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EXECUTIVE SUMMARY

The Australian Centre for Robotics (ACFR) at the 
University of Sydney has composed this white 
paper investigating how Artificial Intelligence (AI) 
and Robotics can enhance Australian composite 
manufacturing, with a focus on a bespoke, agile 
and responsive production style that this white 
paper refers to as flexible manufacturing.

This white paper is the product of many surveys and facility 
inspections conducted by the ACFR of Australian Composite 
Manufacturing Cooperative Research Centre (ACM CRC) 
industry partners, with contributions and expertise from every 
partner involved. 

In total, 12 manufacturing facilities were visited, reflecting the 
entire spectrum of size and complexity, from startups to large 
scale operations.

Standardised survey questions and in-person observations 
of process bottlenecks were used to benchmark against 
the current leading scientific understanding of robotics 
and automation to determine if an autonomous solution is 
technically feasible, and if not, what are the scientific barriers 
preventing one.

Through this investigation, the most consistent and important 
observation to emerge is that composite manufacturing in 
Australia is characterised by a bespoke style of production, 
often with smaller volumes but higher complexity and 
customisation. Therefore, it is the authors belief that 
conventional automation systems employed by large-scale 
composite manufacturers in Europe, Asia and America are not 
suitable for the Australian sector, as they are not designed for 
our dynamic production style. 

ACFR investigators perceive this agile and responsive style of 
flexible manufacturing as a national strength, and proposes 
AI and robotic solutions to enhance the efficiency and 
flexibility of existing composite manufacturing techniques. 

These proposals are rooted in the real-world discoveries made 
during surveys, visits and case studies of partner companies, 
as well as the state-of-the-art developments in the most recent 
robotic research. 

In this white paper, the ACFR has identified and outlined four 
main domains and many small research directions where 
cutting-edge robotic techniques can contribute to improving 
flexible manufacturing in the Australian composite industry. 

These range from providing a better macroscopic overview 
of the production line to enabling intelligent and autonomous 
automation of each manufacturing step. The proposed 
solutions can benefit both individual partners as well as the 
overall industry in a precompetitive manner. 

It is the opinion of this study that building upon the highly 
skilled and agile nature of our region’s manufacturers, 
combined with recent scientific innovations that enable 
more dynamic robotics and intelligent systems, and due 
to a clear gap in commercially available systems servicing 
our sector, there is a unique opportunity to simultaneously 
rebuild Australia’s manufacturing sector using these novel 
systems and create an entire new class of robotic systems and 
industries here in the process. 
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In recent years, there has been renewed focus on rebuilding 
Australia’s manufacturing output. This can be seen through 
a variety of both state and federal initiatives, such as the 
recently completed $260M Advanced Manufacturing 
Readiness Facility (AMRF) in NSW, and the National 
Reconstruction Fund (NRF) and Future Made in Australia 
federal initiatives. 

It is universally acknowledged that robotics and automation 
technologies will be central to achieving this goal as these 
technologies are listed as critical enabling technologies in 
several of these government strategies and policies. The 2024 
National Defence Strategy and 2024 Integrated Investment 
Program, the National Reconstruction Fund, the National 
Science Priorities and National Robotics Strategy, are just 
some of the core government policy documents that outline 
robotics and automation as key enabling technologies.

However, to successfully target research and development 
investment of these technologies for Australian industries, 
we first need to contextualise these opportunities against our 
international peers, and the types of robotics and automation 
these regions adopt to support their respective manufacturing 
sectors. 

Understanding what Australian industry does differently 
will allow us to design investment strategies for robotics 
innovation that will maximise productivity growth and return 
on investment for the taxpayer. To the best of our knowledge, 
such analysis does not exist, and this report is the first step in 
a longer-term effort to change that.

 

INTRODUCTION

Figure 11 Global Manufacturing Value Added by Industry, by Country/Region (2020) as reported by NIST AMS 600-16 [1].
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Chinese Context

In 2024, China’s manufacturing value-added reached USD 
$4.67 trillion [2], which was 29 percent of the global total, and 
more than the next four largest manufacturing economies 
combined (the United States, Japan, Germany, and India). 
China’s manufacturing output has evolved considerably over 
the past two decades from low value add to increasingly 
higher value products such as electrical goods which now 
represent the single largest manufacturing sector within China 
[3]. Despite this transition, Chinese manufacturing continues to 
be predominantly large batch production and high minimum 
order quantity (MOQ). Over 80% of Chinese manufacturing 
falls into this category. 

As with most markets, composites parts are increasingly 
integrating as Original Equipment Manufacturers (OEMs) to 
these sectors [4]. In 2023 the Chinese composite market 
was valued at $15.3 billion with projections to grow to $21 
billion by 2030 with a compound annual growth rate (CAGR) 
of 5% from 2024 to 2030 [5]. Unsurprisingly, growth in 
composites market is being largely driven by mass production 
manufacturers, namely the automative and transport industry 
but also aerospace, defence, marine, renewable energy and 
electronics. 

It is important to note that these industries are typified by 
the production of repeat parts and therefore, automation 
and robotics technology deployed in these operations are 
deployed to perform repeat tasks in a controlled environment. 
The intelligence and versatility of the robot is less important 
than its ability to reliably perform a single task repeatedly. 

European Context

In 2022, manufacturing contributed €9.8 trillion to the 
European economy, approximately one-quarter of the 
European economy [6].  If we look closer at the sectoral break 
down of European manufacturing, we see that well over 60% 
of operators are focused on large batch, high throughput 
or assembly line styles of production including; machinery 
and equipment, food, motor vehicles and trucking, chemical 
products, to name a few.  

This is supported by data indicating 66.0% of value-added 
manufacturing being generated by large enterprises (more 
than 250 employees). These firms are responsible for 48.3% 
of manufacturing employment in Europe, jumping to 70% 
when including medium enterprises (50-250 employees). 
Much like in China, these industries are typified by high 
levels of automation performing repeat tasks in controlled 
environments. 

Furthermore, the European composite manufacturing sector 
which was valued at USD $19.35 billion in 2022 and is 
expected to grow at a CAGR of 6.3% through to 2030, is also 
largely aligned supplying composite parts to these major 
manufacturers in wind energy, automotive, transportation, 
aerospace, and defence [7]. 

This indicates that composite manufacturing is largely focused 
on producing repeat parts to supply these industries. Robotic 
systems used in this sector will largely be articulating systems 
performing repeat tasks. While there is sparse information 
on the breakdown of robotic system by industry, robotics 
installations in the automotive industry appear to have the 
strongest utilisation. Germany being the largest user of 
industrial robotics for this reason [8].

United States context

The United States is the second largest manufacturing nation 
after China. In 2024, manufacturing value-added output 
was estimated to be USD $2.925 trillion, roughly 10% of US 
GDP [9]. If we break this down by subsectors, it is clear US 
manufacturing is being driven by large scale production within 
a few major categories like chemical production, electronics, 
automative and transport, machinery, food and beverage, 
material products, to name a few. 

This is reflected in the employment data. Despite 93% of 
US manufacturing firms considered to be small (less than 
100 employees), 59.0% of all employees in the sector work 
for large firms with 500 or more employees, just 1.6% of US 
manufacturers [9]. As with both Europe and China, these are 
all sectors where robotics and automation technologies have 
been well established for several decades.

 As it relates to the US composite sector, we also see the same 
trend, that these sectors are driving demand for composites. 
In 2023 the U.S. composites market was estimated to be 
USD 15.58 billion with a CAGR of 5.3% from 2024 to 2030. 
This growth is largely being driven by the automotive and 
transportation industry’s need for lightweight components [10].

Australian context and this white 
paper

While data and analysis on the three primary manufacturing 
regions is imperfect and measured differently between 
sources, a picture does emerge that is useful for Australian 
manufacturers and policy makers. 

Notably, these markets are dominated by a smaller number 
of major, high throughput producers responsible for between 
60-80% of the region’s manufacturing value added, and 
50-70% of manufacturing jobs. In the absence of a more 
comprehensive comparative analysis, assumptions can be 
drawn that these sectors are highly automated to perform 
high volume repeat tasks, and consequently, as the largest 
employers in their respective regions, their workforce is 
predominantly trained in this high throughput repetitive style 
of manufacturing. 

It also paints a picture of the “type” of robotics and automation 
deployed in these regions, that being articulating arms, closed 
system processing of materials and chemicals, automating 
production and processing lines. While innovation in these 
systems is always occurring, we have been using versions of 
this technology for several decades now.

