(z) < 0, the first case always happens.

Corollary 3.4. If the elliptic operator Lu = 9;(a"” (x)0;u) + c(z)u satisfies c(x) <0, then
the first case in Fredholm alternative holds.

Proof. The second case does not happen, because the weak maximum principle proved in
Lecture 1 (for ¢ < 0) guarantees the uniqueness of solutions. O

We can also deal with the case with non-zero boundary data.

Proposition 3.5. Suppose L is an elliptic operator Lu = 9;(a" (2)0;u) + c(z)u satisfying
c(x) <0 and U C R™ is a smooth bounded domain. Then the following boundary value
problem has a unique solution for any f € CO*(U),¢ € C**(U):

{Lu =f, mU

(36) u=¢, ondU

Proof. We can extend ¢ to a ® € C?%(U) so that ®|gy = ¢, as U is smooth.Then by the
previous Corollary, there exists a unique solution for the following problem

Lv=f—-L¥Y, inU
v=0, ondU

Then we see that f — LY € C%*(U) C L*(U) because the operator is second order, and
thus u = v + ¥ is a solution (|3.6]). U

Combining the existence of a weak solution (3.3) in H] for linear elliptic equations,
we can apply the De Giorgi Nash Moser Moser theory in Lecture 4 to gain L>° and Holder
regularity, and then apply Schauder theory to get higher regularity for such solutions.

3.2. Leray-Schauder existence theory. The second existence theory is based on fixed
point argument and can be applied to quasi-linear PDEs, e.g. minimal surface equation.

Recall the classical Brouwer’s fixed point theorem, which states that “a continuous
map from closed unit ball in R™ to itself must have have a fixed point”, can be generalised
to maps of compact convex sets of Banach spaces.
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Theorem 3.6 (Schauder’s fixed point theorem, Generlised Brouwer’s). Let K be a compact
convex set in a Banach space B and let T : K — K be continuous. Then T has a fized
point.

As a corollary, one gets
Corollary 3.7. Let B be a Banach space and B C B is its open unit ball. Suppose
T : B — B is a continuous map such that

e The map T is compact, i.e. images of any compact set is precompact.

e T'(0B) C B.
Then T has a fixed point.

Sketch of Proof: Apply the Schauder’s fixed point theorem to the map 7% : B — B defined
by

g, for [T(z)| =1

T(z) = {Tm’ for || T(z)]| < 1

and notice that the fixed point cannot happen at B because [T'(y)| < 1 = |y|,Vy € 0B. O
The fixed point theorem can be
Theorem 3.8 (Leray-Schauder fixed point theorem). Let B be a Banach space and
T:Bx[0,1] — B
a compact map such that:
e T(x,0) =0 for each x € B;

o There exists a constant M > 0 so that for each (z,t) € B x [0,1] which satisfies
x =T(x,t), there holds ||x| < M.

Then there is a fixed point y € B of the map T(-,1) : B — B given by T(y,1) = y.
Proof. Without loss of generality, we may assume M = 1. Otherwise one can just rescale

the norm on Banach space by a factor of % and notice that a fixed point is unchanged by
this norm scaling. For any ¢ € (0,1), we define a map from the closed unit ball,

T.:B—B
Tg(x) = T(ﬁ’ 1_!3””)7 ifl—¢ S ||x|| S 1
T(3,1), if [l <1-e

For each e, we see the image of 0B by T is
1-1
T.(0B) =T(0B, ?) =T(0B,0) =0,

by the definition of T'(+,0). So the Corollary implies that there is a fixed point z. of T,
for any €. We define further that
t_'lé%ﬁ if1—e <z <1
T, df e <1-¢
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which is the second parameter of 7. for this fixed point.
By compactness of T', we can find a subsequence so that
(ze,,te,) — (2,1) € B x [0,1].
There are 2 possible cases:
o If t < 1, then for ¢4 small enough, there holds t., < 1, and thus
[zl = 1 —er = 1= [|lz]].
But this is a contradiction to the second condition that ||z| < M =1 as a fixed
point z = T'(z,t).
e If t = 1, and thus z = T'(x, 1) gives a fixed point for T'(-,1) as desired.
O

