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a b s t r a c t

Two purposes of Short Stay Units (SSU) are the reduction of Emergency Department crowding and
increased urgent patient admissions. At an SSU urgent patients are temporarily held until they either
can go home or transferred to an inpatient ward. In this paper we present an overflow model to evaluate
the effect of employing an SSU on elective and urgent patient admissions.

© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Emergency Department (ED) crowding is an increasing prob-
lem, resulting in an increased length of stay and prolongedwaiting
times for patients. Also, ED crowding may result in increased mor-
tality rates and lower quality of care [1]. These problems are not
only caused by an aging population [2], a higher demand for acute
care [3], and the inability to transfer patients to inpatient beds [3,4],
but also by hospital restructuring leading to fewer inpatient beds
and more ambulatory care [5].

Themainpurpose of a Short StayUnit (SSU) is to temporarily ad-
mit suitable ED patients, in order to ‘improve the quality ofmedical
care through extended observation and treatment, while reducing
inappropriate admissions and health care costs’ [6]. Another ben-
efit of an SSU is to act as a temporary holding facility during peak
daily demand in the ED. However, the modeling of such transient
systems comprising many elements with an analytical model is
quite difficult, and hence we have not pursued this aspect in the
present study.

An important incentive in the Netherlands for having an SSU is
improving ED patient flow and thus decreasing pressure on ED fa-
cilities such as rooms, beds and staff. However, the definition and
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purposes of SSUs vary across hospitals and countries. When the
focus is on handling in an effective and prompt manner patients
whom it is believed can be diverted from admission to the wards,
terms such as ‘‘Medical Assessment Unit’’ are used. The review pa-
pers [7–9] provide a comprehensive overview of definitions and
concepts for SSU’s. Patient types that can be admitted vary, for
example sometimes only medical patients are considered [9]. Pa-
tients that need intensive care are usually excluded [7,9]. Themax-
imum length of stay (LOS) at the SSU is usually short, with regular
repatriations to the inpatient wards. Transfer epochs can be fixed
(for example twice a day) or patients can be transferred once a bed
becomes available. ED patients who do not require hospitalization
but have to wait for test results or require observation for a short
period of time can also be admitted. Given the close monitoring, a
staffed bed at this location is usually more expensive than a bed at
a regular inpatient ward.

The success of an SSU depends on the overlying organizational
structures, together with clear agreements upon transfers to
regular inpatient wards, a well-defined chain of command, and
access to specialist consultations [7,9]. Currently, there is ample
debate as to whether operating an SSU reduces ED crowding
(see [1,7,9,10] and the references therein). This is not only related
to the ambiguity in the terminology and definitions of the SSU
used in practice, but could also be caused by a lack of management
information. This makes it very hard to measure the effects of
opening an SSU on the ED patient flow. Furthermore, there may
be a publication bias since it is common to report only positive
experiences [9]. This paper aims at filling this gap in literature by
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providing a quantitative analysis on the effects of having an SSU,
under the scenariowhere a patient’s LOS is independent of the type
of bed they occupy.

Since ED treatment is expensive compared to inpatient care, it
is financially attractive for hospitals to continue the care process
at one of their own inpatient wards, instead of transferring the
patient to another hospital after ED treatment. The inpatient
wards admit elective patients as well, and therefore it is usually a
challenge to reserve inpatient beds, given the uncertainty in urgent
arrivals. In this view, the SSU serves as extra buffer capacity for
patients who require hospitalization.

A number of papers describe improvement of ED patient flow
using simulation techniques [11–14]. A few examples use queuing
theory [15–18]. Even though the SSU has been the subject of
research quite often in the last decade, we were not able to find an
analytical evaluation of its effect in terms of inpatient admissions
as we present here.