All of this is very important context as it relates to the 
Australian manufacturing sector where figures present an 
almost completely opposite picture. In Australia, manufacturing 
accounts for $105B value added, considerably less than 
these international markets as a proportion of the national 
productivity at just 5.5% [11]. 

A sectoral breakdown shows that many industries comparable 
to other markets (eg, chemical production, electronics, 
automative, transport, and machinery) have been in sharp 
decline for decades [11]. This is reflected in the employment 
distribution where 91.9% of manufacturing jobs are at 
firms with 19 or less employees, 7.5% at firms with 20-199 
employees, and just 0.6.% at firms with over 200 [11]. 

INTRODUCTION
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The number of employees at firms comparable to large US 
industries (greater than 500) is likely incredibly small. This 
comparison is stark, as 59% of US manufacturers are employed 
by these large firms, and therefore the skills and experience of 
Australian manufacturers are likely very different as a result [11]. 

Consistent with international markets however, is the growth 
of the Australian composite manufacturing sector which 
has demonstrated consisting strong CAGR of 9.70%, almost 
double the rate of our international peers [12]. Composite 
manufacturing in Australia is one of only a handful of 
manufacturing sectors that are growing against the general 
downward trend experienced in other segments with a market 
size estimated to be USD $2.4B in 2024 and projected to 
double to ~$5.6B USD over the next decade [12]. 

While composite manufacturing in the aforementioned 
international markets is dominated by large, vertically 
integrated OEMs, the Australian composite manufacturing 
sector is comprised largely of SMEs, typically born out of 
domestic material engineering research and innovation [13]. 
This is a valuable insight, as the operational requirement of 
Australian composite SMEs will strongly align with the broader 
Australian manufacturing community.

It is reasonable to assume given the dominance of small 
manufacturers in Australia that robotics and automation are 
less common in workflows. Investment cost is likely one 
factor, but perhaps more accurately it is the limitations of 

commercially available industrial robotics that focus on high 
throughput, repetitive tasks, not an agile and constantly 
changing operation. 

For a small firm to remain commercially viable it must either 
have a large and reliable customer, or a variety of smaller ones. 
Given the absence of large firms in Australia, the latter is most 
likely the scenario, and by extension, the workforce in these 
smaller firms must be highly skilled and dynamic to meet the 
needs of their heterogenous customer base.

Throughout this study we visited a variety of composite 
manufacturing facilities. This is exactly what we observed.

INTRODUCTION
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AUSTRALIAN COMPOSITE MANUFACTURING

Through our collaborations with the ACM CRC, 
ACM CRC members and industrial partners, we 
have identified specific pain points in current 
composite manufacturing workflows where 
targeted research in robotics and automation can 
drive high-impact improvements. 

The ACM CRC represents a broad distribution of composite 
manufacturers and manufacturing techniques (for more 
information on ACM CRC industry partners please refer to 
the ACM CRC website). For this white paper we visited 12 
manufacturing facilities observing processes and technologies, 
combined with surveys of key staff. Importantly, two industry 
peak bodies were either involved or engaged in this process 
enabling the study team to validate findings of the sample 
group with the broader experience of the sector.

Most composite manufacturers in Australia and New Zealand 
(ANZ) are characterised by unique and bespoke jobs where 
product designs and production lines change on a regularly 
basis [14, 15], e.g. monthly and even weekly, based on the 
requirements of the clients. 

This is largely due to a confluence of macro-economic forces 
local industries have no control over, such as the market size 
of a smaller population, proximity to global markets, a higher 
paid and skilled workforce, to name a few. Consequently, ANZ 
manufacturers need to be agile and responsive to a diverse 
range of customer needs, making conventional repetitive 
automation solutions for large-scale production lines less 
relevant to their workflows. 

The absence of large-scale production line manufacturers 
is often framed in the media as a negative, evidence of 
Australia’s declining manufacturing capability. This is a gross 
mischaracterisation, and in fact being agile and bespoke in 
manufacturing and production typical of our region requires, 
and has produced, a highly competent and highly skilled 
workforce capable of meeting constantly changing production 
demands. We refer to production techniques with such 
characteristics as flexible manufacturing.

It is the opinion of this white paper that being agile and flexible 
is a unique strength; and rather than focussing on why there 
are so few large-scale production line operators in ANZ, we 
should instead be leaning into our flexibility and agility as our 
advantage and characteristic, and ensure we are the world 
leaders at flexible manufacturing. In order to achieve this, 
there is a clear need for manufacturing technology, systems and 
processes that can easily and efficiently adapt to changes in 
jobs and conditions. 

With flexible manufacturing, we aim to reduce as much 
unnecessary cost of labour, time, energy and money as possible 
in design, fabrication, inspection as well as decision making 
in the overall production line, which is a desired outcome 
expressed by ANZ manufacturers whom we have visited in our 
surveys. Furthermore, it is clear from our engagement with local 
manufacturers that this is a clear gap in the technology offering, 
as technology developers focus predominantly on larger scale 
operations. This affords an opportunity to not only bolster 

and grow our flexible manufacturing sector, but in doing so 
develop a new class of technology producers in the process.

This white paper will focus on the Robotics and Artificial 
Intelligence (AI) technologies with the potential to enhance 
flexible manufacturing and introduce intelligence into 
production processes. We will discuss both existing 
technologies as well as the scientific barriers that must be 
addressed to overcome limitations in the current state of the art. 
Further to this, we will also outline a series of research projects 
targeting low hang fruit through to high value multi-stakeholder 
initiatives required to develop flexible manufacturing 
technologies and project the benefit of such investments to the 
sector as a collective. 

In this white paper, we categorise opportunities of flexible 
manufacturing into four general domains, namely: 

•	 Process Digital Twin and Optimisation, 
•	 Robotics and Automation, 
•	 Design Optimisation and Automation, and 
•	 Quality Assurance (QA) and Inspection. 

We will discuss challenges that the current composite industry 
in ANZ faces and how AI and robotic technologies can help 
address them. 

For each domain we propose tangible solutions, and discuss 
and rate the proposed solutions from the angles of theoretical 
research and industrial deployment in the context of the four 
specified measures. 

The corresponding values will be presented in a table format 
(see next page for the measures and format), accompanied by 
specific comments for clarity.
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AUSTRALIAN COMPOSITE MANUFACTURING

RESEARCH RECOMMENDATIONS
FOUR SPECIFIED MEASURES:
 

Theoretical understanding difficulty 
reflects the conceptual and mathematical 
complexity of the underlying theory. This 
will be rated on a scale from 1 to 5: 

LOW (1-2): Well-established and accessible foundations.

MEDIUM (3): Requires specialist knowledge with moderate 
complexity.

HIGH (4-5): Involves novel or ambiguous theory and advanced 
models (e.g., nonlinear PDEs, probabilistic 
reasoning).

Experimental difficulty and cost identify 
practical challenges and financial burden 
associated with building prototypes, 
acquiring hardware, collecting data, etc. 
This will be rated on a scale from 1 to 5:

LOW (1-2): Simulations or standard lab setups, 

MEDIUM (3): Custom experimental setups or moderately priced 
hardware, 

HIGH (4-5): Expensive equipment and/or data collection, 
custom fabrication, safety constraints.

Deployment difficulty in real world 
scenario evaluates how challenging it is 
to adapt, integrate and use the systems 
outside controlled lab environments:

LOW (1-2): Easily deployable with existing infrastructure,

MEDIUM (3): Require moderate adaptation, engineering effort, 
and dedicated infrastructure, 

HIGH (4-5): Demands significant customization, complex 
engineering integration, and the development of 
specialized infrastructure.

Value of a successful system refers to the 
impact/return if the system performs reliably 
in practice:

LOW (1-2): Marginal gains or targeted to a niche application,

MEDIUM (3): Delivers significant benefits within a specific 
domain, 

HIGH (4-5): Transformative impact, strong commercial potential, 
or substantial contributions to operational safety.

1

2

3

4
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1.1  Manufacturing process modelling and optimisation

Many manufacturers in ANZ have already been employing 
management software to digitise and manage their production 
line, e.g. STRUMIS and Tekla for steel (metal composite) 
fabrication. However, during our survey visits, they have also 
voiced limitations in such software not providing the exact 
functionalities they desire, for example, being unable to adjust 
the production plan when unforeseen incidents occur. 

