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EXECUTIVE SUMMARY

The Australian Centre for Robotics (ACFR) at the
University of Sydney has composed this white
paper investigating how Artificial Intelligence (Al)
and Robotics can enhance Australian composite
manufacturing, with a focus on a bespoke, agile
and responsive production style that this white
paper refers to as flexible manufacturing.

This white paper is the product of many surveys and facility
inspections conducted by the ACFR of Australian Composite
Manufacturing Cooperative Research Centre (ACM CRC)
industry partners, with contributions and expertise from every
partner involved.

In total, 12 manufacturing facilities were visited, reflecting the
entire spectrum of size and complexity, from startups to large
scale operations.

Standardised survey questions and in-person observations
of process bottlenecks were used to benchmark against

the current leading scientific understanding of robotics

and automation to determine if an autonomous solution is
technically feasible, and if not, what are the scientific barriers
preventing one.

Through this investigation, the most consistent and important
observation to emerge is that composite manufacturing in
Australia is characterised by a bespoke style of production,
often with smaller volumes but higher complexity and
customisation. Therefore, it is the authors belief that
conventional automation systems employed by large-scale
composite manufacturers in Europe, Asia and America are not
suitable for the Australian sector, as they are not designed for
our dynamic production style.

ACFR investigators perceive this agile and responsive style of
flexible manufacturing as a national strength, and proposes
Al and robotic solutions to enhance the efficiency and
flexibility of existing composite manufacturing techniques.

These proposals are rooted in the real-world discoveries made
during surveys, visits and case studies of partner companies,
as well as the state-of-the-art developments in the most recent
robotic research.

In this white paper, the ACFR has identified and outlined four
main domains and many small research directions where

cutting-edge robotic techniques can contribute to improving
flexible manufacturing in the Australian composite industry.

These range from providing a better macroscopic overview
of the production line to enabling intelligent and autonomous
automation of each manufacturing step. The proposed
solutions can benefit both individual partners as well as the
overall industry in a precompetitive manner.

It is the opinion of this study that building upon the highly
skilled and agile nature of our region’s manufacturers,
combined with recent scientific innovations that enable

more dynamic robotics and intelligent systems, and due

to a clear gap in commercially available systems servicing

our sector, there is a unique opportunity to simultaneously
rebuild Australia’s manufacturing sector using these novel
systems and create an entire new class of robotic systems and
industries here in the process.
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INTRODUCTION

In recent years, there has been renewed focus on rebuilding However, to successfully target research and development
Australia’s manufacturing output. This can be seen through investment of these technologies for Australian industries,

a variety of both state and federal initiatives, such as the we first need to contextualise these opportunities against our
recently completed $260M Advanced Manufacturing international peers, and the types of robotics and automation
Readiness Facility (AMRF) in NSW, and the National these regions adopt to support their respective manufacturing
Reconstruction Fund (NRF) and Future Made in Australia sectors.

federal initiatives. Understanding what Australian industry does differently

It is universally acknowledged that robotics and automation will allow us to design investment strategies for robotics
technologies will be central to achieving this goal as these innovation that will maximise productivity growth and return
technologies are listed as critical enabling technologies in on investment for the taxpayer. To the best of our knowledge,
several of these government strategies and policies. The 2024 such analysis does not exist, and this report is the first step in
National Defence Strategy and 2024 Integrated Investment a longer-term effort to change that.

Program, the National Reconstruction Fund, the National
Science Priorities and National Robotics Strategy, are just
some of the core government policy documents that outline
robotics and automation as key enabling technologies.
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Figure 11 Global Manufacturing Value Added by Industry, by Country/Region (2020) as reported by NIST AMS 600-16 [1].
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INTRODUCTION

Chinese Context

In 2024, China’s manufacturing value-added reached USD
$4.67 trillion [2], which was 29 percent of the global total, and
more than the next four largest manufacturing economies
combined (the United States, Japan, Germany, and India).
China’s manufacturing output has evolved considerably over
the past two decades from low value add to increasingly
higher value products such as electrical goods which now
represent the single largest manufacturing sector within China
[3]. Despite this transition, Chinese manufacturing continues to
be predominantly large batch production and high minimum
order quantity (MOQ). Over 80% of Chinese manufacturing
falls into this category.

As with most markets, composites parts are increasingly
integrating as Original Equipment Manufacturers (OEMs) to
these sectors [4]. In 2023 the Chinese composite market

was valued at $15.3 billion with projections to grow to $21
billion by 2030 with a compound annual growth rate (CAGR)
of 5% from 2024 to 2030 [5]. Unsurprisingly, growth in
composites market is being largely driven by mass production
manufacturers, namely the automative and transport industry
but also aerospace, defence, marine, renewable energy and
electronics.

It is important to note that these industries are typified by

the production of repeat parts and therefore, automation

and robotics technology deployed in these operations are
deployed to perform repeat tasks in a controlled environment.
The intelligence and versatility of the robot is less important
than its ability to reliably perform a single task repeatedly.

European Context

In 2022, manufacturing contributed €9.8 trillion to the
European economy, approximately one-quarter of the
European economy [6]. If we look closer at the sectoral break
down of European manufacturing, we see that well over 60%
of operators are focused on large batch, high throughput

or assembly line styles of production including; machinery
and equipment, food, motor vehicles and trucking, chemical
products, to name a few.

This is supported by data indicating 66.0% of value-added
manufacturing being generated by large enterprises (more
than 250 employees). These firms are responsible for 48.3%
of manufacturing employment in Europe, jumping to 70%
when including medium enterprises (50-250 employees).
Much like in China, these industries are typified by high
levels of automation performing repeat tasks in controlled
environments.

Furthermore, the European composite manufacturing sector
which was valued at USD $19.35 billion in 2022 and is
expected to grow at a CAGR of 6.3% through to 2030, is also
largely aligned supplying composite parts to these major
manufacturers in wind energy, automotive, transportation,
aerospace, and defence [7].

This indicates that composite manufacturing is largely focused
on producing repeat parts to supply these industries. Robotic
systems used in this sector will largely be articulating systems
performing repeat tasks. While there is sparse information

on the breakdown of robotic system by industry, robotics
installations in the automotive industry appear to have the
strongest utilisation. Germany being the largest user of
industrial robotics for this reason [8].

United States context

The United States is the second largest manufacturing nation
after China. In 2024, manufacturing value-added output

was estimated to be USD $2.925 trillion, roughly 10% of US
GDP [9]. If we break this down by subsectors, it is clear US
manufacturing is being driven by large scale production within
a few major categories like chemical production, electronics,
automative and transport, machinery, food and beverage,
material products, to name a few.

This is reflected in the employment data. Despite 93% of

US manufacturing firms considered to be small (less than
100 employees), 59.0% of all employees in the sector work
for large firms with 500 or more employees, just 1.6% of US
manufacturers [9]. As with both Europe and China, these are
all sectors where robotics and automation technologies have
been well established for several decades.

As it relates to the US composite sector, we also see the same
trend, that these sectors are driving demand for composites.

In 2023 the U.S. composites market was estimated to be

USD 15.58 billion with a CAGR of 5.3% from 2024 to 2030.
This growth is largely being driven by the automotive and
transportation industry’s need for lightweight components [10].

Australian context and this white
paper

While data and analysis on the three primary manufacturing
regions is imperfect and measured differently between
sources, a picture does emerge that is useful for Australian
manufacturers and policy makers.

Notably, these markets are dominated by a smaller number
of major, high throughput producers responsible for between
60-80% of the region’s manufacturing value added, and
50-70% of manufacturing jobs. In the absence of a more
comprehensive comparative analysis, assumptions can be
drawn that these sectors are highly automated to perform
high volume repeat tasks, and consequently, as the largest
employers in their respective regions, their workforce is
predominantly trained in this high throughput repetitive style
of manufacturing.

It also paints a picture of the “type” of robotics and automation
deployed in these regions, that being articulating arms, closed
system processing of materials and chemicals, automating
production and processing lines. While innovation in these
systems is always occurring, we have been using versions of
this technology for several decades now.

