St Cuthbert's C of E Junior School

Calculation Policy

Policy History	Date
Approved	$1^{\text {st }}$ February 2021
Review	

St Cuthbert's C of E Junior School

Cal $_{\text {turing }}^{m} A_{\text {ths }}$

Calculation Policy Autumn 2021

This policy has been designed to teach children through the use of concrete, pictorial and abstract methods. This calculation policy should be used to support children to develop a deep understanding of number and calculation.

St Cuthbert's C of E Junior School

Background

This policy has been developed by Maths Coordinators with a specific interest in the use of Singapore methods to develop number awareness and fluency.
The policy only details the strategies; teachers must plan opportunities for pupils to apply these; for example, when solving problems, or where opportunities emerge elsewhere in the curriculum.

Using the concrete-pictorial-abstract approach:

Children develop an understanding of a mathematical concept through the three steps (or representation) of concrete-pictorial-abstract approach. Reinforcement is achieved by going back and forth between these representations.

Concrete representationst enactive stage - a pupil is first introduced to an idea or a skill by acting it out with real objects. This is a 'hands on' component using real objects and it is the foundation for conceptual understanding.

Pictorial representations iconic stage - a pupil has sufficiently understood the hands-on experiences performed and can now relate them to representations, such as a diagram or picture of the problem.

Abstract representationster symbolic stage - a pupil is now capable of representing problems by using mathematical notation, for example: $12 \div 2=6$.

Guidance

This is document provides guidance and examples for key objectives for each year group but is not to be followed as a complete planning aid as not all objectives are exemplified.

Reception

Addition

St Cuthbert's C of E Junior School

Subtraction

Taking away after counting out practical equipment. . Children would be encouraged to physically remove these using touch counting.

By touch counting and dragging in this way, it allows children to keep track of how many they are removing so they don't have to keep recounting. They will then touch count the amount that are left to find the answer.
donut donuts

$8-4=$

Using the ten frame to support subtraction by taking
away
5 Pencils

Peter has 5 pencils and 3 erasers. How many more pencils than erasers does he have? Solving problems using concrete and pictorial images.

St Cuthbert's C of E Junior School

Year 1

Addition

Joining two groups and then recounting all objects using one-toone
Correspondence (lots of practice making 10 and numbers to 10 e.g. 6 $+4=10$ or $3+5=8$)

St Cuthbert's C of E Junior School

St Cuthbert's C of E Junior School

Subtraction by counting back	Let's Learn Subtract by Counting Back Subtract 3 from 15 $15-3=12$ There are 12 flowers left.
Subtracting a single digit number from a single digit number and a single digit from a two digit by crossing out pictures	Subtract by Crossing Out (1) ช \% \% $7-2=5$ 5 ladybirds are left.
Subtracting using the part part whole (include problem solving with missing digits). $?-5=2$	
Subtraction by subtracting from 10 Children subtract from 10 and not from ones	$14-8=?$ Let's Learn Subtract from 10 $14-8=6$ Sam has 6 doughnuts left.

St Cuthbert's C of E Junior School

| When subtracting
 using Dienes children
 should be taught to
 regroup a ten rod for
 10 ones and then
 subtract from those
 ones | |
| :--- | :--- | :--- | :--- |
| Subtracting multiples
 of 10 | |
| Using the vocabulary
 of 1 ten, 2 tens etc
 alongside 10, 20, 30 Is
 very important here as
 pupils need to
 understand that it is a
 10 not a 1 that is being
 taken away | $20-4=16$ |

St Cuthbert's C of E Junior School

When moving to pictorial/written calculations the vocabulary is important	This image represents two groups of 4 or 4 twice
Solving multiplication problems using repeated addition	

Division

Pupils should be taught to divide through working practically and the sharing should be shown below the whole to familiarize children with the concept of the whole. The language of whole	$8 \div 4=2=5$
and part part should	
be used.	

Year 2

Addition

Using concrete
objects and pictorial
representations to
add a 2 digit

St Cuthbert's C of E Junior School

Subtraction

St Cuthbert's C of E Junior School

Embrace challenge Recognise uniqueness

St Cuthbert's C of E Junior School

I can solve division as grouping.	Put 10 buns in groups of 2 . How many plates are there? Put into groups of 5. There are \square groups.
I can use the inverse. This should be taught alongside both multiplication and division.	Make a family of multiplication and division facts. $\begin{aligned} & 2 \times 10=20 \\ & 10 \times 2=20 \div 10=\square \end{aligned}$

Year 3

Addition

Add two three digit numbers.

Children need to use equipment first to support their understanding of place value.

Children to word gradually to three digit + three digit starting without carrying and gradually moving towards carrying.
Step1 Add the ones.