In the field of robotics, Digital Twins are emerging as a 
powerful tool to model the factory floor with the intention of 
optimising the production process. Virtually representing the 
factory floor [16] and monitoring the physical production line 
using Internet of Things (IoT) techniques [17] enables real-time 
analysis of the manufacturing process and improves decision-
making in the production planning and optimisation [18, 19]. 

To systematically find the optimal strategy for a workflow, 
the robotics community employs techniques such as Linear 
Programming (LP), Mixed Integer Linear Programming (MILP) 
and Mixed Integer Nonlinear Programming (MINLP) across a 
wide range of different industries [20, 21, 22, 23]. 

By modelling each manufacturing step, their requirements and 
objectives using linear relationships, the overall production 
line can be optimised mathematically. This problem has been 
studied by roboticists over many decades [24, 25]. 

We therefore propose working with partners to create Digital 
Twins of their factory floors. These Digital Twins will capture 
the physical and logistical relationships of each manufacturing 
step, allowing us to model production lines and optimise them 
using LP/MINLP techniques.

These models will then enable the autonomous optimisation 
of manufacturing processes and workflows. Instead of 
replacing human involvement completely, we intend for 
such an algorithm to be a tool used by engineers to speed 
up the process of optimising the workflow and responding 
to incidents, to alleviate the burden on the few experienced 
human experts in each company responsible for such 
optimisation. 

Based on discussions with industry 
representatives, this section explores approaches 
to enhance manufacturing processes and 
optimize factory floor logistics. It emphasizes 
the use of Digital Twin technologies for 
monitoring and modelling production lines, 
enabling and automating intelligent decision-
making. Optimising the logistical aspects of the 
manufacturing production is the most common 
desire voiced by the industry partners that we 
have discussed with. 

The optimisation of production lines will allow our industry 
partners to more efficiently utilise labour and high value 
hardware, to increase productivity while decreasing costs, 
and to more intelligently incorporate and leverage emerging 
robotic and automation technologies (such as those 
discussed in Section 2, 3 and 4). 

Automating these optimisation processes also ensures 
operations can be highly responsive to sudden changes or 
unexpected work stoppages, drastically reducing the labour 
and productivity costs of downtime, and Digital Twin is 
instrumental in providing real-time insights, predictive analytics, 
and scenario testing to proactively mitigate disruptions and 
enhance overall efficiency. 

During our engagement with partners for this white paper, it 
soon became apparent the considerable human resources 
employed specifically to minimise this problem. Many facilities 
have employees dedicated to monitoring the factory floor and 
machine utilisation rates, as well as experienced engineers 
designing manufacturing and fabrication workflows and 

adapting them upon any interruptions such as machine break-
down or material delivery delay. 

There are a lot of time and labour resources spent solely on 
these logistics, and we believe this is a domain where robotic 
technologies can greatly assist the human labours and improve 
the intelligence in the production process. 

It is the opinion of the authors that this is perhaps the biggest 
opportunity for flexible manufacturers in our region, and for 
several reasons. 

Firstly, current commercially available systems are not 
designed to address this problem for manufacturers that need 
a high degree of flexibility, as is typical of our region. 

Second, process modelling and optimisation as well as Digital 
Twin technologies are relatively well understood problems in 
the robotics research community (e.g. robot path planning, 
perception and 3D scene reconstruction, etc.), indicating that 
projects in this space are highly likely to produce immediate 
positive outcomes for partners. 

Third, our observations indicate this problem is not only 
resource intensive for partners, but is a ubiquitous issue in the 
sector, meaning that this is a shared issue that partners can 
collaborate on solving where the return on investment will 
benefit all considerably. 

Fourth, better optimisation systems of this nature and Digital 
Twins of the factory floors can form the foundation for the 
development of bespoke robotic systems and innovations 
(Section 2) customised to the needs of individual partners. 
Meaning, it would be expected that all future robotics systems 
deployed to support enhanced productivity in an operation 
would “plug-in” to this foundational system to ensure continued 
operational efficiency improvements.

1. PROCESS DIGITAL TWIN AND OPTIMISATION
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PROCESS DIGITAL TWIN AND OPTIMISATION

Figure 2 An AI-powered Digital Twin example for a factory floor and the planning of movements on it (video demo) [26].

Figure 3 An example of a Digital Twin Cyber-Physical Production System (DT-CPPS) and how it models a smart factory floor created by Ding et. al. [19].
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1.1 RESEARCH RECOMMENDATIONS 

A research project on methodologies for developing a Digital Twin for a factory floor or production line, 
coupled with logistics optimization using LP, MILP, and MINLP, can focus on algorithmic design and adaptability. 
This study would explore how mathematical models can be refined and updated to accommodate varying 
constraints and dynamic behaviours along the production line, leveraging an industry-provided mock factory 
floor model as a reference framework.

Theoretical 
understanding difficulty

3 An established field of research, however will require 
adaptation to context.

Experimental difficulty 
and cost

3 Low-cost simulation-focused experiments in the 
development stage. 

Deployment difficulty in 
real world scenario

4 Deployment in real-world scenarios will require 
significant input from partners and adaptation. 

Value of a successful 
system

5 Common desire shared by many partners, and will 
immediately provide the benefit of reducing cost.

RESEARCH SOLUTIONS

Such a project can take three years for a PhD student, or two years for a Postdoctoral researcher. To 
tailor such a system for any particular partner, the project will additionally involve a technical engineer 
to gather the specific needs for the partner, and to bridge between the theoretical research and the 
software deployment.

COMMENTSRATING 
OUT OF 5

MEASURE

PROCESS DIGITAL TWIN AND OPTIMISATION

1

2

3

4

1.2 Productivity management of machineries and operators

In order to achieve the most realistic model of the production 
line, it is essential to carefully monitor the utilisation of each 
machinery on the factory floor so as to accurately model them 
in the Digital Twin. Additionally, human action and activity 
recognition is a well-established topic in robotics and AI and 
integrating these techniques can enhance the Digital Twin 
of the factory floor by accurately modelling human factors 
for productivity management while also improving workplace 
safety and preventing hazardous situations. 

Partners we have visited in our survey have all expressed 
interest in monitoring the utilisation rate/efficiency of their 
machineries, especially their newly invested automation robots, 
as well as in understanding human operator productivity. 

Many of our visited partners rely on operators logging onto 
and off each machine, such as via scanning custom QR codes, 
to digitally record the utilisation of each machine. To better 
monitor machine utilisation, some partners are leveraging IoT 
devices, such as FourJaw’s energy monitoring suite (video 
introduction to FourJaw) [27], to track and log the productivity 
of machines. 

Visual sensors, e.g. security cameras which most companies 
have already installed, can be leveraged to recognise and 
analyse human activities on the factory floor [28, 29]. We 
further purpose installing privacy preserving cameras [30] on 
the factory floor instead to improve the security of personal 
and corporate information. 

Finding correlations between operators and machine utilisation 
can help create a more accurate Digital Twin of the production 
line that incorporates human-based productivities [16]. Such 
a project will incorporate AI-based activity recognition 
algorithms [28, 29] and studies on modelling human activities 
in a Digital Twin as optimisation problems [16]. 

https://www.youtube.com/watch?v=vHjkTNJ_t-M
https://www.youtube.com/watch?v=vHjkTNJ_t-M
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1.2 RESEARCH RECOMMENDATIONS 

A research project on methodologies for developing a Digital Twin for a factory floor or production line, 
coupled with logistics optimization using LP, MILP, and MINLP, can focus on algorithmic design and adaptability. 
This study would explore how mathematical models can be refined and updated to accommodate varying 
constraints and dynamic behaviours along the production line, leveraging an industry-provided mock factory 
floor model as a reference framework.

Theoretical 
understanding difficulty

3

Based on established and highly practical 
technologies, but unique contexts will require tailoring. 
However, privacy preserving AI/vision technology is a 
field still being explored.  

Experimental difficulty 
and cost

3 Experimental verification will require accessing factory 
floors for real-world assessment. 

Deployment difficulty in 
real world scenario

4
Similar technologies exist - the challenge lies in 
customisation as well as ensuring the solution does 
not invade operator privacy.  

Value of a successful 
system

5

It will provide detailed information on how the 
production lines run, pinpoint the limitations in existing 
processes and save significant hours from supervision 
roles. 

RESEARCH SOLUTIONS

We estimate this to take two years for a PhD student, or a year for a postdoctoral researcher. The 
practical deployment of existing solutions on factory floor and will take one additional year for a PhD 
student and an engineer, mainly to tailor the system for any partner.
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PROCESS DIGITAL TWIN AND OPTIMISATION

Figure 4 Fine-grained activity recognition on assembly by Chen et. al [31].
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1.3 Material tracking on factory floor

Tracking materials on the factory floor is one key aspect of 
smart and flexible manufacturing, assisting the optimisation 
of the production process and providing better guidance for 
accurate manufacturing [32]. 