In Section 2 we present a queuing model designed to evaluate
the effect of employing an SSU. Methodologically, we build on
the Equivalent Random Method as developed by Wilkinson [19]
for systems with a single primary cell generating overflow traffic.
The method was adapted by Schehrer [20] to represent systems
with multiple primary cells. Additional traffic flows have been
introduced in [21,22]. We further extend [21] and combine the
results with [22], in order to analyze the ED → ward → SSU
system. Using the model, an illustrative example is analyzed in
Section 3. Performance measures such as the number of elective
and urgent inpatient admissions are calculated.

2. Model

Fig. 1 illustrates the overflow system for the case of I = 2
wards. The inpatient wards and SSU can be modeled as an over-
flow system, where the inpatient wards are the primary stations
(i.e., the wards that generate the overflow of urgent patients) and
the SSU is the location where urgent patients are routed when
the inpatient ward is full. Urgent patients at the SSU have a com-
mon exponentially distributed LOS with rate µssu. Urgent patient
transfers from the SSU to ward i occur with rate γi. We assume
that the LOS at ward i for these transfer patients is exponential
with mean µ−1

i . Patients not requiring hospitalization have a di-
rect ED → SSU routing, arrive with Poisson rate λ0 and have an
exponentially distributed LOS with mean µ−1

0 . There are I wards,
with capacity ci, i = 1, . . . , I , and related patient types 1, 2, . . . , I .
We assume that the LOS at ward i is exponentially distributedwith
mean µ−1

i , so that the LOS for elective and urgent patients at ward
i is the same. Urgent patients arrive at ward i with rate λiu. If all
beds at ward i are occupied, the urgent patient is routed to the SSU.
If the SSU, which has a capacity of c0 staffed beds, is fully occupied
as well, the patient is blocked and leaves. Elective patients of type
i are blocked when ward i is full. Elective patient demand at the
wards, which also incorporates patients from the ICU, is modeled
with a Poisson process with rate λie.

Remarks on the modeling assumptions

1. Although elective arrivals are in fact scheduled, random fluc-
tuations in the number of scheduled arrivals make the Pois-
son assumption plausible [23]. Of course, scheduled arrivals can
be rescheduled and are not lost as our modeling assumption
would suggest. However, the cancellation of their elective pro-
cedure may well lead some patients to seek future treatment
elsewhere. Thus the blocking measure we calculate to measure
the increased cancellation rates resulting from the higher bed
utilizations in the wards is a relevant performance measure.
Fig. 1. ED–Ward–SSU patient flow; example with two wards.

2. The rate γi is the repatriation rate from the SSU to the wards. If
γi = 0, patients of type i are never repatriated from the SSU to
ward i. If γi = ∞ patients of type i are immediately repatriated
from the SSU once a bed at ward i becomes available.

3. The usage of an SSU could potentially reduce the length of a
hospital stay. However, the evidence for this is not yet convinc-
ing [6,8]. Therefore the length of stay at the inpatient wards for
patients of type i is equal to µ−1

i , regardless of whether the pa-
tient was routed via the SSU.

4. Note that it is assumed the patient’s route is known once the
patient leaves the ED. In practice, sometimes patients are ob-
served in SSU and their final destination is not known at their
time of entry. We do, in fact, reflect this phenomenon by treat-
ing the time in the SSU for urgent patients as the minimum of
the random times until recovery and until they are repatriated
to their ward.

2.1. The number of admitted patients

We denote the number of elective and urgent patients present
at ward i by nie and niu respectively. The number of urgent patients
of type i present at the SSU is given by ni0. Patients directly routed
to the SSU are considered to be of type 0, and the number of
patients of type 0 present at the SSU is denoted with n00. The state
space for the overflow system in Fig. 1 is given by

S :


n = (n00, n10, . . . , nI0, n1e, . . . , nIe, n1u, . . . , nIu);

nie + niu ≤ ci ∀i;
I

i=0

ni0 ≤ c0; nie, niu, ni0, n00 ≥ 0 ∀i


. (1)