St Cuthbert's C of E Junior School

Subtraction

St Cuthbert's C of E Junior School

St Cuthbert's C of E Junior School

Using the bar to
find missing
digits.
It is important for
children to use
the bar in this
way to encourage
the use of it to aid
with problem
solving.

315		$315-185=?$
185	$?$	$185+?=315$

$?$		$185+315=?$
185	315	$?-185=315$

Multiplication

St Cuthbert's C of E Junior School

Division

Dividing by grouping undrestanding the concept of remainders.	Start with using the real objects-or objects that represent the calculation. ${ }^{2}$ ${ }^{2}$ x^{2} $13 \div 4=3$ Remainder 1
Dividing using short division. Once children are secure with division as grouping and demonstrate this using number lines, arrays etc., short division for larger 2-digit numbers should be introduced, initially with carefully selected examples requiring no calculating of remainders at all. Start by introducing the layout of short division by comparing it to an array.	3T U 3 3 Remind children of correct place value, that 69 is equal to 60 and 9, but in short division, pose: - How many 3's in $6 ?=2$, and record it above the 6 tens. - How many 3's in $9 ?=3$, and record it above the 9 ones. Once children demonstrate a full understanding of remainders, and also the short division method taught, they can be taught how to use the method when remainders occur within the calculation (e.g. 72 $\div 3$), and be taught to 'carry' the remainder onto the next digit.
Using the bar to aid the solving of division problems.	Four children bought a present for $£ 28$. They shared the costs equally. How much did each child pay?

Embrace challenge Recognise uniqueness

St Cuthbert's C of E Junior School

Year 4

St Cuthbert's C of E Junior School

	$\begin{array}{r} 2^{\prime} 54 \\ -\quad 1562 \\ \hline 1192 \end{array}$

Multiplication

St Cuthbert's C of E Junior School

Division

Year 5

Addition

Adding numbers with more than 4 digits including decimals

Using place value charts are key to this as well as place value counters to help with the decimals.

Using the bar to find missing digits.

It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.

This is not a form of getting the correct answer but helping to guide children to the correct operation.

MacDonalds sold $£ 9957.68$ worth of hamburgers and $£ 1238.5$ worth of chicken nuggets. How much money did they take altogether?

Subtraction

Multiplying up to four digit numbers by two digits using long multiplication.

Children need to be taught to approximate first, e.g. for 72×38,
they will use
rounding: 72×38 is approximately 70×40 = 2800, and use the approximation to check the reasonableness of their answer.

Subtract with at least four digit numbers including two decimal places. Include money, measures and decimals ensuring that children do this practically before the abstract.	Subtract with decimal values, including mixtures of integers and decimals, aligning the decimal point.
Using the bar to find missing digits. It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.	A whole to Lapland costs $£ 5005$ for a family of four, the Smith's have only saved $£ 3787.75$, how much money do they still need to find?
	$£ 5005$
	? £3787.75

Subtract with decimal values, including mixtures of integers and decimals, aligning the decimal point.

A whole to Lapland costs $£ 5005$ for a family of four, he Smith's have only saved $£ 3787.75$, how much
y do tir toed to

Multiplication

	56
$\times \quad 27$	
392	(56×7)
1120	(56×20)

- Explain that first we are multiplying the top number by 7 starting with the units. (any carrying needs to be done underneath the numbers).
- Now explain that we need to put a 0 underneath-explain that this is because we are multiplying the number by 20.. (2 tens) which is the same as multiplying 10 and 2 .
. Now add the 2 numbers together to give you the answer.

St Cuthbert's C of E Junior School

Division

Diving with up to four digit numbers by one digit including numbers where remainders are left.	division with Now that pupils are introduced to examples that give rise to remainder answers, division needs to have a real life problem solving context, where pupils consider the meaning of the remainder and how to express it, ie. as a fraction, a decimal, or as a rounded number or value , depending upon the context of the problem.
Using the bar to support division problems.	Bar Model to support understanding of problem solving: Frank has 4920 apples. He needs to put them into baskets of 40 . How many baskets does he need?

St Cuthbert's C of E Junior School

 Year 6

St Cuthbert's C of E Junior School

Multiplication

Division

| Divide at
 least 4 digits
 by both
 single-digit
 and 2-digit | $8 \longdiv { 6 4 }$ | $089^{\prime} 7 \cdot 0^{\prime}$ | $20^{4} 0$ |
| :--- | :--- | :--- | :--- | :--- |

Short division with remainders: Pupils should continue to use this method, but with numbers to at least 4 digits, and understand how to express remainders as fractions, decimals, whole number remainders, or rounded numbers. Real life problem solving contexts need to be the starting point, where pupils have to consider the most appropriate way to express the remainder.
numbers (including decimal numbers and quantities)
Long divisio
this is for
when
dividing by
two digit
numbers.

St Cuthbert's C of E Junior School