We want to apply the Leray-Schauder theorem to the existence theory of quasi-linear
elliptic PDEs of the form:

(3.7) di(a" (z,u, Vu)oju) + c(x)u =0, in U CR,

where the coefficients a”, ¢ are C%* about every components of their variable and ¢(z) < 0.
Theorem 3.9 (Quasi-linear existence). Let a € (0,1), U C R" a bounded smooth open
domain and ¢ € C**(U). Suppose further that for some 8 € (0,1), there exists M > 0

constant so that the following holds: For everyt € [0,1], each C** solution u (not assuming
it ezists) of

(3.5) {@(a"j(x,u, Vu)oju) +c(z)u=0 inU,c<0,

u=t¢ ondU,
satisfies the a priori estimate
lullors@) < M.
Then the Dirichlet problem
0i(a" (z,u, Vu)dju) + c(x)u =0 in U,
u=¢ ondU

has a solution in C*(U).

(3.9)

Proof. We define an operator
T :CY8(U) x [0,1] = CYP(U)
T(v,t) =u,

where u = T'(v, t) is the unique solution of the linear problem obtained by replacing u, Vu
with v, Vo in the coefficients a%.

9;(a" (z,v, Vv)d;u) + te(zx)u =0 in U,
u=t¢ on U,
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We see that any solution u of (3.8) is a fixed point of 7. And by the assumption of the
theorem, any such fixed point v = T'(u,t),t € [0, 1] must satisfies

vllcrs@y < M.

So the Leray-Schauder fixed point theorem implies the existence of a fixed point for the
map 7'(-, 1), namely a solution to (3.9).

The C*® regularity of the solution is coming from Schauder estimates, as the coeffi-
cients are now in C%° (as u is in C1¥). O

3.3. Example: Existence of solution to minimal surface equation. The area of

graph of u over U C R" is
A, (U) :/ V1+|Vul2dx.
U

For any compactly supported variation ¢ € C5°(U) we have the first variation formula

d
0 :E|t=0Au+t¢(U)

d
— %\/14— |Vu + tVo|2dx|i—o
U

1
— 2(Vu +tVo, Voydx|,—
/112\/1+|Vu+tv¢|2 ( ¢ V)i

Vu
—/UWTW’WW

. Vu
=— /wa (——1 n |Vu|2> odx

So the Euler-Lagrange equation of the area functional is the minimal surface equation:

) Vu B
(3.10) div (W) =0

To apply the Leray-Schauder estimate above, we need to prove a priori gradient estimates.

Lemma 3.10. Let U C R” be a mean conver bounded smooth domain and ¢ € C=(U).
Then any solution to the boundary value minimal surface equation:

(3.11) div (L> =0 nU
Ve T
u=¢ on U,
satisfies the gradient estimate
IVullcosy < M,
for some M >0 and B € (0,1).
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The proof of this Holder bounds of gradient will use De Goirgi - Nash - Moser theory,
which is the material of next lecture.
As a application of Theorem [3.9] and Lemma [3.10, we have

Theorem 3.11. Let U C R™ and ¢ satisfy the same conditions as in Lemma[3.10. There
exists a unique smooth solution to (3.11]).

Remark 3.12. One gets C%° regularity by Leray-Schauder, then the higher regularity
follows from Schauder estimates from Lecture 2.

Remark 3.13. This is actually a minimising solution (i.e. the surface with least area with
that prescribed boundary). In general, minimising hypersurfaces with prescribe boundary
are only smooth up to dimension 8 (and in higher dimension may have singular set of
codimension 8). However, when they are graphical, we know that they are actually smooth
in all dimensions.