Denote π(n) as the equilibrium probability that n patients are
present in the entire ED–Ward–SSU system. To calculate perfor-
mance measures such as the number of admitted patients at the
wards or SSU, the distribution ofπ(n) is required. The latter can be
found by solving the following system of global balance equations:

π(n)

 I
i=1

λie1nie+niu<ci +

I
i=1

λiu


1nie+niu<ci +1

nie+niu=ci,
I

i=0
ni0<c0



+ λ01 I
i=0

ni0<c0
+

I
i=1

(nie + niu)µi +

I
i=1

ni0µi

+ n00µ0 +

I
i=1

ni0γi1nie+niu<ci



=


I

i=1

λieπ(n − eie)1nie>0
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+

I
i=1

λiu

π(n − eiu)1niu>0 + π(n − e0i)1ni0>0,nie+niu=ci


+λ0π(n − e00)1n00>0

+

I
i=1

(nie + 1)µiπ(n + eie)1nie+1+niu≤ci

+

I
i=1

(niu + 1)µiπ(n + eiu)1nie+niu+1≤ci



+

I
i=1

(ni0 + 1)µiπ(n + e0i)1ni0+1≤c0

+ (n00 + 1)µ0π(n + e00)1n00+1≤c0

+

I
i=1

(ni0 + 1)γiπ(n + e0i − eiu)1nie+niu+1≤ci . (2)

This system of equations can be solved explicitly only for spe-
cific values of the system parameters [22]. We modify the anal-
ysis from [20] and its generalization presented in [21,22], which
required that µi = µssu. We adapt it to allow µi ≠ µssu, and to in-
clude the flow with rate λie of elective patients of type i. To obtain
the mean and variance of the number of patients in the SSU, the
model is analyzed for γi = 0 ∀i. Subsequently, for γi > 0 the ap-
proaches presented in [21,22] are combined, in order to determine
the number of patients present at each ward.

2.2. No transfers from the SSU to the wards: γi = 0

We first consider the case where SSU patients are not trans-
ferred to the wards, i.e., γi = 0 (see Fig. 2). Following [20], the
mean, Ei, and variance, Vi, of the overflow of urgent patients of
type i at the SSU, in case of infinite SSU capacity, can be obtained
from the global balance equation (2). Since c0 = ∞ and due to the
independence of the overflow processes from the wards, Ei and
Vi can be determined for each ward in isolation. For the blocking
probability at the overflow, it does not matter whether a patient
residing at ward i is of urgent or elective type. Let ni = nie + niu
denote the number of type i patients atward i, and letλi = λie+λiu
denote the total arrival rate at ward i. The system of global balance
equations simplifies to

π(ni0, ni) (λi + niµi + ni0µi)

= λiπ(ni0, ni − 1) + (ni0 + 1)µiπ(ni0 + 1, ni)

+ (ni + 1)µiπ(ni0, ni + 1) for ni < ci,
π(ni0, ci) (λiu + ciµi + ni0µi)

= λiπ(ni0, ci − 1) + (ni0 + 1)µiπ(ni0 + 1, ci)
+ λiuπ(ni0 − 1, ci). (3)

Define the probability generating function of the number of urgent
patients of type i present at the SSU, Gi,ni(z), as

Gi,ni(z) =

∞
ni0=0

π(ni0, ni)zni0 , |z| < 1. (4)

Multiplication of (3) by zni0 and the summation of the result over
ni0 = 0, . . . ,∞ yields

[λi + niµi]Gi,ni(z) + µi(z − 1)
d
dz

Gi,ni(z)

= λiGi,ni−1(z) + (ni + 1)µiGi,ni+1(z) for 0 ≤ ni < ci,

[λiu(1 − z) + ciµi]Gi,ci(z) + µi(z − 1)
d
dz

Gi,ci(z)

= λiGi,ci−1(z). (5)
Fig. 2. No transfers to the wards; γi = 0. Example with two wards.