Optimising and minimising movement of heavy materials 
within the workshop will also reduce the cost and improve 
safety. Each company has their own methods, ranging from 
barcodes on the job to IDs written on chalk. Radio Frequency 
Identification (RFID) is another established technique employed 
by smart factory in Industry 4.0 [33]. 

Accurately tracking materials will significantly improve how 
closely the Digital Twin reflects the actual factory floor, 
especially in certain industries such as steel fabrication where 
a lot of resources, i.e. man hour and energy, are invested in 
handling heavy materials. 

On the other hand, a Digital Twin of the factory floor can also 
advise the safest and most efficient scheduling and/or path of 
material transportation, as well as monitoring the consumption 
of raw materials to advise purchases in advance. 

However, a labelling method that can withstand most or all 
manufacturing process while being economical remains  a 
challenge, as advised by many partners that we have surveyed. 
There is therefore a direction for further investigation on what 
is the best method/sensor/software combination for labelling 
and tracking materials on the factory floor. 

PROCESS DIGITAL TWIN AND OPTIMISATION

1.3 RESEARCH RECOMMENDATIONS 

This project also contributes to the overarching factory floor Digital Twin and optimisation project as outlined 
in Section 1.1. The theoretical study on tracking and modelling material transportation on the factory floor is 
estimated to take one year in a PhD student project, or half a year for a postdoctoral researcher, which will also 
include the exploration on how the Digital Twin can feedback into tracking and monitoring materials. 

Theoretical 
understanding difficulty

2 The research is less theoretical and more practical. 

Experimental difficulty 
and cost

3 Experiments focus more on making sure it works on 
the factory floor, so the cost can increase.  

Deployment difficulty in 
real world scenario

4
Key aspect of this project is deployment, and it is 
essential that the tailored solution can endure the 
manufacturing processes. 

Value of a successful 
system

4 Streamline and automate material tracking on factory 
floor, which facilitates further automation. 

RESEARCH SOLUTIONS

The investigation of the most appropriate labelling technique involves designing a tailored system for 
each individual partner on a case-by-case basis. We recommend partners to consult experts on robotic 
solutions, and we estimate the deployment to take half of year for an engineer.
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1.4 Pricing estimation and advising

Every partner that we have visited so far has mentioned that 
there is a significant amount of historical data on job pricing 
and productivity collected throughout the years. We believe 
that such data can be leveraged to estimate and advise cost 
and pricing for future projects [34, 35], which is a useful guide 
for job quoting and contract drafting. 

A Digital Twin of the factory floor will be able to provide 
a reliable estimation for the required time and resource 
cost, based on the historical data, the accurately modelled 
manufacturing processes and the production scheduling. 

This will be a data-driven AI-based algorithm that can both be 
company-specific as well as a cross-industry tool, depending 
on whether the modelling of the manufacturing processes is 
based on any company specific data.

PROCESS DIGITAL TWIN AND OPTIMISATION

1.4 RESEARCH RECOMMENDATIONS 

This project can be another component of the Digital Twin project, focusing on the realistic applications of 
the Digital Twin and how it can further benefit our partners beyond production optimisation. The theoretical 
exploration of this project will take up a year in a PhD student project given the readiness of said data. 

Theoretical 
understanding difficulty

2
The theoretical foundation is established, but how 
these methods apply to composite industry and where 
existing methods fail is unknown. 

Experimental difficulty 
and cost

2 Experiments are purely in simulation, but the 
complication lies in real-world verification. 

Deployment difficulty in 
real world scenario

3
The difficulty of deployment is in accessing the large 
amount of historical data and adapting it to different 
contexts. 

Value of a successful 
system

3 This has been raised by a few partners as a great 
source of advice for job quoting. 

RESEARCH SOLUTIONS

The deployment of such a system in industry will involve working tightly with the industry or the partner 
to identify where existing forecast techniques fail, processing the historical data, and exploring and 
applying existing AI techniques.
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2. ROBOTICS AND AUTOMATION

Another key aspect in production line 
optimisation is to automate each manufacturing 
step. Leveraging state-of-the-art robotic 
technologies, a highly automated production can 
achieve significant improvement in reliability, 
repeatability and consistency, as well as 
reduction in material waste, manufacturing lead 
time and cycle time, and cost in general [36]. 

We have observed this phenomenon in many conventional 
mass-production industries, e.g. automobile, where the rigidity 
in their production processes simplifies the mechanisation 
and automation of the assembly lines. The composite 
manufacturing industry has similarly started to leverage such 
solutions as automated tape laying, fibre placement and 
filament winding [36, 37]. 

Among the partners whom we have visited during this survey, 
we have noticed the trend of investing and incorporating 
robotics into their production lines so as to mechanise and 

automate certain manufacturing processes. However, these 
systems are not yet fully capable of delivering what the real-
world industry desires, especially in the context of flexible 
manufacturing, which results in such investments being less 
than economical. 

For example, conventional automation techniques that focus 
on repetition are not as feasible when the job specification 
changes regularly. Many partners have noticed that manually 
reprogramming the automation for a new design takes a 
comparable amount of time to the original non-automated 
process. We instead focus on improving the autonomy of the 
production line, in addition to simple automation.

Figure 5 The Thermoplastic Automated Tape Placement design by German Aerospace Centre (DLR) [38] - video demonstration.

https://www.youtube.com/watch?v=TFxbkFTO7Z0
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ROBOTICS AND AUTOMATION

2.1 Perception-in-the-loop manufacturing

Conventional automation systems in the manufacturing 
industry are designed for assembly lines and usually expect 
standardised and repetitive interfaces with the materials they 
are to operate on, with minimal awareness of the environment 
and little flexibility for on-the-fly adjustments. If the material 
is not placed in the exact position the robot expects, the 
automated execution is prone to fail or produce subpar 
products. 

Additionally, many of these automated systems require 
human operators to teach them the new execution command 
for a new job [36], which takes a significant amount of time 
comparable to manual execution and therefore diminishes the 
benefit of automated execution when the production batch is 
small-scale and bespoke, as pointed out by many partners we 
have visited. 

The key to enable autonomous decision-making towards 
flexible manufacturing tasks, i.e. with fast-changing product 
design and dynamic factory environment, is the perception 
and understanding of the environment [14]; hence we 
propose perception-in-the-loop systems as the foundation for 
intelligent automation in flexible manufacturing. 

Sensors commonly used in the field of robotic perception 
range from conventional RGB cameras [39] to Infrared (IR) 
depth cameras [40] and laser scanners [41, 42], each providing 
a unique modality of data that can be used to both localise the 
robots and map the environment and the materials. 

Simultaneous Localisation And Mapping (SLAM) methods can 
provide the robotic systems with accurate representation of 
the environment and where it is with respect to it [43, 44], and 
algorithms such as 3D registration can align and compare 
a reconstruction of the product with its CAD model [45, 46], 
giving the robotic system a real-time understanding of its job 
and the ability to make on-the-fly decisions on how to proceed. 

A few industrial robot manufacturers have recently presented 
similar products with built-in perception systems, such as 
Zeman’s Steel Beam Assembler (SBA) [47] (Zeman SBA 
demonstration). 

Furthermore, the emerging field of Learning from 
Demonstration (LfM) has shown promising results on human 
experts teaching complex tasks to robotic manipulators 
through simple demonstration [48, 49, 50] (Universal 
Manipulation Interface (UMI) demonstration). 

Figure 6 An example of an accurate dense point cloud (top) collected by chest-inspection robots compared with the actual steam chest (bottom), 
presented by Pomerleau et. al. [45].

https://www.youtube.com/watch?v=qwuKA0U7CnM
https://www.youtube.com/watch?v=qwuKA0U7CnM
https://umi-gripper.github.io/
https://umi-gripper.github.io/
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ROBOTICS AND AUTOMATION

2.1 RESEARCH RECOMMENDATIONS 

A research project on a perception-in-the-loop robotic prototype should take a PhD student a year of their 
candidature or a postdoctoral researcher up to one year depending on the specific application. To investigate 
the exact limitation of existing industrial solutions and to deploy such a system in a factory or tailor the 
prototype for the specific needs of any partner will require in addition another half of year and an engineer 
working alongside the research. 