All of this is very important context as it relates to the
Australian manufacturing sector where figures present an
almost completely opposite picture. In Australia, manufacturing
accounts for $105B value added, considerably less than

these international markets as a proportion of the national
productivity at just 5.5% [11].

A sectoral breakdown shows that many industries comparable
to other markets (eg, chemical production, electronics,
automative, transport, and machinery) have been in sharp
decline for decades [11]. This is reflected in the employment
distribution where 91.9% of manufacturing jobs are at

firms with 19 or less employees, 7.5% at firms with 20-199
employees, and just 0.6.% at firms with over 200 [11].
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The number of employees at firms comparable to large US
industries (greater than 500) is likely incredibly small. This
comparison is stark, as 59% of US manufacturers are employed
by these large firms, and therefore the skills and experience of
Australian manufacturers are likely very different as a result [11].

Consistent with international markets however, is the growth
of the Australian composite manufacturing sector which

has demonstrated consisting strong CAGR of 9.70%, almost
double the rate of our international peers [12]. Composite
manufacturing in Australia is one of only a handful of
manufacturing sectors that are growing against the general
downward trend experienced in other segments with a market
size estimated to be USD $2.4B in 2024 and projected to
double to ¥$5.6B USD over the next decade [12].

While composite manufacturing in the aforementioned
international markets is dominated by large, vertically
integrated OEMs, the Australian composite manufacturing
sector is comprised largely of SMEs, typically born out of
domestic material engineering research and innovation [13].
This is a valuable insight, as the operational requirement of
Australian composite SMEs will strongly align with the broader
Australian manufacturing community.

It is reasonable to assume given the dominance of small
manufacturers in Australia that robotics and automation are
less common in workflows. Investment cost is likely one
factor, but perhaps more accurately it is the limitations of

General Distribution

INTRODUCTION

commercially available industrial robotics that focus on high
throughput, repetitive tasks, not an agile and constantly
changing operation.

For a small firm to remain commercially viable it must either
have a large and reliable customer, or a variety of smaller ones.
Given the absence of large firms in Australia, the latter is most
likely the scenario, and by extension, the workforce in these
smaller firms must be highly skilled and dynamic to meet the
needs of their heterogenous customer base.

Throughout this study we visited a variety of composite
manufacturing facilities. This is exactly what we observed.




AUSTRALIAN COMPOSITE MANUFACTURING

Through our collaborations with the ACM CRC,
ACM CRC members and industrial partners, we
have identified specific pain points in current
composite manufacturing workflows where
targeted research in robotics and automation can
drive high-impact improvements.

The ACM CRC represents a broad distribution of composite
manufacturers and manufacturing techniques (for more
information on ACM CRC industry partners please refer to

the ACM CRC website). For this white paper we visited 12
manufacturing facilities observing processes and technologies,
combined with surveys of key staff. Importantly, two industry
peak bodies were either involved or engaged in this process
enabling the study team to validate findings of the sample
group with the broader experience of the sector.

Most composite manufacturers in Australia and New Zealand
(ANZ) are characterised by unique and bespoke jobs where
product designs and production lines change on a regularly
basis [14, 15], e.g. monthly and even weekly, based on the
requirements of the clients.

This is largely due to a confluence of macro-economic forces
local industries have no control over, such as the market size
of a smaller population, proximity to global markets, a higher
paid and skilled workforce, to name a few. Consequently, ANZ
manufacturers need to be agile and responsive to a diverse
range of customer needs, making conventional repetitive
automation solutions for large-scale production lines less
relevant to their workflows.

The absence of large-scale production line manufacturers

is often framed in the media as a negative, evidence of
Australia’s declining manufacturing capability. This is a gross
mischaracterisation, and in fact being agile and bespoke in
manufacturing and production typical of our region requires,
and has produced, a highly competent and highly skilled
workforce capable of meeting constantly changing production
demands. We refer to production techniques with such
characteristics as flexible manufacturing.

It is the opinion of this white paper that being agile and flexible
is a unique strength; and rather than focussing on why there
are so few large-scale production line operators in ANZ, we
should instead be leaning into our flexibility and agility as our
advantage and characteristic, and ensure we are the world
leaders at flexible manufacturing. In order to achieve this,
there is a clear need for manufacturing technology, systems and
processes that can easily and efficiently adapt to changes in
jobs and conditions.

With flexible manufacturing, we aim to reduce as much
unnecessary cost of labour, time, energy and money as possible
in design, fabrication, inspection as well as decision making

in the overall production line, which is a desired outcome
expressed by ANZ manufacturers whom we have visited in our
surveys. Furthermore, it is clear from our engagement with local
manufacturers that this is a clear gap in the technology offering,
as technology developers focus predominantly on larger scale
operations. This affords an opportunity to not only bolster

and grow our flexible manufacturing sector, but in doing so
develop a new class of technology producers in the process.

This white paper will focus on the Robotics and Artificial
Intelligence (Al) technologies with the potential to enhance
flexible manufacturing and introduce intelligence into
production processes. We will discuss both existing
technologies as well as the scientific barriers that must be
addressed to overcome limitations in the current state of the art.
Further to this, we will also outline a series of research projects
targeting low hang fruit through to high value multi-stakeholder
initiatives required to develop flexible manufacturing
technologies and project the benefit of such investments to the
sector as a collective.

In this white paper, we categorise opportunities of flexible
manufacturing into four general domains, namely:

. Process Digital Twin and Optimisation,

- Robotics and Automation,

- Design Optimisation and Automation, and
«  Quality Assurance (QA) and Inspection.

We will discuss challenges that the current composite industry
in ANZ faces and how Al and robotic technologies can help
address them.

For each domain we propose tangible solutions, and discuss
and rate the proposed solutions from the angles of theoretical
research and industrial deployment in the context of the four
specified measures.

The corresponding values will be presented in a table format
(see next page for the measures and format), accompanied by
specific comments for clarity.
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RESEARCH RECOMMENDATIONS

FOUR SPECIFIED MEASURES:

Theoretical understanding difficulty
reflects the conceptual and mathematical
complexity of the underlying theory. This
will be rated on a scale from 1to 5:

Experimental difficulty and cost identify
practical challenges and financial burden
associated with building prototypes,
acquiring hardware, collecting data, etc.
This will be rated on a scale from 1to 5:

Deployment difficulty in real world
scenario evaluates how challenging it is
to adapt, integrate and use the systems
outside controlled lab environments:

Value of a successful system refers to the
impact/return if the system performs reliably
in practice:

General Distribution

LOW (1-2):
MEDIUM (3):

HIGH (4-5):

LOW (1-2):

MEDIUM (3):

HIGH (4-5):

LOW (1-2):
MEDIUM (3):

HIGH (4-5):

LOW (1-2):
MEDIUM (3):

HIGH (4-5):

AUSTRALIAN COMPOSITE MANUFACTURING

Well-established and accessible foundations.

Requires specialist knowledge with moderate
complexity.

Involves novel or ambiguous theory and advanced
models (e.g., nonlinear PDEs, probabilistic
reasoning).

Simulations or standard lab setups,

Custom experimental setups or moderately priced
hardware,

Expensive equipment and/or data collection,
custom fabrication, safety constraints.

Easily deployable with existing infrastructure,

Require moderate adaptation, engineering effort,
and dedicated infrastructure,

Demands significant customization, complex
engineering integration, and the development of
specialized infrastructure.

Marginal gains or targeted to a niche application,

Delivers significant benefits within a specific
domain,

Transformative impact, strong commercial potential,
or substantial contributions to operational safety.




1. PROCESS DIGITAL TWIN AND OPTIMISATION

Based on discussions with industry
representatives, this section explores approaches
to enhance manufacturing processes and
optimize factory floor logistics. It emphasizes
the use of Digital Twin technologies for
monitoring and modelling production lines,
enabling and automating intelligent decision-
making. Optimising the logistical aspects of the
manufacturing production is the most common
desire voiced by the industry partners that we
have discussed with.