Now Ei and Vi can be derived from

Ei =

ci
ni=0

d
dz

Gi,ni(z)


z=1

Vi =

ci
ni=0

d2

dz2
Gi,ni(z)


z=1

+ Ei − (Ei)
2. (6)

Taking the first derivative of (5) and evaluating at z = 1, gives

(λi + niµi + µi) gi[ni]

= λigi[ni − 1] + (ni + 1)µigi[ni + 1] for 0 ≤ ni < ci,
(niµi + µi) gi[ni] − λiuPi(ci) = λigi[ni − 1] for ni = ci, (7)

where gi[ni] =
d
dzGi,ni(z)|z=1 and Pi(ci) is the Erlang blocking prob-

ability given by

Pi(ci) = Erl


λi

µi
, ci


=


λi
µi

ci
ci!

ci
i=0


λi
µi

i
i!

. (8)

Then Ei is obtained by the summation of (7) for ni = 0, . . . , ci:

Ei =
λiu

µssu
Pi(ci). (9)

The variance can be calculated accordingly by taking the second
derivative of (5) and evaluating at z = 1:

(λi + niµi + 2µi) hi[ni]

= λihi[ni − 1] + (ni + 1)µihi[ni + 1] for 0 ≤ ni < ci,
(ciµi + 2µi) hi[ci] − 2λiugi[ci] = λihi[ci − 1], (10)

where hi[ni] =
d2

dz2
Gi,ni(z)|z=1. Summation of the result for ni =

0, . . . , ci yields

Vi =
λiu

µi
gi[ci] + Ei − (Ei)

2, (11)

where gi[ci] can be determined recursively from (7) with gi[−1] =

0. Note that due to the PASTA property, Pi(ci) is the blocking prob-
ability of elective patients at ward i.

The direct patient flow arriving at the SSU can be represented
by a Poisson distribution with mean λ0

µ0
. The mean E0 and variance

V0 is therefore given by

E0 = V0 =
λ0

µ0
. (12)

Since the overflowprocesses from thewards are independent from
direct SSU arrivals, the expectation and variation of the aggregated
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overflow, E and V, are given by

E =

I
j=0

Ej,

V =

I
j=0

Vj. (13)

Using the equivalent randommethod [19], it is now possible to
define an equivalent ward with service rate µi, which generates
overflow traffic to the SSUwith the samemean and variance as the
i overflow (urgent) and direct streams together. This equivalent
ward is constructed solely for the purpose of evaluating the
blocking probability of urgent patients. Elective patients are not
incorporated in the equivalent ward, since only urgent patients are
routed to the SSU. The equivalent ward has load a and capacity C
such that [19]

aErl(a, C) = E

E

1 − E +

a
C + 1 + E − a


= V. (14)

The blocking probability for patients of type i, and for patients of
type 0, is [24]

Ki =
aErl(a, C + c0)

aErl(a, C)

×


v(C, c0)−1

+
ζi − 1
ζ − 1


1 − v(C, c0)−1 , (15)

with ζ =
V
E , and ζi =

Vi
Ei
, which is the peakedness of the separate

flows. The variable v(C, c0) can be determined recursively from

v(C, j) =
aj

aErl(a, C) (C + j − a − aErl(a, C)v(C, j − 1))
,

j = 1, 2, . . .
v(C, 0) = 1. (16)

Themeannumber of urgent patients of type ipresent at the SSU,
E[N0i], is given by

E[N0i] =
λiu

µi
Erl


λi

µi
, ci


(1 − Ki). (17)

The mean number of type 0 patients, E[N00], equals

E[N00] =
λ0

µ0
(1 − K0). (18)