Theoretical 
understanding difficulty

4 LfM is an emerging research area and will require 
thorough investigation. 

Experimental difficulty 
and cost

3
Robotic hardware experiment is essential for this 
project, but commercially available and conventional 
hardware will suffice. 

Deployment difficulty in 
real world scenario

4 The robotic solutions have to be reliable, robust and 
safe to be deployed on the factory floor. 

Value of a successful 
system

5 It plays a core role in enabling automated production 
lines. 

RESEARCH SOLUTIONS

Developing a LfM system for industry-specific applications will be at least a two-year project for a PhD 
student or a one-year project for a postdoctoral researcher, and an additional year for deployment 
in the factory with an engineer for tech support. This amount of time is estimated for a robotic fabric 
manipulation project.
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2.2 Mobile robotics on factory floor 

Traditional automation setups transport materials along the 
assembly lines and have stationary robots work on them. 
Manufacturers that handle large and/or heavy materials 
therefore often have to rely on huge machineries to manipulate 
their materials, a typical example of which is the steel 
fabrication industry. 

The transportation and handling of these large materials is 
dangerous and resource-consuming (time, labour and energy), 
and in certain cases prone to error. In addition, conventional 
assembly line robots usually have hardware limitations on the 
dimension and weight of the materials they can handle. A few 
partners have mentioned such constraint being a bottleneck 
for robotic production line. 

We therefore propose employing mobile robots to minimise 
the need to move heavy/large materials on the factory floor. 
Instead, robots such as omnidirectional platforms can carry 
robotic arms and tools the material to automate assembly, 
fabrication and manufacturing tasks [51, 52, 53], with state-
of-the-art perception algorithms enabling accurate and safe 
execution. 

Such a system can mitigate the need to use heavy machineries 
and significantly reduce the movement of large and dangerous 
materials, which would in turn improve the safety of the factory 
floor and reduce the cost in investment and energy. 

Perception systems are used to capture the human operators’ 
behaviours and AI technologies translate that into robotic 
executions. Such technology can further improve the flexibility 
of robotic systems when handling frequently changing tasks. 

Similarly, perception and AI techniques have enabled robotic 
fabric manipulation in recent years [49] (video of fabric 
manipulation through LfM), which used to be a key challenge 
that limits the application of robotic and automation in 
composite manufacturing. 

Exploring these cutting-edge research field and bringing 
them into real-world application will significantly benefit the 
composite industry in Australia.

https://www.youtube.com/watch?v=uKPPSg02xaY
https://www.youtube.com/watch?v=uKPPSg02xaY
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ROBOTICS AND AUTOMATION

2.2 RESEARCH RECOMMENDATIONS 

A research project exploring feasible solutions for deploying mobile robotics on the factory floor would 
investigate the use of multiple robots to perform complex tasks, optimize planning and utilization, and develop 
perception systems tailored to the factory environment. 

Theoretical 
understanding difficulty

3

Mobile robotics is an emerging field and have been 
studied over the years, but still need more research 
for executing complex tasks cooperatively on factory 
floors.  

Experimental difficulty 
and cost

3
The involvement of robotic hardware raises the 
experiment costs, but conventional platforms are 
sufficient. 

Deployment difficulty in 
real world scenario

5
Deploying mobile robots on the factory floor presents 
challenges in the safety and robustness of these 
robotic systems, especially with humans around. 

Value of a successful 
system

5 It will significantly reduce the investment in large-scale 
machineries. 

RESEARCH SOLUTIONS

Designing such a system is expected to take approximately two years for a PhD student or one year for 
a postdoctoral researcher, with a primary focus on ensuring safety in human-rich environments. Further 
research—around one additional year for a PhD student or six months for a postdoctoral researcher—
would be required to enable these robots to execute manufacturing tasks effectively. Deployment would 
necessitate the involvement of an additional engineer for at least one year.
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Figure 7 Toyota CDI120 Automated Horizontal Carrier [54] for warehouse and factory floor (video demonstration).

https://www.youtube.com/watch?v=Mu59HEDtNuY
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2.3 Force sensing and control, and handling deformable material

Our partners in carbon fibre manufacturing industry have 
pointed out that the mechanical properties of this type of 
composite materials, such as their brittleness and deflection 
capacity, are a challenge for automating the post-production 
machining processes such as drilling and trimming [55, 56]. 
The fabric form of these materials during the layup stage also 
makes them hard to handle with robotic manipulators [57, 49]. 

Mass composite manufacturing can be economically 
automated with 3D printed tools (moulds) and automated 
lamination process, addressing these material handling 
challenges. However, in small-scale productions of highly 
customised jobs, the flexibility in manufacturing processes 
require more intricate and adaptable handling of the materials. 

For human operators, feeling the surface of materials and the 
pressure on the hands is what allows us to handle intricate 
materials. Similarly, the ability to measure force exerted by and 
applied to the robotic manipulator plays a key role in handling 
delicate materials. 

Better informed control decisions can be made for the robot 
to more accurately execute its task. In recent years, soft 
robotics and touch/tactile sensors are two relevant emerging 
researching field in robotics, both greatly contributes to 
handling brittle or fabric-like materials [58, 59]. 

However, tactile sensors are prone to damage when used 
repeatedly, such as in an industrial context. Alternatively, 
torque and inertia sensors embedded in the joints of robotic 
arm are commonly used to estimate the force on arm [60, 61]. 

With assistance from perception-in-the-loop systems [62] 
(video demonstration of ARM-SLAM) and well-informed and 
well-designed control systems [63], these robot systems can 
also be deployed to conduct highly intricate manipulation tasks 
such as handling composite fabrics and brittle products as well 
as polishing and cleaning the detailed surfaces of tools [64]. 
It also enhances the safety of the robots in human-present 
environments, e.g. factory floor. 

The combination of perception and force sensing capability 
can also be leveraged to handle materials with deflection 
capacity that poses challenges to traditional industrial 
automation as well as conventional robotic solutions.

ROBOTICS AND AUTOMATION

Figure 9 DIGIT, tactile sensor for in-hand manipulation by Lambeta et. al. [58]

https://www.youtube.com/watch?v=QrFyaxFUs9w
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ROBOTICS AND AUTOMATION

2.3 RESEARCH RECOMMENDATIONS & SOLUTIONS 

Tactile, haptic, and force sensing technologies have been studied for decades, but they still require further 
research to optimize their integration into real-world applications. A project on tactile, haptic or force sensing 
integration in a robotic manipulation of sensitive materials will require a PhD student three years, or a 
postdoctoral researcher one year. 

To design a control system that leverages force sensing will be a one-year project for a PhD student, or half 
a year for a postdoctoral researcher. Its deployment will need an additional engineer working alongside the 
researcher for half a year.  

Theoretical 
understanding difficulty

4
Force-based control is an established field, but haptic/
tactile sensing or a robust force sensor is an open 
research topic. 

Experimental difficulty 
and cost

4 Designing such a system will require customised 
robotic hardware and sensor design. 

Deployment difficulty in 
real world scenario

3
eploying the sensor is straightforward, but to leverage 
the sensor will require heavy customisation of the 
existing robotic software. 

Value of a successful 
system

4
The biggest value of such a project lies in the safety 
of robotic systems on the factory floor, especially 
working with humans. 
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Figure 8 An adaptable robot system manipulating flexible objects by Bodenhangen et. al. [57].
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Figure 10 SimPLE, a state-of-the-art picking and placing multi-manipulator system that leverages visuotactile perception [67]

2.4 RESEARCH RECOMMENDATIONS & SOLUTIONS 

Collaboration among multiple stationary robots is a well-studied area and will take a PhD student one and half 
years, and a postdoctoral researcher one year. Its deployment will require an engineer working with the researcher 
for half a year. 

Designing a swarm of mobile robots on the factory floor that collaborate with each other to execute complex 
manufacturing tasks will be a three-year project for a PhD student and at least a two-year project for a postdoctoral 
researcher. The deployment of such a system on the factory floor will need a lot of verification in safety. The 
required length of time will be dependent on many real-world aspects such as the factory floor plan.

Theoretical 
understanding difficulty

4 The challenge lies in the mobile collaborative robots 
as it is a complex system with many moving parts. 

Experimental difficulty 
and cost

5 Experiments will require multiple complex robotic 
hardware systems. 

Deployment difficulty in 
real world scenario

5 The safety concern of such a system working with 
humans on the factory floor is the biggest challenge. 

Value of a successful 
system

5 This technology can lead to a fully automated factory 
floor with minimal human involvement. 
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ROBOTICS AND AUTOMATION

2.4 Multi-robot collaboration material

As the complexity of manufacturing process rises, there is often 
the need for multiple actions to be executed at the same time. 
For instance, in the context of welding in steel fabrication, two 
pieces of steel will be held against each other while being 
welded together. 