The optimisation of production lines will allow our industry
partners to more efficiently utilise labour and high value
hardware, to increase productivity while decreasing costs,
and to more intelligently incorporate and leverage emerging
robotic and automation technologies (such as those
discussed in Section 2, 3 and 4).

Automating these optimisation processes also ensures
operations can be highly responsive to sudden changes or
unexpected work stoppages, drastically reducing the labour
and productivity costs of downtime, and Digital Twin is
instrumental in providing real-time insights, predictive analytics,
and scenario testing to proactively mitigate disruptions and
enhance overall efficiency.

During our engagement with partners for this white paper, it
soon became apparent the considerable human resources
employed specifically to minimise this problem. Many facilities
have employees dedicated to monitoring the factory floor and
machine utilisation rates, as well as experienced engineers
designing manufacturing and fabrication workflows and

adapting them upon any interruptions such as machine break-
down or material delivery delay.

There are a lot of time and labour resources spent solely on
these logistics, and we believe this is a domain where robotic
technologies can greatly assist the human labours and improve
the intelligence in the production process.

It is the opinion of the authors that this is perhaps the biggest
opportunity for flexible manufacturers in our region, and for
several reasons.

Firstly, current commercially available systems are not
designed to address this problem for manufacturers that need
a high degree of flexibility, as is typical of our region.

Second, process modelling and optimisation as well as Digital
Twin technologies are relatively well understood problems in
the robotics research community (e.g. robot path planning,
perception and 3D scene reconstruction, etc.), indicating that
projects in this space are highly likely to produce immediate
positive outcomes for partners.

Third, our observations indicate this problem is not only
resource intensive for partners, but is a ubiquitous issue in the
sector, meaning that this is a shared issue that partners can
collaborate on solving where the return on investment will
benefit all considerably.

Fourth, better optimisation systems of this nature and Digital
Twins of the factory floors can form the foundation for the
development of bespoke robotic systems and innovations
(Section 2) customised to the needs of individual partners.
Meaning, it would be expected that all future robotics systems
deployed to support enhanced productivity in an operation
would “plug-in” to this foundational system to ensure continued
operational efficiency improvements.

11 Manufacturing process modelling and optimisation

Many manufacturers in ANZ have already been employing
management software to digitise and manage their production
line, e.g. STRUMIS and Tekla for steel (metal composite)
fabrication. However, during our survey visits, they have also
voiced limitations in such software not providing the exact
functionalities they desire, for example, being unable to adjust
the production plan when unforeseen incidents occur.

In the field of robotics, Digital Twins are emerging as a
powerful tool to model the factory floor with the intention of
optimising the production process. Virtually representing the
factory floor [16] and monitoring the physical production line
using Internet of Things (IoT) techniques [17] enables real-time
analysis of the manufacturing process and improves decision-
making in the production planning and optimisation [18, 19].

To systematically find the optimal strategy for a workflow,
the robotics community employs techniques such as Linear
Programming (LP), Mixed Integer Linear Programming (MILP)
and Mixed Integer Nonlinear Programming (MINLP) across a
wide range of different industries [20, 21, 22, 23].

By modelling each manufacturing step, their requirements and
objectives using linear relationships, the overall production
line can be optimised mathematically. This problem has been
studied by roboticists over many decades [24, 25].

We therefore propose working with partners to create Digital
Twins of their factory floors. These Digital Twins will capture
the physical and logistical relationships of each manufacturing
step, allowing us to model production lines and optimise them
using LP/MINLP techniques.

These models will then enable the autonomous optimisation
of manufacturing processes and workflows. Instead of
replacing human involvement completely, we intend for
such an algorithm to be a tool used by engineers to speed
up the process of optimising the workflow and responding
to incidents, to alleviate the burden on the few experienced
human experts in each company responsible for such
optimisation.
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PROCESS DIGITAL TWIN AND OPTIMISATION
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Figure 2 An Al-powered Digital Twin example for a factory floor and the planning of movements on it (video demo) [26].
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Figure 3 An example of a Digital Twin Cyber-Physical Production System (DT-CPPS) and how it models a smart factory floor created by Ding et. al. [19].
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PROCESS DIGITAL TWIN AND OPTIMISATION

11 RESEARCH RECOMMENDATIONS

A research project on methodologies for developing a Digital Twin for a factory floor or production line,
coupled with logistics optimization using LP, MILP, and MINLP, can focus on algorithmic design and adaptability.
This study would explore how mathematical models can be refined and updated to accommodate varying
constraints and dynamic behaviours along the production line, leveraging an industry-provided mock factory

floor model as a reference framework.

RATING

MEASURE T COMMENTS
Theoretical 3 An established field of research, however will require
understanding difficulty adaptation to context.
Experimental difficulty 3 Low-cost simulation-focused experiments in the
and cost development stage.
Deployment difficulty in a Deployment in real-world scenarios will require
real world scenario significant input from partners and adaptation.
Value of a successful 5 Common desire shared by many partners, and will

system

RESEARCH SOLUTIONS

immediately provide the benefit of reducing cost.

Such a project can take three years for a PhD student, or two years for a Postdoctoral researcher. To
tailor such a system for any particular partner, the project will additionally involve a technical engineer
to gather the specific needs for the partner, and to bridge between the theoretical research and the

software deployment.

1.2 Productivity management of machineries and operators

In order to achieve the most realistic model of the production
line, it is essential to carefully monitor the utilisation of each
machinery on the factory floor so as to accurately model them
in the Digital Twin. Additionally, human action and activity
recognition is a well-established topic in robotics and Al and
integrating these techniques can enhance the Digital Twin

of the factory floor by accurately modelling human factors

for productivity management while also improving workplace
safety and preventing hazardous situations.

Partners we have visited in our survey have all expressed
interest in monitoring the utilisation rate/efficiency of their
machineries, especially their newly invested automation robots,
as well as in understanding human operator productivity.

Many of our visited partners rely on operators logging onto
and off each machine, such as via scanning custom QR codes,
to digitally record the utilisation of each machine. To better
monitor machine utilisation, some partners are leveraging loT
devices, such as FourJaw’s energy monitoring suite (video
introduction to FourJaw) [27], to track and log the productivity
of machines.

Visual sensors, e.g. security cameras which most companies
have already installed, can be leveraged to recognise and
analyse human activities on the factory floor [28, 29]. We
further purpose installing privacy preserving cameras [30] on
the factory floor instead to improve the security of personal
and corporate information.

Finding correlations between operators and machine utilisation
can help create a more accurate Digital Twin of the production
line that incorporates human-based productivities [16]. Such

a project will incorporate Al-based activity recognition
algorithms [28, 29] and studies on modelling human activities
in a Digital Twin as optimisation problems [16].

General Distribution
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Figure 4 Fine-grained activity recognition on assembly by Chen et. al [31].

1.2 RESEARCH RECOMMENDATIONS

A research project on methodologies for developing a Digital Twin for a factory floor or production line,
coupled with logistics optimization using LP, MILP, and MINLP, can focus on algorithmic design and adaptability.
This study would explore how mathematical models can be refined and updated to accommodate varying
constraints and dynamic behaviours along the production line, leveraging an industry-provided mock factory
floor model as a reference framework.

MEASURE RATING COMMENTS
OUT OF 5

. Based on established and highly practical
Theoretical 3 technologies, but unique contexts will require tailoring.

understanding difficulty However, privacy preserving Al/vision technology is a
field still being explored.

Experimental difficulty 3 Experimental verification will require accessing factory
and cost floors for real-world assessment.

Similar technologies exist - the challenge lies in
4 customisation as well as ensuring the solution does
not invade operator privacy.

Deployment difficulty in
real world scenario

It will provide detailed information on how the

Value of a successful 5 production lines run, pinpoint the limitations in existing
system processes and save significant hours from supervision
roles.