2.3. Transfers from the SSU to the wards: 0 < γi < ∞

Wenow return to the general casewhere patient transfers from
the SSU back to the wards are allowed. Since we assumed that µssu
is equal for all patients, γi is defined such that µssu = µi + γi ∀i.
This is a natural choice since one of the purposes of an SSU is
provision of short-time treatment. The focus, therefore, lies on
either readmission at an inpatient ward (with rate γi) or discharge
(with rate µi). As a result, µssu ≥ µi ∀i, which corresponds
exactly to the model given in Fig. 1. The arrival rate at ward i, νi,
is approximated by the sum of elective and urgent patient arrivals
(λie and λiu respectively) and SSU patient transfers [22], γiE[N0i]

νi = λie + λiu + γiE[N0i]. (19)

A fraction of this stream, κi, overflows to the SSU

κi = λiu + γiE[N0i]. (20)
Table 1
Parameter values for SSU example.

Parameter Value Parameter Value

c1 200 µ0 4
c2 200 µssu

2
3

λ1e 26 µ1
1
5

λ1u 14 µ2
1
4

λ2e 37 γ1
7
15

λ2u 13 γ2
5
12

To analyze the model for γi > 0, we replace λiu by κi, and λi by νi,
in Eqs. (7)–(11). We then obtain a system of equations, which can
be solved for E[N0i] using fixed point iteration with initial value
E[N0i] = 0 [22].

The mean of the total number of patients present at the SSU,
E[N0], and themeanof the total number of patients present atward
i, E[Ni], are given by

E[N0] =

I
i=0

E[N0i],

E[Ni] =
νi

µi


1 − Erl


νi

µi
, ci


. (21)

The mean occupation, ρj, of the SSU (j = 0) and the wards (j ∈ I),
is given by

ρj =
E[Nj]

cj
. (22)

2.4. Immediate transfers from the SSU to the wards: γi = ∞

For completeness, we mention the case where γi = ∞, i.e., pa-
tients are immediately transferred from the SSU to the wards. If
γi were set to infinity, we would obtain a loss network for which
an exact expression of the equilibrium distribution could easily be
found [22]. This might seem realistic, but in practice transfers do
occur after a certain delay due to the limited availability of nursing
staff and the patient transportation services.

3. Results

We now use the model from Section 2.3 to analyze a simple
example for a hospital with two aggregatedwards. Primaryward 1
has a capacity of c1 = 200 beds and admits only medical patients,
whose mean LOS is five days (so µ1 =

1
5 ). The elective patient

arrival rate λ1e equals 26 patients per day, and the urgent patient
arrival rate λ1u is 14 patients per day, so that the total patient
arrival rate λ1 = 40. Primary ward 2 admits only surgical patients,
with c2 = 200, a mean LOS of four days (µ2 =

1
4 ), λ2e = 37,

λ2u = 13, andλ2 = 50. Adding capacity by creating so-called over-
beds is not allowed.

Patients for observation arrive directly at the SSU with rate
λ0 = 2 and have a service rate of µ0 = 4. With this flow we
represent patients who require observation for a short period of
time (on average six hours in this case). The mean length of stay
for urgent patients at the SSU is set to 36 h, so that µssu =

2
3 .

Consequently, γ1 = µssu −µ1 =
7
15 and γ2 = µssu −µ2 =

5
12 . This

implies that patients with a longer LOS should be repatriatedmore
frequently to their ward than patients with a shorter LOS, in order
to keep the LOS at the SSU the same for all urgent patients. Table 1
summarizes the parameter values.
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Table 2
Results for opening an SSU.

c0 P(B1e) B1e P(B1u) B1u P(B2e) B2e P(B2u) B2u EP/y UP/y

0 0.0544 1.4132 0.0544 0.7609 0.0544 2.0110 0.0544 0.7066 21,745 9319
4 0.0598 1.5547 0.0237 0.3313 0.0580 2.1469 0.0210 0.2733 21,644 9634
6 0.0615 1.5998 0.0145 0.2024 0.0591 2.1885 0.0113 0.1468 21,612 9728
8 0.0629 1.6352 0.0074 0.1035 0.0598 2.2110 0.0061 0.0796 21,591 9788