To automate processes of such nature, existing industrial robotic 
solutions such as Zeman’s SBA [47] employ multiple robot arms, 
each handling one simple task and collaborating each other. 
To facilitate the collaboration among multiple robots, the first 
cornerstone is to accurately understand the position and joint 
configuration of each robot with respect to each other, and 
perception-based multi-agent localisation and SLAM [65, 66] 
(video demonstration for CCM-SLAM) is a well-studied area in 
robotics. State-of-the-art robotics systems such as Simulation 
to Pick Localize and placE (SimPLE) [67] further demonstrate 

that combining multiple sensor modality, e.g. visual and tactile 
(Section 2.3) can greatly improve the intelligence of multiple 
manipulators collaborating with each other on industrial tasks 
(video demonstration of SimPLE). 

In addition, existing industrial solutions often incorporate large 
structures to accommodate for the various dimensions from job 
to job and/or to facilitate material handling, which in turn require 
large footprints on the factory floor. 

We propose breaking these large monolithic robots into smaller 
individual robots, potentially mobile ones too as discussed in 
Section 2.2. We expect such a strategy to significantly reduce 
the hardware investment involved in these robotic solutions, 
and instead leverage state-of-the-art multi-agent localisation 
algorithms [65, 68] to ensure the accurate interactions among 
robot arms. 
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https://www.youtube.com/watch?v=P3b7UiTlmbQ
https://www.youtube.com/watch?v=oYznDSkPVUU
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2.5 Human-robot interaction (HRI)

For mobile robots to be conducting manufacturing on the 
factory floor, there is a growing need in safety for robots and 
humans to work in the same environment. The emerging 
field of cobots, i.e. collaborative robots, has encouraged the 
development of many new designs that are safer to work 
alongside human operators, such as Universal Robotics’ robot 
arms [69]. 

One of the key features for Human-Robot Interaction (HRI) 
safety is compliant control—robot arms can be safely pushed 
around by human due to their light weight and compliant joint 
[70]. In addition, force and torque sensing capability (Section 
2.3) can better inform these cobots the amount of force 
required as well as detect potential collisions, further improving 
HRI safety [70] (HRI video demonstration). 

Last but not least, mitigating the need of heavy machineries 
and replacing them with smaller robots, as discussed in 
Section 2.2, also considerably improves the safety of human 
operators on a highly automated factory floor, because heavy 
machineries operate with significantly more power and are 
therefore far less compliant compared to light-weight robots. 

In addition to hardware innovation, it is beneficial to have 
an intelligent navigation system that is aware of the random 
movement of humans and able to quickly respond to them [70].  

Dynamic object motion tracking and estimation based on 
perception is an emerging field in robotics [71, 72], and we are 
seeing promising results that can be leveraged to improve the 
safety of robots interacting with humans.

Figure 11 An example of a collaborative human-robot task with a UR10 robot by Gaz et. al [64].

ROBOTICS AND AUTOMATION

https://www.youtube.com/watch?v=bjZbmlAclYk
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2.6 Specialised sensor selection

There is a wide collection of sensor types available for 
robotics research as well as industrial purposes, each 
providing a unique modality applicable for specific needs. 

For example, highly reflective surfaces (high specularity), e.g. 
metals, pose challenges to conventional perception sensors 
like camera and LiDAR, and there are scanners tailored for 
such materials [73]. 

We recommend partners to consult robotic experts when 
choosing sensors for automation systems on the factory floor. 
Experts can help assess the specific needs of the application, 
taking into account the environmental conditions, surface 
properties of materials, and performance requirements. 

A comprehensive understanding of the sensor’s capabilities, 
limitations, and integration requirements is essential to 
ensure that the chosen sensors align with the goals of the 
automation system.

ROBOTICS AND AUTOMATION

2.5 RESEARCH RECOMMENDATIONS & SOLUTIONS 

The core technical exploration and development on HRI should take a PhD student two years or a postdoctoral 
researcher one year. Tailoring such a system for a particular task or a partner will require another year of an 
engineer working with the researcher to ensure safety, and a variety of robotic platforms might be involved 
depending on the desired task. 

Theoretical 
understanding difficulty

3
Further research is still required to improve the 
existing solutions, but there is on-going research in 
many required aspects of such a system. 

Experimental difficulty 
and cost

3 There might be a need for different robot platforms to 
assess different aspects of HRI. 

Deployment difficulty in 
real world scenario

5 The main challenge is the safety concerns when 
robots and humans interacts with each other. 

Value of a successful 
system

4 The key value of this system is the improved safety of 
robotic systems in general on the factory floor. 
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3.1 Automated design assist

To fully realise an end-to-end automated manufacturing 
process, we also need to automate the design stage. Many 
partners we have surveyed so far identifies the manual 
design process being time consuming and a bottleneck in the 
production, especially when the job changes regularly and 
requires flexible designing and detailing process [14]. 

For example, in the steel fabrication industry, drawings need 
to be populated with details such as bolts, nuts and welds. 
In composite manufacturing, the design process involves 
translating structural and performance requirements into 
selecting the appropriate fibre or fabric materials, defining the 
optimal layup configurations and designing the end product 
[36]. All these processes have well-defined standards in each 
corresponding industry. 

We therefore propose leveraging AI-based methods to 
learn how to design the production process as well as each 
manufacturing step [74, 75, 76], with the intention of assisting 
human designers to improve the efficiency and reduce 
involved manhour. 

This technology will have far-reaching impacts beyond the 
composite industry, and contribute manufacturing in general. 
For instance, t here has been a few emerging directions on 
AI-based methods for improving prefabricated house designs 
[77, 78, 79]

3.1 RESEARCH RECOMMENDATIONS & SOLUTIONS 

Researching the theoretical core of an AI-enabled design automation algorithm will take a PhD student one and 
half years, or a postdoctoral researcher one year. To tailor it for a particular task will require partner involvement, 
especially in the form of accessing and learning from historical data, which is estimated to require an additional 
half a year. 

Theoretical 
understanding difficulty

4 There exist theories for such problems, but further 
research is required to bring them to the real world. 

Experimental difficulty 
and cost

1 Experiments will focus on simulation with minimal 
hardware involvement.  

Deployment difficulty in 
real world scenario

2
There is little risk in deployment, but it will require 
partner involvement (accessing real-world data) and 
feedback.  

Value of a successful 
system

5
Common desire shared by many partners, and will 
immediately provide the benefit of reducing cost in 
terms of man hour. 
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3. DESIGN AUTOMATION AND OPTIMISATION

Figure 12 AI-assisted segmentation design for prefabricated wall-floor building by Baghdadi et. al [77].
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DESIGN AUTOMATION AND OPTIMISATION

3.2 Transportation and batch manufacturing

Within a similar domain as design automation, we further 
propose using AI-based methods to assist the design of 
material and product transportation and batch manufacturing. 
Different industries practise batching at different stages 
of the production and for different purposes. For example, 
carbon fibre composite manufacturing industry pre-cuts and 
groups materials into kits (known as kitting) before layup, 
and arranges pieces within a sheet to minimise waste before 
automated cutting (known as nesting). 

In large-scale steel fabrication, the overall design is divided 
into lots (lotting) because there are many steel beams, 
sections or structural elements that need to be fabricated, 
transported and assembled on site in a particular order and 
manner. 

Across all these practices, the same theme remains—
organising materials and products based on the manufacturing 
process and the design will improve the efficiency of material 
handling and production. 

Software such as Tekla, JETCAM and Autodesk all have 
lotting or nesting tools for automating such processes for 
their corresponding industry [80, 81, 82] (video demonstration 
of Autodesk Investor nesting tool). However, several partners 
have expressed interest in a more intelligent system based on 
their day-to-day experience with the software. 

We therefore propose investigating the limitations of the 
existing tools and learning the specific needs of the partners, 
and tailoring an optimisation tool for material batching, 
handling and transportation towards each partner. 

3.2 RESEARCH RECOMMENDATIONS & SOLUTIONS 

Because there are existing solutions commercially available for lotting/batching/kitting tasks, and there is an 
established theoretical foundation, the key research focus lies in first understanding what partners still need in 
addition to off-the-shelf technologies, and second deploying the theory to solve real-world problems. This will 
take one and half years for a PhD student or one year for a postdoctoral researcher. Customisation for particular 
partners might require additional time depending on the task.