RESEARCH SOLUTIONS

We estimate this to take two years for a PhD student, or a year for a postdoctoral researcher. The
practical deployment of existing solutions on factory floor and will take one additional year for a PhD
student and an engineer, mainly to tailor the system for any partner.
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1.3 Material tracking on factory floor

Tracking materials on the factory floor is one key aspect of
smart and flexible manufacturing, assisting the optimisation
of the production process and providing better guidance for
accurate manufacturing [32].

Optimising and minimising movement of heavy materials
within the workshop will also reduce the cost and improve
safety. Each company has their own methods, ranging from
barcodes on the job to IDs written on chalk. Radio Frequency
Identification (RFID) is another established technique employed
by smart factory in Industry 4.0 [33].

Accurately tracking materials will significantly improve how
closely the Digital Twin reflects the actual factory floor,
especially in certain industries such as steel fabrication where
a lot of resources, i.e. man hour and energy, are invested in
handling heavy materials.

On the other hand, a Digital Twin of the factory floor can also
advise the safest and most efficient scheduling and/or path of
material transportation, as well as monitoring the consumption
of raw materials to advise purchases in advance.

1.3 RESEARCH RECOMMENDATIONS

However, a labelling method that can withstand most or all
manufacturing process while being economical remains a
challenge, as advised by many partners that we have surveyed.
There is therefore a direction for further investigation on what
is the best method/sensor/software combination for labelling
and tracking materials on the factory floor.

This project also contributes to the overarching factory floor Digital Twin and optimisation project as outlined
in Section 1.1. The theoretical study on tracking and modelling material transportation on the factory floor is
estimated to take one year in a PhD student project, or half a year for a postdoctoral researcher, which will also
include the exploration on how the Digital Twin can feedback into tracking and monitoring materials.

MEASURE RATING COMMENTS
OUT OF 5
Theoretical
G . rpe 2 The research is less theoretical and more practical.
understanding difficulty
Experimental difficulty 3 Experiments focus more on making sure it works on

and cost

Deployment difficulty in
real world scenario

Value of a successful
system

RESEARCH SOLUTIONS

the factory floor, so the cost can increase.

Key aspect of this project is deployment, and it is
4 essential that the tailored solution can endure the
manufacturing processes.

a Streamline and automate material tracking on factory
floor, which facilitates further automation.

The investigation of the most appropriate labelling technique involves designing a tailored system for
each individual partner on a case-by-case basis. We recommend partners to consult experts on robotic
solutions, and we estimate the deployment to take half of year for an engineer.
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1.4 Pricing estimation and advising

Every partner that we have visited so far has mentioned that
there is a significant amount of historical data on job pricing
and productivity collected throughout the years. We believe
that such data can be leveraged to estimate and advise cost
and pricing for future projects [34, 35], which is a useful guide
for job quoting and contract drafting.

A Digital Twin of the factory floor will be able to provide

a reliable estimation for the required time and resource
cost, based on the historical data, the accurately modelled
manufacturing processes and the production scheduling.

This will be a data-driven Al-based algorithm that can both be
company-specific as well as a cross-industry tool, depending
on whether the modelling of the manufacturing processes is
based on any company specific data.

1.4 RESEARCH RECOMMENDATIONS

This project can be another component of the Digital Twin project, focusing on the realistic applications of
the Digital Twin and how it can further benefit our partners beyond production optimisation. The theoretical
exploration of this project will take up a year in a PhD student project given the readiness of said data.

MEASURE RATING COMMENTS
OUT OF 5

The theoretical foundation is established, but how
2 these methods apply to composite industry and where
existing methods fail is unknown.

Theoretical
understanding difficulty

Experimental difficulty 2 Experiments are purely in simulation, but the
and cost complication lies in real-world verification.

Deployment difficulty in The difficulty of deployment is in accessing the large

. 3 amount of historical data and adapting it to different
real world scenario contexts.
Value of a successful 3 This has been raised by a few partners as a great
system source of advice for job quoting.

RESEARCH SOLUTIONS
The deployment of such a system in industry will involve working tightly with the industry or the partner

to identify where existing forecast techniques fail, processing the historical data, and exploring and
applying existing Al techniques.
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2. ROBOTICS AND AUTOMATION

Another key aspect in production line
optimisation is to automate each manufacturing
step. Leveraging state-of-the-art robotic
technologies, a highly automated production can
achieve significant improvement in reliability,
repeatability and consistency, as well as
reduction in material waste, manufacturing lead
time and cycle time, and cost in general [36].

We have observed this phenomenon in many conventional
mass-production industries, e.g. automobile, where the rigidity
in their production processes simplifies the mechanisation
and automation of the assembly lines. The composite
manufacturing industry has similarly started to leverage such
solutions as automated tape laying, fibre placement and
filament winding [36, 37].

Among the partners whom we have visited during this survey,
we have noticed the trend of investing and incorporating
robotics into their production lines so as to mechanise and

automate certain manufacturing processes. However, these
systems are not yet fully capable of delivering what the real-
world industry desires, especially in the context of flexible
manufacturing, which results in such investments being less
than economical.

For example, conventional automation techniques that focus
on repetition are not as feasible when the job specification
changes regularly. Many partners have noticed that manually
reprogramming the automation for a new design takes a
comparable amount of time to the original non-automated
process. We instead focus on improving the autonomy of the
production line, in addition to simple automation.

Figure 5 The Thermoplastic Automated Tape Placement design by German Aerospace Centre (DLR) [38] - video demonstration.
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21 Perception-in-the-loop manufacturing

Conventional automation systems in the manufacturing
industry are designed for assembly lines and usually expect
standardised and repetitive interfaces with the materials they
are to operate on, with minimal awareness of the environment
and little flexibility for on-the-fly adjustments. If the material

is not placed in the exact position the robot expects, the
automated execution is prone to fail or produce subpar
products.

Additionally, many of these automated systems require
human operators to teach them the new execution command
for a new job [36], which takes a significant amount of time
comparable to manual execution and therefore diminishes the
benefit of automated execution when the production batch is
small-scale and bespoke, as pointed out by many partners we
have visited.

The key to enable autonomous decision-making towards
flexible manufacturing tasks, i.e. with fast-changing product
design and dynamic factory environment, is the perception
and understanding of the environment [14]; hence we
propose perception-in-the-loop systems as the foundation for
intelligent automation in flexible manufacturing.

Sensors commonly used in the field of robotic perception
range from conventional RGB cameras [39] to Infrared (IR)
depth cameras [40] and laser scanners [41, 42], each providing
a unique modality of data that can be used to both localise the
robots and map the environment and the materials.

Simultaneous Localisation And Mapping (SLAM) methods can
provide the robotic systems with accurate representation of
the environment and where it is with respect to it [43, 44], and
algorithms such as 3D registration can align and compare

a reconstruction of the product with its CAD model [45, 46],
giving the robotic system a real-time understanding of its job
and the ability to make on-the-fly decisions on how to proceed.

A few industrial robot manufacturers have recently presented
similar products with built-in perception systems, such as
Zeman'’s Steel Beam Assembler (SBA) [47] (Zeman SBA
demonstration).

Furthermore, the emerging field of Learning from
Demonstration (LfM) has shown promising results on human
experts teaching complex tasks to robotic manipulators
through simple demonstration [48, 49, 50] (Universal
Manipulation Interface (UMI) demonstration).

Figure 6 An example of an accurate dense point cloud (top) collected by chest-inspection robots compared with the actual steam chest (bottom),
presented by Pomerleau et. al. [45].

General Distribution



https://www.youtube.com/watch?v=qwuKA0U7CnM
https://www.youtube.com/watch?v=qwuKA0U7CnM
https://umi-gripper.github.io/
https://umi-gripper.github.io/

ROBOTICS AND AUTOMATION

Perception systems are used to capture the human operators’
behaviours and Al technologies translate that into robotic
executions. Such technology can further improve the flexibility
of robotic systems when handling frequently changing tasks.