3.4. Variational method. Another approach to the existence of minimal surface is through

a variational method. Let u; be a minimizing sequence of the area functional so that

A (U) = inf AL 0).

ueC(U),uloy=¢

In order to get a subsequence converging to a limit, we need some estimates and compact-
ness in function space.
Since the minimising sequence have uniformly bounded area, we have

/ |Vuk| < / v 1+ |Vuk|2 < A.
U U

And by Poincare inequality and that u;, — ® = 0 on OU (where V¥ is an extension of ¢ to

the interior of U), we get
[ =< [ 9] < 4
U U

/ lur| < C(Ao, ¢).
U

Thus the sequence is uniformly bounded in W1(U). Sobolev inequality gives that W1
LT compactly. So the existence of a solution in L? for p < "= follows by taking a sub-
sequential limit

and so

Uk, — Up.
For higher regularity, we need to Apply De Goirgi Nash - Moser theory from next
lecture and Schauder theory from the last lecture.
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4. DE GIORGI NASH-MOSER THEORY

The De Giorgi-Nash-Moser theory in elliptic PDE is providing the initial L> and C'%
regularity, before higher regularity theory like Schauder theory applies. We will present
here the Moser’s approach for getting the local boundedness (which is iteration on the
exponents of L? norms, while De Giorgi’s approach is iteration on the super-level sets).

4.1. Initial L*° bound and Moser iteration. Let
Lu = 9;(a” (z)0;u) + c(z)u
be an elliptic operator of divergence form and U C R™ a bounded open domain as before.
Suppose the coefficients satisfies
la” | 2wy, lellzawy < Lo
and
(4.1) AP < a6 < AEL A A > 0.

Our first theorem is the local boundedness of u, which only requires LP boundedness of the
coefficients and inhomogeneous term.

We will present a simplified case with ¢ = 0 for the homogeneous equation, the general
case follows by exactly the same argument with more technicality involved in absorbing
the extra terms.

Theorem 4.1 (LP — L™ estimate). Suppose u € H'(By) is a subsolution, i.e.

(1.2 [ @iDube <o, Ve m(B).020.
By
Then for any 6 € (0,1), we have in the smaller ball By that
+
sup u+ S C Hu HLp(B;l) 7

for some positive constant C = C'(n.\, A, p,q).
Proof. For k > 0 to be determined and m € N, we define
u=u"+k,

and

Then one observes

and
Uy, = Constant, Du,, =0, when u <0 or u > m.
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We choose the following non-netative test function
0 < ¢=(apu— k™) e Hy(By),

for some 8> 0,¢ € CY(By).
We compute

D¢ =2¢D¢(alu — k) + ¢2Bul Dy + ¢*al, Du
=2¢D¢(ala — kP + ¢*aP (BDa,, + Du),
where we used that ,, = @ when Du,, # 0. Plugging into the equation (4.2)) we get

By

Bin{u>0}

/ a” Dyu - 2¢D¢(ul a — k) 4 a¥ Dyu - ¢2aP (3D, + D)
Bin{u>0}

> / _A|Da| - 2¢[DC| - @ + ABC2| Dit 2. + A2 D’
Bin{u>0}
1y oyoog  LA? 2-8 -2 2\ - (28 2/ (228
> [—=A*|Dul*u,, — =— - 4| D¢| uy, u”] + ABC| Dy, | “wy, + A7 | Dul*ul,
Bin{u>0} 2 2 A
(Here we used Cauchy-Schwarz for the first term in the previous line)
A? 1
:/ —2— - |D¢*al u® + ABC?| Dy, [P0l + N Dal*ul.
Bin{u>0} A 2
Thus
(44) 8| ClDun*ay, + [ ClDulu, < C [ |D¢|*a,a,

B1 By B1

for some C' = C(f, A, \).

(Notice that if ¢ # 0 or there is an inhomogeneous term for the equation, then the
LHS of is not zero and one needs a few more steps in the absorption of terms.)