Theoretical 
understanding difficulty

2
There are commercially available solutions – the 
research will focus on what partners need and is still 
missing from existing solutions.

Experimental difficulty 
and cost

1 The experiments will be purely digital and in 
simulation.

Deployment difficulty in 
real world scenario

2 This system will assist human designers like existing 
solutions, so limited difficulty in deployment.

Value of a successful 
system

3
Such a system can improve upon the existing 
solutions and reduce human involvement in the 
design process.
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https://www.youtube.com/watch?v=NdYVIA-fUs8
https://www.youtube.com/watch?v=NdYVIA-fUs8
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4.1 Automated QA based on CAD model

Due to the availability of CAD models for the products, the 
QA and inspection process can be translated into a dense 
reconstruction, registration and change/discrepancy detection 
problem in robotics. 

There exist several handheld solutions for manual scanning 
and reconstruction [83, 84, 85], and combined with a robot 
arm, active mapping techniques can automate such a process 
[86, 62]—a problem that has been studied by the robotics 
community for a couple of decades [87, 88]. 

Registering the reconstruction with the CAD model is similarly 
a well-studied area in robotics, based on which we can 
highlight the discrepancies between the two for QA and 

inspection purposes. One key challenge in this case is the 
tolerance requirement that is beyond the accuracy of usual 
sensors used in the robotic research domain. 

We therefore propose leveraging highly accurate industry-
grade sensors [89, 73, 90] and building active mapping and 
reconstruction systems around these sensors to automate 
the QA process. Further studies will be needed to tailor the 
registration and discrepancy detection algorithm for industry 
partners.

4. QUALITY ASSURANCE (QA) AND INSPECTION

The final piece of the puzzle in a fully 
automated manufacturing pipeline is the QA 
and inspection step. 

Many partners that we have surveyed have identified QA 
as another common bottleneck in production time and man 
hour, as the tolerance is often on the scale of millimetre if 
not smaller. 

In this section, we will discuss a few aspects in automating 
the QA and inspection process, not with the intention of 
completely removing the human operators from the loop, 
but to assist and improve the manual inspection process. 

Figure 13 Active mapping system setup using a Kuka robotic arm and a depth camera by Kriegel et. al. [86]
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QUALITY ASSURANCE (QA) AND INSPECTION

4.1 RESEARCH RECOMMENDATIONS & SOLUTIONS 

The project on automated QA using CAD model is expected to be an one-year project for a PhD student, or a 
half-year project for a postdoctoral researcher. The challenge of deployment mostly involves understanding the 
particular characteristics of the jobs, e.g. dimensions and materials.

Theoretical 
understanding difficulty

3
3D reconstruction and alignment is an established 
field, but specific industry and material can pose 
unique challenges.

Experimental difficulty 
and cost

2 Most experiment can be conducted in simulation or 
with minimal physical examples.

Deployment difficulty in 
real world scenario

4 Communicating with partners and tailoring the system 
for the specific product might raise challenges.

Value of a successful 
system

4 This project can significantly improve the efficiency of 
QA compared to the manual QA process.

RATING 
OUT OF 5

MEASURE

1

2

3

4

COMMENTS

4.2 Non-destructive defect detection

In composite manufacturing, the defects in the product such 
as delamination, void formation and wrinkles can be hard to 
detect as they are not always visible on the product surface, 
and sometimes still hard to visually detect even when they 
are on the surface. Some defects conventionally require 
destroying the product to identify, which will naturally cost the 
manufacturer more. 

We therefore propose leveraging other sensor modalities 
within robotic perception systems to detect defects in these 
products without destroying the products. Depth sensors and 
laser scanners can be used to detect wrinkles and boundary 
edges [91], and ultrasonic to detect defects below the surface 
to avoid any destructive processes [92, 93]. 

The key component of such a system lies in choosing the 
correct sensor as well as interpreting the sensor readings, the 
latter of which we believe can be handled by a tailored AI-
based image processing tool [94, 95]. 
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QUALITY ASSURANCE (QA) AND INSPECTION

4.2 RESEARCH RECOMMENDATIONS & SOLUTIONS 

To develop a reliable AI for recognising defects in composite will require two years from a PhD student, and 
one year from a postdoctoral researcher, as well as a significant amount of annotated data on physical products 
provided by partners.

Theoretical 
understanding difficulty

3
Defects in composite materials are well-understood, 
and image processing via AI is an established field. 
Putting them together is novel but not impossible. 

Experimental difficulty 
and cost

4
Developing a learning-based algorithm require a 
significant amount of data (from physical products) and 
annotation for training and testing.

Deployment difficulty in 
real world scenario

2 The deployment should only require commercially 
available sensors.

Value of a successful 
system

5
Being able to completely avoid destructive inspection 
is very beneficial to the composite manufacturing 
industry.

RATING 
OUT OF 5

MEASURE

1

2

3

4

COMMENTS

Figure 14 An example of visual wrinkle detection in fiber products by Gutpa et. al [91].
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QUALITY ASSURANCE (QA) AND INSPECTION

4.3 AR-assisted inspection

4.4 Online quality monitoring and manufacturing adjustments

We further propose developing an Augmented Reality (AR) 
system to enhance human inspection processes. Many of 
our surveyed partners currently use tablets, such as iPads, to 
visualize QA results after inspections. 

By integrating AR with an automated QA and inspection 
workflow, we can provide real-time visual overlays that 
instantly highlight discrepancies, enabling inspectors to 
identify and address issues on the fly, improving accuracy and 
efficiency.

In addition to QA at the end of the production, a similar 
technique can be leveraged to analyse the product quality 
during manufacturing, which can in turn advise how the 
manufacturing process should adjust on-the-fly to avoid error 
creeping [96, 97], by feeding the observed error back into 
the design instead of mechanically following a predetermined 
manufacturing process.  

This is especially applicable in additive manufacturing 
processes such as layup and fibre placement [95], even just to 
detect the defect during production to avoid further wastage. 

A similar concept can be leveraged during site erection to 
detect any discrepancy to the design. Such a system will 
require frequent and regular scans of the construction from 
multiple viewing angles as well as robust localisation with 
a global reference frame to accurately map out the overall 
structure, which is a well-established field in robotics.  

4.3 RESEARCH RECOMMENDATIONS & SOLUTIONS 

Building such an AR system is estimated to be a one-year project for a PhD student, or a half-year project for 
a postdoctoral researcher. To deploy such a system on the factory floor will additionally require an engineer 
working with the researcher.

Theoretical 
understanding difficulty

2
The theory for this project is similar to the automated 
QA technology, and focuses mostly on realising the 
AR system, the theory of which is well-established.

Experimental difficulty 
and cost

2 Experiments is ideally conducted with some minimal 
physical examples.

Deployment difficulty in 
real world scenario

1 The hardware required for deployment is expected to 
be mostly commercially available.

Value of a successful 
system

3 This project will improve the efficiency of manual 
inspection.

1

2

3

4

COMMENTSRATING 
OUT OF 5

MEASURE
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QUALITY ASSURANCE (QA) AND INSPECTION

4.4 RESEARCH RECOMMENDATIONS & SOLUTIONS 

Researching the theoretical core of an AI-enabled design automation algorithm will take a PhD student one and 
half years, or a postdoctoral researcher one year. To tailor it for a particular task will require partner involvement, 
especially in the form of accessing and learning from historical data, which is estimated to require an additional 
half a year. 

Theoretical 
understanding difficulty

2
An established field of research, however will require 
adaptation to context, such as the dimension of the 
product. 

Experimental difficulty 
and cost

3
Such a project will require example real-world details 
from the partner, or even conduct field experiments to 
correctly model the errors.

Deployment difficulty in 
real world scenario

3 Large-scale products can introduce difficulty to 
deployment.

Value of a successful 
system

4 Detecting error during production instead of at the 
end of it can have a significant impact on saving cost.

1

2

3

4

COMMENTSRATING 
OUT OF 5

MEASURE
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5. KEY RECOMMENDATIONS FOR THE 
COMPOSITE MANUFACTURING SECTOR

As we have stated throughout this white paper, the most 
prominent theme to emerge from this investigation is how highly 
dynamic and agile Australian and New Zealand manufacturers 
are, and must be, as they are servicing a highly heterogenous 
regional market. 