Similarly, perception and Al techniques have enabled robotic
fabric manipulation in recent years [49] (video of fabric
manipulation through LfM), which used to be a key challenge
that limits the application of robotic and automation in
composite manufacturing.

21 RESEARCH RECOMMENDATIONS

Exploring these cutting-edge research field and bringing
them into real-world application will significantly benefit the
composite industry in Australia.

A research project on a perception-in-the-loop robotic prototype should take a PhD student a year of their
candidature or a postdoctoral researcher up to one year depending on the specific application. To investigate
the exact limitation of existing industrial solutions and to deploy such a system in a factory or tailor the
prototype for the specific needs of any partner will require in addition another half of year and an engineer

working alongside the research.

RATING
MEASURE OUT OF 5 COMMENTS
Theoretical a LfM is an emerging research area and will require
understanding difficulty

Experimental difficulty
and cost

Deployment difficulty in
real world scenario

Value of a successful

system

RESEARCH SOLUTIONS

thorough investigation.

Robotic hardware experiment is essential for this
3 project, but commercially available and conventional
hardware will suffice.

a The robotic solutions have to be reliable, robust and
safe to be deployed on the factory floor.

It plays a core role in enabling automated production
5 lines.

Developing a LfM system for industry-specific applications will be at least a two-year project for a PhD
student or a one-year project for a postdoctoral researcher, and an additional year for deployment
in the factory with an engineer for tech support. This amount of time is estimated for a robotic fabric

manipulation project.

2.2 Mobile robotics on factory floor

Traditional automation setups transport materials along the
assembly lines and have stationary robots work on them.
Manufacturers that handle large and/or heavy materials
therefore often have to rely on huge machineries to manipulate
their materials, a typical example of which is the steel
fabrication industry.

The transportation and handling of these large materials is
dangerous and resource-consuming (time, labour and energy),
and in certain cases prone to error. In addition, conventional
assembly line robots usually have hardware limitations on the
dimension and weight of the materials they can handle. A few
partners have mentioned such constraint being a bottleneck
for robotic production line.

We therefore propose employing mobile robots to minimise
the need to move heavy/large materials on the factory floor.
Instead, robots such as omnidirectional platforms can carry
robotic arms and tools the material to automate assembly,
fabrication and manufacturing tasks [51, 52, 53], with state-
of-the-art perception algorithms enabling accurate and safe
execution.

Such a system can mitigate the need to use heavy machineries
and significantly reduce the movement of large and dangerous
materials, which would in turn improve the safety of the factory
floor and reduce the cost in investment and energy.
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ROBOTICS AND AUTOMATION

Figure 7 Toyota CDI120 Automated Horizontal Carrier [54] for warehouse and factory floor (video demonstration).

2.2 RESEARCH RECOMMENDATIONS

A research project exploring feasible solutions for deploying mobile robotics on the factory floor would
investigate the use of multiple robots to perform complex tasks, optimize planning and utilization, and develop
perception systems tailored to the factory environment.

MEASURE RATING COMMENTS
OUTOF 5

Mobile robotics is an emerging field and have been

Theoretical 3 studied over the years, but still need more research
understanding difficulty for executing complex tasks cooperatively on factory
floors.

The involvement of robotic hardware raises the

Experimental difficul
perimental difficulty 3 experiment costs, but conventional platforms are
and cost sufficient.

Deploying mobile robots on the factory floor presents
5 challenges in the safety and robustness of these
robotic systems, especially with humans around.

Deployment difficulty in
real world scenario

Value of a successful 5 It will significantly reduce the investment in large-scale
system machineries.

RESEARCH SOLUTIONS

Designing such a system is expected to take approximately two years for a PhD student or one year for
a postdoctoral researcher, with a primary focus on ensuring safety in human-rich environments. Further
research—around one additional year for a PhD student or six months for a postdoctoral researcher—
would be required to enable these robots to execute manufacturing tasks effectively. Deployment would
necessitate the involvement of an additional engineer for at least one year.
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2.3 Force sensing and control, and handling deformable material

Our partners in carbon fibre manufacturing industry have
pointed out that the mechanical properties of this type of
composite materials, such as their brittleness and deflection
capacity, are a challenge for automating the post-production
machining processes such as drilling and trimming [55, 56].
The fabric form of these materials during the layup stage also
makes them hard to handle with robotic manipulators [57, 49].

Mass composite manufacturing can be economically
automated with 3D printed tools (moulds) and automated
lamination process, addressing these material handling
challenges. However, in small-scale productions of highly
customised jobs, the flexibility in manufacturing processes
require more intricate and adaptable handling of the materials.

For human operators, feeling the surface of materials and the
pressure on the hands is what allows us to handle intricate
materials. Similarly, the ability to measure force exerted by and
applied to the robotic manipulator plays a key role in handling
delicate materials.

Better informed control decisions can be made for the robot
to more accurately execute its task. In recent years, soft
robotics and touch/tactile sensors are two relevant emerging
researching field in robotics, both greatly contributes to
handling brittle or fabric-like materials [58, 59].

However, tactile sensors are prone to damage when used
repeatedly, such as in an industrial context. Alternatively,
torque and inertia sensors embedded in the joints of robotic
arm are commonly used to estimate the force on arm [60, 61].

With assistance from perception-in-the-loop systems [62]

( ) and well-informed and
well-designed control systems [63], these robot systems can
also be deployed to conduct highly intricate manipulation tasks
such as handling composite fabrics and brittle products as well
as polishing and cleaning the detailed surfaces of tools [64].

It also enhances the safety of the robots in human-present
environments, e.g. factory floor.

The combination of perception and force sensing capability
can also be leveraged to handle materials with deflection
capacity that poses challenges to traditional industrial
automation as well as conventional robotic solutions.
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Figure 8 An adaptable robot system manipulating flexible objects by Bodenhangen et. al. [57].

2.3 RESEARCH RECOMMENDATIONS & SOLUTIONS

Tactile, haptic, and force sensing technologies have been studied for decades, but they still require further
research to optimize their integration into real-world applications. A project on tactile, haptic or force sensing
integration in a robotic manipulation of sensitive materials will require a PhD student three years, or a

postdoctoral researcher one year.

To design a control system that leverages force sensing will be a one-year project for a PhD student, or half
a year for a postdoctoral researcher. Its deployment will need an additional engineer working alongside the

researcher for half a year.

MEASURE

Theoretical
understanding difficulty

Experimental difficulty
and cost

Deployment difficulty in
real world scenario

Value of a successful
system

General Distribution

RATING
OUT OF 5

COMMENTS

Force-based control is an established field, but haptic/
tactile sensing or a robust force sensor is an open
research topic.

Designing such a system will require customised
robotic hardware and sensor design.

eploying the sensor is straightforward, but to leverage
the sensor will require heavy customisation of the
existing robotic software.

The biggest value of such a project lies in the safety
of robotic systems on the factory floor, especially
working with humans.
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2.4 Multi-robot collaboration material

As the complexity of manufacturing process rises, there is often that combining multiple sensor modality, e.g. visual and tactile
the need for multiple actions to be executed at the same time. (Section 2.3) can greatly improve the intelligence of multiple
For instance, in the context of welding in steel fabrication, two manipulators collaborating with each other on industrial tasks
pieces of steel will be held against each other while being (video demonstration of SimPLE).

| her.
welded together In addition, existing industrial solutions often incorporate large

To automate processes of such nature, existing industrial robotic structures to accommodate for the various dimensions from job
solutions such as Zeman'’s SBA [47] employ multiple robot arms, to job and/or to facilitate material handling, which in turn require
each handling one simple task and collaborating each other. large footprints on the factory floor.