We see the RHS is “roughly” an L? norm of the function

_g_
W = Upn,

whose L? norm of derivative is “roughly” bounded by the LHS of (4.4)) as follows
g8

B_ B
[Dwp =[5 uh YAV, + 1A V)
B B
:|§ufnvum + a2 Vil?
<(1+ B)(B|Dan|*ay, + | Dul*ay,).
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Namely (4.4) reads

[Dwl¢* < (1+8) | [D¢Pw?,
B]_ Bl

By Sobolev inequality applied to the compactly supported (w, we get

(] [Cw7=2]5 <[ |D(Cw))? < / IDw*¢+ | |D¢Pw?z <[(2+48) | |D¢fPw?)z.
B By B

B1 Bl
Now we choose the cut-off function ¢ € C3(B;) so that for 0 < r < R < 1 there holds
(=1, inB,
0<(¢<1, inBpg
2
D(| < .
(< 2

Noticing 4, < u and ( =1 in B,, we obtain

n_ B+2 2n_
[/ T =[/ e )
T i

B8 n . n—
<([ (@hoy@)

g[/ wiz)
B,

20 n-2
<([ Igw|=2)%
By
<(z+5) [ ID¢Puty
By
V2
Sﬂ[/ w?]
(R=r) Jp,
(R—7) /g,
By letting m — oo, we can replace u,, by « and so

i 2(p—1),1,, _
@l Loxpy) < [W]PHUHLPBR,

N|=

where p=+2,x = 15

n
n—2"
Here px > 7 so we get an improvement from LP to LPX, as px > p. After iterating ¢

times with )
pi:2xi—>oo,ri:9—|—§(1—(9)—>6’, i €N,

we get

4 2(pi — D}

L
||/a||Lp'L(Brl) S[ (1 _ 9)2 Pi ||u||Lp7‘_1(’r‘l_1)
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1
i i - i 1 P
Sl_[kzl [4 ) 2(pl - 1)] i Hk:l |i(1 _ 9)2:| ’ Hu”L2(31)‘

Taking the limit we get

_ 1 _
@] Loo(By) < C - m”UHm(BI)

U

4.2. Harnack inequality and Holder regularity. As a consequence of Theorem [4.1]
we also have Inf bound for non-negative super solutions.

Theorem 4.2. Suppose u € H'(By) is a non-negative supersolution, i.e.
(45) | a"Dubje=0. voe Hy(B). 620
By

Then for any 6 € (0,1),p < -2, we have in the smaller ball By that

n—2’

infu > Cllul|r(s)),
By

for some positive constant C' = C(n.\, A, p, q).

Idea of Proof: Apply Theorem [4.1/to u=" (so that a super-solution becomes a subsolution).
The detail is left as an exercise. U

So combining Theorem [.T]and Theorem 4.2, we have the Harnack inequality for actual
non-negative solutions.

Theorem 4.3 (Moser-Harnack Inequality). Suppose u € H*(Bg) is a non-negative weak
solution, 1i.e.

(4.6 | a@iDubjo=0. ¥6e HiBr).o 20
Br

We have
supu < C'inf u,

By B
for some uniform constant C = C(n, A, \).

The Moser-Harnack inequality will then give us oscillation decay when the radius of
balls shrinks, providing Holder regularity (by standard iteration argument of Campanato).

Theorem 4.4 (Holder continuity of weak solutions). If u € H'(U) is a weak solution to
Lu = 0 in a bounded open domain U C R™, then for any Br(x¢) € 2 we have the following:

o for all r < R we have
r (0%
0SCB, (z)t < C <E> 0SCB(z0) Uy

for some a = p(n, A\, A) € (0,1) and C = C(n,\,A) > 0. Here

0SCp,U = SUp U — igfu.
B, P
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e u is Holder in a smaller ball, with the estimate
R“ [U]CO’O‘(BR/4(:BO)) < C||u||Loo(BR).