It is clear from this investigation that technology vendors are 
focusing on easier to solve repetitive task automation over the 
higher skill and performance requirements of manufacturers in 
our region. We have termed the non-uniform operational nature 
that is typical of our region, ‘Flexible Manufacturing’. 

While this is of course a great frustration to the sector, which we 
have seen through numerous costly procurements of systems 
not fit for purpose, there are two noteworthy trends regarding the 
observed technology gaps and needs.

Firstly, the primary high value capability gaps we observed 
across partners we do not consider to be scientifically or 
technically unfeasible. Meaning, the lack of commercially 
available solutions is due to a lack of investment in the research 
and development of robotic and autonomous systems for the 
flexible manufacturing market.

Second, the capability gaps we have identified in this white 
paper are shared by all stakeholders and are largely ‘pre-
competitive’ core operational capabilities, making them product 
agnostic. This means stakeholders can safely collaborate on the 
research and development of these systems without giving up 
the competitive advantage they have in their respective product 
classes.

The convergence of these factors presents an exciting 
opportunity for flexible manufacturers in our region to work 
together on systems that will ensure ANZ becomes globally 
recognised as leaders in flexible and dynamic manufacturing, but 
also to collaborate on the development of an entirely new class 
of technology and industry in our region.

Due to the above mentioned reasons, we see tremendous value 
in a multi-industry partner collaboration that can share costs and 
risk of an ambitious larger effort, from research to startup. 

For this reason, this white paper strongly recommends a shared 
cost model where partners invest a portion of their contribution 
to fund a small team of academic and technical resources that 
are working on these core scientific issues. Partners will be able 
to leverage these shared developments, using their remaining 
investment to tailor them to their unique application needs.

The various projects outlined in the research development 
document range in size and complexity. Each one represents 
a small but concrete stepping stone towards a larger more 
ambitious effort and goal. Due to their commonality between 
stakeholders they can be funded in a variety of ways:

1.	 Directly - where one partner will directly fund the projects 
they are most interested in. They will bear the cost alone 
and retain the IP for themselves. This is a higher risk strategy 
and constrains innovations to the financial limitations of the 
partner.

1.	 Joint funding – partners can collaborate and fund projects 
of most relevance to them.  They will share access and 
ownership of the IP. Investment is derisked proportional to 
the number of industry partners.

1.	 Consortium (authors recommendation) – a multiparty 
collaboration and co-investment in a series of projects 
of most interest to the group. IP is shared amongst 
stakeholders. Stakeholders take on significantly less risk 
while benefitting from a substantially larger investment and 
it potential returns.

Importantly, these projects have the potential to become 
commercially viable products, either through technology 
partners, new in-house capabilities, or startups. Throughout this 
study, we have observed several high value gaps in the market 
that are reflected here and these projects aim to address. 

Project and logistics optimisation systems for flexible 
manufacturers stands out as a particularly high value startup 
opportunity as there is no obvious commercially available 
system, all partners expressed this as a major pain point, a 
solution capable of supporting flexible manufacturers would 
also be useful in less dynamic operations.

KEY RECOMMENDATION TO INDUSTRY AND ACADEMIA

It is the opinion of the authors that the formation of industry research consortium will deliver by far the greatest return on 
investment to all stakeholders. Research recommendations outlined in this white paper represent individual development 
opportunities that collectively form a comprehensive suite of interacting solutions to the most pressing issues we observed. 
Furthermore, they are primarily operationally precompetitive in nature, allowing partners to safely collaborate and share the gains.

A consortium approach will significantly derisk investment for all stakeholders enabling the pursuit of a wider range of common 
interest problems from low hanging fruit to high risk, high reward projects. Furthermore, government funded industry support 
programs typically view consortiums more favourably as a more efficient, lower risk deployment of funding. The pooling of 
resources will demonstrate a stronger commitment from industry to government and funders while simultaneously attracting a 
larger quantum of funding to be spread across a greater number of development opportunities. 

The ACM CRC is the immediately obvious pathway likely to be supportive of a consortium approach. Cooperative Research 
Centre Projects (CRC-P), and ARC Linkage Industrial Transformation Research Program (ITRP)  are other initiatives where a 
consortium approach could attract significant funding.

Industry and academic research and development
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As stated in the introduction, we hope this white paper will be 
the first step towards greater analysis of robotic penetration in 
manufacturing firms. As far as we have been able to determine, 
this paper is the first of its kind, attempting to parse robotic 
utilisation with the style of manufacturing undertaken within 
said firms. For Australian operators and policy makers, this is 
essential information that is simply not available. 

There is a suite of policies and grants at state and federal 
levels incentivising manufacturers to invest in robotic systems. 
These policies are predicated on the assumption that robotics 
are the key to the revitalisation of our manufacturing sector, 
sentiments the authors of this white paper agree with. 

However, for these policies to deliver on their ambition we 
need to understand how our regional firms operate and 
manufacture to ensure they are procuring technology that is 
going to boost their productivity. 

GDP in markets discussed (China, US, and Europe) which 
have the highest penetration of robotics, is predominantly 
being generated by larger firms. They are also the largest 
manufacturing employers (59% of US manufacturing jobs are in 
firms with more than 500 people). 

While analysis is sparse on what type of firms are procuring 
robotic systems and at what rate, we do know that robotics and 
automation in these markets skew heavily towards larger firms.

This is essential context for policy makers as the Australian 
market is completely different. Manufacturing GDP is 
predominantly being driven by smaller firms, who are also the 
largest employers (92%). 

There are clearly legitimate reasons why robotic penetration 
in our region is lower, many we have outlined here, and these 
should be explored more thoroughly by the Department 
of Industry to better target support. Well intentioned but 
poorly crafted policies may come across as tone deaf as 
low penetration is likely not to do with lack of knowledge or 
finances, but more to do with the limitations of commercially 
available systems. 

It is the opinion of this study that it is the latter; in which case 
we need to work with industry to develop new technologies 
that meet the needs of their operations.

KEY RECOMMENDATION TO GOVERNMENTS AND POLICYMAKERS

While this white paper is relatively small in size and scope, the uniformity of feedback and observations across 
industry were stark. Our engagement with relevant peak bodies suggests our findings are representative of a broader 
regional phenomenon. 

This is highly relevant to governments and policymakers concerned with strengthening Australia’s manufacturing 
sector, as the finding of this paper appear to run counter to many mainstream preconceptions regarding the nature 
and makeup of manufacturing in our region; preconceptions that appear to have been influential in the design of major 
industrial development policies. 

The outcome of which are initiatives incentivising procurement of ill suited ‘off-the-shelf’ systems, in lieu of policies 
aimed developing novel robotic systems to meet the needs of the predominantly dynamic and flexible style of 
manufacturing of our region.

As stated above, we were unable to find any substantive analysis on the intersection of robotic penetration and the 
style of manufacturing, in any market. It is possible this white paper is one of the first of its kind. If the findings of this 
white paper are accurate, and Australia is indeed dominated by flexible manufacturing firms, this needs to be more 
thoroughly investigated and understood by policymakers.

We strongly recommend governments and policymakers invest in a larger, more comprehensive analysis on the 
technology needs of Australian manufacturers in the context of firm size and manufacturing ‘style’. Such analysis will 
ensure industry research, innovation and development policies are highly targeted and Australia centric.

For governments and policymakers

KEY RECOMMENDATIONS FOR THE COMPOSITE MANUFACTURING SECTOR
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FINAL THOUGHTS AND CONCLUSIONS

In summary, it is clear manufacturers in our 
region must be highly skilled and dynamic largely 
due to macroeconomic forces in our region.

It is unrealistic to think that these forces will change in the 
foreseeable future, and therefore we must lean into our 
collective strength as flexible manufacturers. 

It is also clear that this style of manufacturing has been largely 
neglected by technology vendors as there is no scientific or 
technical reason preventing the development of solutions for 
this style of manufacturing. 

The major pain points we observed exist primarily in 
the precompetitive operational domain, meaning that 
stakeholders will be able to safely collaborate on the 
development of this technology, sharing the risk and the 
cost, without compromising competitive advantage in their 
respective domains. 

Furthermore, the lack of fit for purpose commercially available 
systems presents an incredible opportunity for stakeholders 
to not only establish themselves and this region as the 
global standard for high value, dynamic manufacturing, but 
also to drive the development of a completely new class of 
technology and high value industry in our region. 

Consequently, it is the opinion of this white paper that 
stakeholders in our region including state and federal 
governments, industry and academia, will gain significantly 
greater benefit by forming consortiums around common 
interest problems to research, develop, and commercialise 
these novel systems.
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