To facilitate the collaboration among multiple robots, the first
cornerstone is to accurately understand the position and joint
configuration of each robot with respect to each other, and
perception-based multi-agent localisation and SLAM [65, 66]
(video demonstration for CCM-SLAM) is a well-studied area in
robotics. State-of-the-art robotics systems such as Simulation
to Pick Localize and placE (SimPLE) [67] further demonstrate

=

We propose breaking these large monolithic robots into smaller
individual robots, potentially mobile ones too as discussed in
Section 2.2. We expect such a strategy to significantly reduce
the hardware investment involved in these robotic solutions,
and instead leverage state-of-the-art multi-agent localisation
algorithms [65, 68] to ensure the accurate interactions among

robot arms.
Manipulation ,
Planning |~

Visuotactile
Perception

v

X1t =\l o NP\

Figure 10 SIimPLE, a state-of-the-art picking and placing multi-manipulator system that leverages visuotactile perception [67]

2.4 RESEARCH RECOMMENDATIONS & SOLUTIONS

Collaboration among multiple stationary robots is a well-studied area and will take a PhD student one and half
years, and a postdoctoral researcher one year. Its deployment will require an engineer working with the researcher
for half a year.

Designing a swarm of mobile robots on the factory floor that collaborate with each other to execute complex
manufacturing tasks will be a three-year project for a PhD student and at least a two-year project for a postdoctoral
researcher. The deployment of such a system on the factory floor will need a lot of verification in safety. The
required length of time will be dependent on many real-world aspects such as the factory floor plan.

MEASURE RATING COMMENTS
OUT OF 5

Theoretical a The challenge lies in the mobile collaborative robots
understanding difficulty as it is a complex system with many moving parts.

Experimental difficulty 5 Experiments will require multiple complex robotic
and cost hardware systems.

Deployment difficulty in 5 The safety concern of such a system working with
real world scenario humans on the factory floor is the biggest challenge.
Value of a successful 5 This technology can lead to a fully automated factory
system floor with minimal human involvement.
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2.5 Human-robot interaction (HRI)

For mobile robots to be conducting manufacturing on the In addition to hardware innovation, it is beneficial to have
factory floor, there is a growing need in safety for robots and an intelligent navigation system that is aware of the random
humans to work in the same environment. The emerging movement of humans and able to quickly respond to them [70].

field of cobots, i.e. collaborative robots, has encouraged the
development of many new designs that are safer to work
alongside human operators, such as Universal Robotics’ robot
arms [69].

Dynamic object motion tracking and estimation based on
perception is an emerging field in robotics [71, 72], and we are
seeing promising results that can be leveraged to improve the
safety of robots interacting with humans.

One of the key features for Human-Robot Interaction (HRI)

safety is compliant control—robot arms can be safely pushed

around by human due to their light weight and compliant joint

[70]. In addition, force and torque sensing capability (Section

2.3) can better inform these cobots the amount of force

required as well as detect potential collisions, further improving

HRI safety [70] (HR! video demonstration).

Last but not least, mitigating the need of heavy machineries
and replacing them with smaller robots, as discussed in
Section 2.2, also considerably improves the safety of human
operators on a highly automated factory floor, because heavy
machineries operate with significantly more power and are
therefore far less compliant compared to light-weight robots.

Figure 11 An example of a collaborative human-robot task with a UR10 robot by Gaz et. al [64].
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2.5 RESEARCH RECOMMENDATIONS & SOLUTIONS

The core technical exploration and development on HRI should take a PhD student two years or a postdoctoral
researcher one year. Tailoring such a system for a particular task or a partner will require another year of an
engineer working with the researcher to ensure safety, and a variety of robotic platforms might be involved

depending on the desired task.

RATING
OUT OF 5

MEASURE

Theoretical
understanding difficulty

Experimental difficulty
and cost

Deployment difficulty in
real world scenario

Value of a successful
system

2.6 Specialised sensor selection

There is a wide collection of sensor types available for
robotics research as well as industrial purposes, each
providing a unique modality applicable for specific needs.

For example, highly reflective surfaces (high specularity), e.g.
metals, pose challenges to conventional perception sensors
like camera and LiDAR, and there are scanners tailored for
such materials [73].

We recommend partners to consult robotic experts when
choosing sensors for automation systems on the factory floor.
Experts can help assess the specific needs of the application,
taking into account the environmental conditions, surface
properties of materials, and performance requirements.

COMMENTS

Further research is still required to improve the
3 existing solutions, but there is on-going research in
many required aspects of such a system.

3 There might be a need for different robot platforms to
assess different aspects of HRI.

5 The main challenge is the safety concerns when
robots and humans interacts with each other.

4 The key value of this system is the improved safety of
robotic systems in general on the factory floor.

A comprehensive understanding of the sensor’s capabilities,
limitations, and integration requirements is essential to
ensure that the chosen sensors align with the goals of the
automation system.
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3. DESIGN AUTOMATION AND OPTIMISATION

3.1 Automated design assist

To fully realise an end-to-end automated manufacturing
process, we also need to automate the design stage. Many
partners we have surveyed so far identifies the manual
design process being time consuming and a bottleneck in the
production, especially when the job changes regularly and
requires flexible designing and detailing process [14].

For example, in the steel fabrication industry, drawings need
to be populated with details such as bolts, nuts and welds.
In composite manufacturing, the design process involves
translating structural and performance requirements into

We therefore propose leveraging Al-based methods to

learn how to design the production process as well as each
manufacturing step [74, 75, 76], with the intention of assisting
human designers to improve the efficiency and reduce
involved manhour.

This technology will have far-reaching impacts beyond the
composite industry, and contribute manufacturing in general.
For instance, t here has been a few emerging directions on
Al-based methods for improving prefabricated house designs
[77,78, 79]

selecting the appropriate fibre or fabric materials, defining the
optimal layup configurations and designing the end product
[36]. All these processes have well-defined standards in each
corresponding industry.

|
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Figure 12 Al-assisted segmentation design for prefabricated wall-floor building by Baghdadi et. al [77].

3.1 RESEARCH RECOMMENDATIONS & SOLUTIONS

Researching the theoretical core of an Al-enabled design automation algorithm will take a PhD student one and
half years, or a postdoctoral researcher one year. To tailor it for a particular task will require partner involvement,
especially in the form of accessing and learning from historical data, which is estimated to require an additional

half a year.
MEASURE RATING COMMENTS
OUT OF 5

Theoretical a There exist theories for such problems, but further
understanding difficulty research is required to bring them to the real world.
Experimental difficulty 1 Experiments will focus on simulation with minimal
and cost hardware involvement.
Deplovment difficulty in There is little risk in deployment, but it will require

SR ERTI e E 2 partner involvement (accessing real-world data) and

real world scenario feedback.

Common desire shared by many partners, and will
5 immediately provide the benefit of reducing cost in
terms of man hour.

Value of a successful
system
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3.2 Transportation and batch manufacturing

Within a similar domain as design automation, we further
propose using Al-based methods to assist the design of

material and product transportation and batch manufacturing.

Different industries practise batching at different stages

of the production and for different purposes. For example,
carbon fibre composite manufacturing industry pre-cuts and
groups materials into kits (known as kitting) before layup,
and arranges pieces within a sheet to minimise waste before
automated cutting (known as nesting).

In large-scale steel fabrication, the overall design is divided
into lots (lotting) because there are many steel beams,
sections or structural elements that need to be fabricated,
transported and assembled on site in a particular order and
manner.

Across all these practices, the same theme remains—

Software such as Tekla, JETCAM and Autodesk all have
lotting or nesting tools for automating such processes for
their corresponding industry [80, 81, 82] (video demonstration
of Autodesk Investor nesting tool). However, several partners
have expressed interest in a more intelligent system based on
their day-to-day experience with the software.

We therefore propose investigating the limitations of the
existing tools and learning the specific needs of the partners,
and tailoring an optimisation tool for material batching,
handling and transportation towards each partner.

organising materials and products based on the manufacturing

process and the design will improve the efficiency of material

handling and production.

3.2 RESEARCH RECOMMENDATIONS & SOLUTIONS

Because there are existing solutions commercially available for lotting/batching/kitting tasks, and there is an
established theoretical foundation, the key research focus lies in first understanding what partners still need in
addition to off-the-shelf technologies, and second deploying the theory to solve real-world problems. This will
take one and half years for a PhD student or one year for a postdoctoral researcher. Customisation for particular
partners might require additional time depending on the task.