Proof. First we prove the oscillation decay. Let

M = supu, m := inf u, w:=M—m.
Bgr Br

Define
vi=u—m >0, w:=M-—u>0 in Bp.
Since the operator is linear and Lu = 0, we have Lv = Lw = 0.
By Moser’s Harnack inequality, there exists C'y > 1 such that

sup v < Cg inf v, sup w < Cg inf w.
Br/2 Bry2 Bry2 Bry2

Set

A = sup u, B := inf u.
Br2 Bry2

Applying Harnack to v = u — m gives
A—m < Cgx(B—m),
and applying it to w = M — u gives
M — B < Cy(M — A).
Adding the above 2 bounds we get
(A—=m)+ (M —B) <Cy[(B—m)+ (M- A)].

Using
(A=m)+ (M —-B)=w+ (A—-B), (B—m)+ (M —-A)=w-—(A-DB),
we obtain
w+ (A—B) <Cy(w—(A-DB)).

Rearranging,

(C+1)(A = B) < (Cu — 1),
hence o )

-
oscBR/2u:A—B§ CH+1W'
—1
Setting o = gH | € (0,1) completes the proof of first part on oscillation decay.
H

From the oscillation decay theorem, there exists o € (0, 1) such that
0SCBy , U < 0 oscgy U.
Iterating this estimate, we obtain for all £ € N,

k
(1) OSCB,, ), U < 0" oscpy, U.

25
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Choose a > 0 such that

o log o
c=2"% lie. a=-— .
log 2
Let 0 < p < R and choose k € N satisfying
R < R
o1 P =95

Then, by monotonicity of oscillation in the radius,
0scp, U < OSCBR/Qk u < ok 0SCp, U = g—ak 0SCp, U.
Since p < R/2*, we have 2% < p/R, and hence
0SCp, U < (%)a 0SCp, U.
Finally, for any x,y € Bg/s, setting p = |z — y| yields
u(z) — u(y)| < oscp, u < Clo —y|*,
which proves u € C2%(9Q).

5. REGULARITY THEORY OF HARMONIC MAPS

Let u: Q C R" — (N, h) be a map into a compact Riemannian manifold N (isometri-
cally embedded in R¥). The Dirichlet energy is

E(u; Q) = %/Q]VUP dx,

and its critical points under compactly supported variations are the harmonic maps. In
extrinsic form (with N — R*), the Euler-Lagrange equation becomes
Au = A(u)(Vu, Vu),

where A is the second fundamental form of N C RF.
Let u: Q2 C R® — N be a smooth harmonic map, and set

e = |Vul?.
Then the Bochner identity for harmonic maps gives
(5.1) Ae = 2|V?u|* — 2(RY (Vu, Vu)Vu, Vu),

where R denotes the Riemann curvature tensor of the target manifold N.
Since N is compact, its curvature is bounded, and hence

(5.2) —Ae<Cé? in Q,

for a constant C' > 0 depending only on the geometry of N. The inequality (5.2)) is
understood in the weak (distributional) sense for u € W2,
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5.1. Epsilon-regularity.

Theorem 5.1 (Epsilon-regularity in dimension 2). There exists g > 0 such that the
following holds. If u: By C R? — N is a weak harmonic map satisfying

/ |V'LL‘2 < €o,
By

1/2
||VuHLoo(Bl/2) S C (/B; ]Vu|2) 7

where C' depends only on the geometry of N. In particular, u € C*°(B3).

then

Proof. We want to apply Moser iteration to (/5.1])
Fix 0 < p < R <1, and let n € C°(Bg) satisfy
2
R—p
For p > 1, multiply by n%eP~! and integrate by parts, we get

/Aen26p_1 S/Cn2e”+1
/2nep_1(Ve, V) +/(p— Dn?eP—2|Vel? §/C772ep+1
—2 [ 1VellValner + (o= per2ivep < [ oper

2 -1
- [ SEivape - [P vep v [ v vep < [ opert
p_

n=1on B, 0<n<l, V| <

Namely

(5.3) /]V(nep/2)|2 < C/|V77|2€p+0/772€p+1.

By Sobolev embedding W2 — L compactly for ¢ = 2% we have

lell g 2t ) < Calelloris.

In dimension n = 2, this directly implies L? bound of u for any ¢ > 1

In dimension n > 3, by choosing ¢ < W we get an improvement as
p 2n—9
5 . n_9 >p+ 1.

Moser iteration then implies L bound of e by LP™! bound of e. (Although the energy
bound only implies L! norm of e, so we don’t a priori have LP*! bound of u to get L™ by
the Dirichlet energy.)

OJ
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This can be generalized to the case of minimizing harmonic maps in higher dimensions.

Theorem 5.2 (Schoen-Uhlenbeck e-regularity). Let n > 3 and let N be a compact Rie-
mannian manifold. There exist constants €9 > 0 and C' > 0, depending only on n and the
geometry of N, such that the following holds.

If u € WY2(B,(z0), N) is an energy-minimizing harmonic map and

(5.4) r2n / |Vul? < e,
By (o)
then w is smooth in B, s(xo) and satisfies the estimate
1/2
(5.5) sup |Vu| <Cr™t <7"2_”/ |Vu|2) :
Br/Q(xO) Br(mo)

5.2. Estimate on the size of singular set and partial regularity. Using the epsilon
regularity result, we say that the energy minimizing harmonic maps are regular away from
a measure 0 set. Indeed, one can estimate the Hausdorff dimension of the singular set.

Theorem 5.3 (Schoen—Uhlenbeck partial regularity). Let n > 3 and let N be a compact
Riemannian manifold. Suppose that

u € WH(Q, N)
s an energy-minimizing harmonic map. Then there exists a closed set
xcCQ

such that
(1) u e O=(Q\ %);
(2) the singular set X2 has Hausdorff dimension at most n — 2, i.e.
dimy (X)) <n — 2.

Proof. An important tool we use is the notion of energy density and the monotonicity
formula.
For z € Q and r > 0 with B,(z) C 2, define the scaled energy

O(xz,r) = 7“2”/ |Vul?,
Br(x)

Since u is an energy-minimizing (hence stationary) harmonic map, the monotonicity for-
mula implies that 6(z,r) is nondecreasing in r. Therefore the limit

0(x,07) :=limf(x,r)
10
exists for every x € 2.
Let €g > 0 be the constant from the e-regularity theorem and define the singular set

Yi={zeQ:6(z,0") >¢e}.
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By the e-regularity theorem, u is smooth in B, /2(z¢). Hence
u€ C™®(Q\X).
It is not hard to see that the regular set is open and the singular set is closed.

Now fix a compact set Q' € Q. For each x € XN, by definition of ¥ and monotonicity,
there exists 7, > 0 such that Bj, () C 2 and

(5.6) / |Vul? > gor 2.
B’FJ: (x)

The family {B,, () }zesnq is a covering of XN Y. By the Vitali covering lemma, there
exists a countable subcollection {B,,(z;)} such that

(1) the balls B,,(z;) are pairwise disjoint,
(2)
XN Q/ C U B57’¢ (]IZ)

So by (5.6 and the disjointness of the balls,

eozri"” < Z/ o IVul? = /U_B o Vul? < /Q IVul? < o.
1
Zri”_2 < —/ [Vul?.
p €0 Ja

Using the covering by Bs,,(z;) and the definition of Hausdorff measure, we conclude

H'2(E2NQ) < Cn) 2(57}-)”_2 < @/ |Vul? < oco.
Q

€0

Therefore

Since Q' € Q was arbitrary, it follows that H"%(X) is locally finite in €, and hence
dimy(X) <n—2.
U
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