MEASURE RATING
OUT OF 5

Theoretical

understanding difficulty 2
Experimental difficulty 1
and cost

Deployment difficulty in 2
real world scenario

Value of a successful 3

system

COMMENTS

There are commercially available solutions — the
research will focus on what partners need and is still
missing from existing solutions.

The experiments will be purely digital and in
simulation.

This system will assist human designers like existing
solutions, so limited difficulty in deployment.

Such a system can improve upon the existing
solutions and reduce human involvement in the
design process.
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4. QUALITY ASSURANCE (QA) AND INSPECTION

The final piece of the puzzle in a fully
automated manufacturing pipeline is the QA
and inspection step.

Many partners that we have surveyed have identified QA
as another common bottleneck in production time and man
hour, as the tolerance is often on the scale of millimetre if
not smaller.

In this section, we will discuss a few aspects in automating
the QA and inspection process, not with the intention of
completely removing the human operators from the loop,
but to assist and improve the manual inspection process.

41 Automated QA based on CAD model

Due to the availability of CAD models for the products, the inspection purposes. One key challenge in this case is the
QA and inspection process can be translated into a dense tolerance requirement that is beyond the accuracy of usual
reconstruction, registration and change/discrepancy detection sensors used in the robotic research domain.

problem in robotics. We therefore propose leveraging highly accurate industry-

There exist several handheld solutions for manual scanning grade sensors [89, 73, 90] and building active mapping and
and reconstruction [83, 84, 85], and combined with a robot reconstruction systems around these sensors to automate
arm, active mapping techniques can automate such a process the QA process. Further studies will be needed to tailor the
[86, 62]—a problem that has been studied by the robotics registration and discrepancy detection algorithm for industry
community for a couple of decades [87, 88]. partners.

Registering the reconstruction with the CAD model is similarly
a well-studied area in robotics, based on which we can
highlight the discrepancies between the two for QA and

Figure 13 Active mapping system setup using a Kuka robotic arm and a depth camera by Kriegel et. al. [86]
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41 RESEARCH RECOMMENDATIONS & SOLUTIONS

The project on automated QA using CAD model is expected to be an one-year project for a PhD student, or a
half-year project for a postdoctoral researcher. The challenge of deployment mostly involves understanding the
particular characteristics of the jobs, e.g. dimensions and materials.

MEASURE RATING COMMENTS
OUT OF 5

Theoretical 3D reconstruction and alignment is an established
3 field, but specific industry and material can pose
unique challenges.

understanding difficulty

Experimental difficulty 2 Most experiment can be conducted in simulation or
and cost with minimal physical examples.

Deployment difficulty in a Communicating with partners and tailoring the system
real world scenario for the specific product might raise challenges.

Value of a successful a This project can significantly improve the efficiency of
system QA compared to the manual QA process.

4.2 Non-destructive defect detection

In composite manufacturing, the defects in the product such The key component of such a system lies in choosing the

as delamination, void formation and wrinkles can be hard to correct sensor as well as interpreting the sensor readings, the
detect as they are not always visible on the product surface, latter of which we believe can be handled by a tailored Al-
and sometimes still hard to visually detect even when they based image processing tool [94, 95].

are on the surface. Some defects conventionally require
destroying the product to identify, which will naturally cost the
manufacturer more.

We therefore propose leveraging other sensor modalities
within robotic perception systems to detect defects in these
products without destroying the products. Depth sensors and
laser scanners can be used to detect wrinkles and boundary
edges [91], and ultrasonic to detect defects below the surface
to avoid any destructive processes [92, 93].
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Figure 14 An example of visual wrinkle detection in fiber products by Gutpa et. al [91].

4.2 RESEARCH RECOMMENDATIONS & SOLUTIONS

To develop a reliable Al for recognising defects in composite will require two years from a PhD student, and

one year from a postdoctoral researcher, as well as a significant amount of annotated data on physical products
provided by partners.

MEASURE RATING COMMENTS
OUT OF 5

Theoretical Defects in composite materials are well-understood,
. e 3 and image processing via Al is an established field.
understanding difficulty Putting them together is novel but not impossible.

Developing a learning-based algorithm require a
4 significant amount of data (from physical products) and
annotation for training and testing.

Experimental difficulty
and cost

Deployment difficulty in

2 The deployment should only require commercially
real world scenario

available sensors.

Value of a successful Being able to completely avoid destructive inspection
system 5 is very beneficial to the composite manufacturing
industry.
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4.3 AR-assisted inspection

We further propose developing an Augmented Reality (AR)
system to enhance human inspection processes. Many of
our surveyed partners currently use tablets, such as iPads, to
visualize QA results after inspections.

By integrating AR with an automated QA and inspection
workflow, we can provide real-time visual overlays that
instantly highlight discrepancies, enabling inspectors to
identify and address issues on the fly, improving accuracy and
efficiency.

4.3 RESEARCH RECOMMENDATIONS & SOLUTIONS

Building such an AR system is estimated to be a one-year project for a PhD student, or a half-year project for
a postdoctoral researcher. To deploy such a system on the factory floor will additionally require an engineer
working with the researcher.

MEASURE RATING COMMENTS
OUT OF 5
: The theory for this project is similar to the automated

Theoretlcal- cc: 2 QA technology, and focuses mostly on realising the
understanding difficulty AR system, the theory of which is well-established.
Experimental difficulty 2 Experiments is ideally conducted with some minimal
and cost physical examples.
Deployment difficulty in 1 The hardware required for deployment is expected to
real world scenario be mostly commercially available.
Value of a successful 3 This project will improve the efficiency of manual
system inspection.

4.4 Online quality monitoring and manufacturing adjustments

In addition to QA at the end of the production, a similar A similar concept can be leveraged during site erection to
technique can be leveraged to analyse the product quality detect any discrepancy to the design. Such a system will
during manufacturing, which can in turn advise how the require frequent and regular scans of the construction from
manufacturing process should adjust on-the-fly to avoid error multiple viewing angles as well as robust localisation with
creeping [96, 97], by feeding the observed error back into a global reference frame to accurately map out the overall
the design instead of mechanically following a predetermined structure, which is a well-established field in robotics.

manufacturing process.

This is especially applicable in additive manufacturing
processes such as layup and fibre placement [95], even just to
detect the defect during production to avoid further wastage.
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4.4 RESEARCH RECOMMENDATIONS & SOLUTIONS

Researching the theoretical core of an Al-enabled design automation algorithm will take a PhD student one and
half years, or a postdoctoral researcher one year. To tailor it for a particular task will require partner involvement,
especially in the form of accessing and learning from historical data, which is estimated to require an additional

half a year.

MEASURE

Theoretical
understanding difficulty

Experimental difficulty
and cost

Deployment difficulty in
real world scenario

Value of a successful
system

General Distribution

RATING
OUT OF 5

COMMENTS

An established field of research, however will require
adaptation to context, such as the dimension of the
product.

Such a project will require example real-world details
from the partner, or even conduct field experiments to
correctly model the errors.

Large-scale products can introduce difficulty to
deployment.

Detecting error during production instead of at the
end of it can have a significant impact on saving cost.




5. KEY RECOMMENDATIONS FOR THE

COMPOSITE MANUFACTURING SECTOR

Industry and academic research and development

As we have stated throughout this white paper, the most
prominent theme to emerge from this investigation is how highly
dynamic and agile Australian and New Zealand manufacturers
are, and must be, as they are servicing a highly heterogenous
regional market.

It is clear from this investigation that technology vendors are
focusing on easier to solve repetitive task automation over the
higher skill and performance requirements of manufacturers in
our region. We have termed the non-uniform operational nature
that is typical of our region, ‘Flexible Manufacturing'.

While this is of course a great frustration to the sector, which we
have seen through numerous costly procurements of systems
not fit for purpose, there are two noteworthy trends regarding the
observed technology gaps and needs.

Firstly, the primary high value capability gaps we observed
across partners we do not consider to be scientifically or
technically unfeasible. Meaning, the lack of commercially
available solutions is due to a lack of investment in the research
and development of robotic and autonomous systems for the
flexible manufacturing market.

Second, the capability gaps we have identified in this white
paper are shared by all stakeholders and are largely ‘pre-
competitive’ core operational capabilities, making them product
agnostic. This means stakeholders can safely collaborate on the
research and development of these systems without giving up
the competitive advantage they have in their respective product
classes.

The convergence of these factors presents an exciting
opportunity for flexible manufacturers in our region to work
together on systems that will ensure ANZ becomes globally
recognised as leaders in flexible and dynamic manufacturing, but
also to collaborate on the development of an entirely new class
of technology and industry in our region.

Due to the above mentioned reasons, we see tremendous value
in a multi-industry partner collaboration that can share costs and
risk of an ambitious larger effort, from research to startup.

For this reason, this white paper strongly recommends a shared
cost model where partners invest a portion of their contribution
to fund a small team of academic and technical resources that
are working on these core scientific issues. Partners will be able
to leverage these shared developments, using their remaining
investment to tailor them to their unique application needs.

The various projects outlined in the research development
document range in size and complexity. Each one represents
a small but concrete stepping stone towards a larger more
ambitious effort and goal. Due to their commonality between
stakeholders they can be funded in a variety of ways:

1. Directly - where one partner will directly fund the projects
they are most interested in. They will bear the cost alone
and retain the IP for themselves. This is a higher risk strategy
and constrains innovations to the financial limitations of the
partner.

1. Joint funding — partners can collaborate and fund projects
of most relevance to them. They will share access and
ownership of the IP. Investment is derisked proportional to
the number of industry partners.

1. Consortium (authors recommendation) — a multiparty
collaboration and co-investment in a series of projects
of most interest to the group. IP is shared amongst
stakeholders. Stakeholders take on significantly less risk
while benefitting from a substantially larger investment and
it potential returns.

Importantly, these projects have the potential to become
commercially viable products, either through technology
partners, new in-house capabilities, or startups. Throughout this
study, we have observed several high value gaps in the market
that are reflected here and these projects aim to address.

Project and logistics optimisation systems for flexible
manufacturers stands out as a particularly high value startup
opportunity as there is no obvious commercially available
system, all partners expressed this as a major pain point, a
solution capable of supporting flexible manufacturers would
also be useful in less dynamic operations.

Q KEY RECOMMENDATION TO INDUSTRY AND ACADEMIA

It is the opinion of the authors that the formation of industry research consortium will deliver by far the greatest return on
investment to all stakeholders. Research recommendations outlined in this white paper represent individual development
opportunities that collectively form a comprehensive suite of interacting solutions to the most pressing issues we observed.

Furthermore, they are primarily operationally precompetitive in nature, allowing partners to safely collaborate and share the gains.

A consortium approach will significantly derisk investment for all stakeholders enabling the pursuit of a wider range of common
interest problems from low hanging fruit to high risk, high reward projects. Furthermore, government funded industry support
programs typically view consortiums more favourably as a more efficient, lower risk deployment of funding. The pooling of
resources will demonstrate a stronger commitment from industry to government and funders while simultaneously attracting a
larger quantum of funding to be spread across a greater number of development opportunities.

The ACM CRC is the immediately obvious pathway likely to be supportive of a consortium approach. Cooperative Research
Centre Projects (CRC-P), and ARC Linkage Industrial Transformation Research Program (ITRP) are other initiatives where a
consortium approach could attract significant funding.
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For governments and policymakers

As stated in the introduction, we hope this white paper will be
the first step towards greater analysis of robotic penetration in
manufacturing firms. As far as we have been able to determine,
this paper is the first of its kind, attempting to parse robotic
utilisation with the style of manufacturing undertaken within
said firms. For Australian operators and policy makers, this is
essential information that is simply not available.

There is a suite of policies and grants at state and federal
levels incentivising manufacturers to invest in robotic systems.
These policies are predicated on the assumption that robotics
are the key to the revitalisation of our manufacturing sector,
sentiments the authors of this white paper agree with.

However, for these policies to deliver on their ambition we
need to understand how our regional firms operate and
manufacture to ensure they are procuring technology that is
going to boost their productivity.

GDP in markets discussed (China, US, and Europe) which

have the highest penetration of robotics, is predominantly
being generated by larger firms. They are also the largest
manufacturing employers (59% of US manufacturing jobs are in
firms with more than 500 people).

KEY RECOMMENDATIONS FOR THE COMPOSITE MANUFACTURING SECTOR

While analysis is sparse on what type of firms are procuring
robotic systems and at what rate, we do know that robotics and
automation in these markets skew heavily towards larger firms.

This is essential context for policy makers as the Australian
market is completely different. Manufacturing GDP is
predominantly being driven by smaller firms, who are also the
largest employers (92%).

There are clearly legitimate reasons why robotic penetration
in our region is lower, many we have outlined here, and these
should be explored more thoroughly by the Department

of Industry to better target support. Well intentioned but
poorly crafted policies may come across as tone deaf as

low penetration is likely not to do with lack of knowledge or
finances, but more to do with the limitations of commercially
available systems.

It is the opinion of this study that it is the latter; in which case
we need to work with industry to develop new technologies
that meet the needs of their operations.

Q KEY RECOMMENDATION TO GOVERNMENTS AND POLICYMAKERS

While this white paper is relatively small in size and scope, the uniformity of feedback and observations across
industry were stark. Our engagement with relevant peak bodies suggests our findings are representative of a broader
regional phenomenon.

This is highly relevant to governments and policymakers concerned with strengthening Australia’s manufacturing
sector, as the finding of this paper appear to run counter to many mainstream preconceptions regarding the nature
and makeup of manufacturing in our region; preconceptions that appear to have been influential in the design of major

industrial development policies.

The outcome of which are initiatives incentivising procurement of ill suited ‘off-the-shelf’ systems, in lieu of policies
aimed developing novel robotic systems to meet the needs of the predominantly dynamic and flexible style of

manufacturing of our region.

As stated above, we were unable to find any substantive analysis on the intersection of robotic penetration and the
style of manufacturing, in any market. It is possible this white paper is one of the first of its kind. If the findings of this
white paper are accurate, and Australia is indeed dominated by flexible manufacturing firms, this needs to be more

thoroughly investigated and understood by policymakers.

We strongly recommend governments and policymakers invest in a larger, more comprehensive analysis on the
technology needs of Australian manufacturers in the context of firm size and manufacturing ‘style’. Such analysis will
ensure industry research, innovation and development policies are highly targeted and Australia centric.
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FINAL THOUGHTS AND CONCLUSIONS

In summary, it is clear manufacturers in our Furthermore, the lack of fit for purpose commercially available
region must be highly skilled and dynamic largely systems presents an incredible opportunity for stakeholders

. . . to not only establish themselves and this region as the
due to macroeconomic forces in our region. Y ) : 9 )
global standard for high value, dynamic manufacturing, but

It is unrealistic to think that these forces will change in the also to drive the development of a completely new class of
foreseeable future, and therefore we must lean into our technology and high value industry in our region.

collective strength as flexible manufacturers. Consequently, it is the opinion of this white paper that

It is also clear that this style of manufacturing has been largely ~ stakeholders in our region including state and federal

neglected by technology vendors as there is no scientific or governments, industry and academia, will gain significantly
technical reason preventing the development of solutions for greater benefit by forming consortiums around common
this style of manufacturing. interest problems to research, develop, and commercialise

. ) . ) o these novel systems.
The major pain points we observed exist primarily in

the precompetitive operational domain, meaning that
stakeholders will be able to safely collaborate on the
development of this technology, sharing the risk and the
cost, without compromising competitive advantage in their
respective domains.
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