12 0.0640 1.6652 0.0015 0.0215 0.0603 2.2322 0.0013 0.0169 21,572 9841
Table 3
Results for opening an SSU with load reduced to 95%.

c0 P(B1e) B1e P(B1u) B1u P(B2e) B2e P(B2u) B2u EP/y UP/y

0 0.0280 0.6908 0.0280 0.3720 0.0280 0.9831 0.0280 0.3454 21,234 9100
4 0.0303 0.7491 0.0086 0.1147 0.0296 1.0389 0.0074 0.0909 21,193 9287
6 0.0309 0.7631 0.0042 0.0556 0.0299 1.0496 0.0036 0.0440 21,184 9326
8 0.0312 0.7705 0.0019 0.0251 0.0300 1.0551 0.0016 0.0196 21,179 9346

12 0.0314 0.7756 0.0003 0.0041 0.0301 1.0589 0.0003 0.0032 21,176 9360
Table 4
Results for admitting observation patients.

c0 P(B1e) B1e P(B1u) B1u P(B2e) B2e P(B2u) B2u P(B0) B0

4 0.0593 1.5409 0.0265 0.3716 0.0578 2.1377 0.0232 0.3019 21,652 9609
12 0.0640 1.6647 0.0016 0.0228 0.0603 2.2319 0.0014 0.0176 21,573 9840
Table 5
Results for admitting observation patients with load reduced to 95%.

c0 P(B1e) B1e P(B1u) B1u P(B2e) B2e P(B2u) B2u P(B0) B0

4 0.0299 0.7375 0.0123 0.1642 0.0294 1.0327 0.0096 0.1183 21,199 9259
12 0.0314 0.7760 0.0001 0.0024 0.0301 1.0592 0.0002 0.0019 21,175 9361
3.1. Opening the SSU

Suppose the hospital considers opening an SSU.We first analyze
the situation where only urgent patients are admitted at this ward
(so for now, we set λ0 = 0). In Table 2 for c0 = 0 (no SSU, i.e., the
old situation), and c0 = 4, 6, 8, 12 the blocking probabilities for
elective, P(Bie), and urgent patients, P(Biu), are given. The number
of rejected elective, Bie, and urgent patients, Biu, is given per ward
per day, and the number of admitted elective, EP/y, and admitted
urgent, UP/y, patients per year are given.

When c0 = 0, the two wards each act as independent M/G/
200/200 loss systems, with blocking probability Erl(200, 200) =

0.0544 in bothwards.Whatwe see as c0 increases is that the block-
ing probability for urgent patients decreases, which was expected
sincewe added capacity for these patients. However, since the hos-
pital is now able to admit more urgent patients, ultimately there
is less capacity available at the wards for elective patients which
results in suppression of elective demand. An SSU with four beds
results in a total of 315 more (9634 vs. 9319) urgent patients ad-
mitted per year, but at the same time 101 less elective patients are
admitted per year (21,644 vs. 21,745). This might seem minimal,
but is equivalent to two canceled patients per week. It follows that
the opening of the SSU negatively affects the elective patient flow
(once again, we note that the canceled elective patients are not
really blocked. However, this blocking measure serves as a useful
predictor of the number of patients who might choose to seek fu-
ture treatment elsewhere as a result of their cancellation).

In order to establish that the phenomenon of increased urgent
admissions leading to increased elective cancellations is not an
artifact of our chosen load level, we re-ran the configuration at
an attenuated load, in which each stream of patients was reduced
to 95% of its former value. Thus, the offered load to each ward
decreases from 200 patient days per day, to 190. In such large
wards, this is enough to cause the blocking levels to drop in
a marked fashion; for instance, the Erlang blocking probability
essentially is cut in half assuming no SSU beds. Thus, the potential
benefit of the SSU beds itself is halved, roughly speaking. As c0
increases, we still see an increase in the levels of blocking to
elective patients; however, the degree is lessened: we see about
a 10% increase in elective blocking in Ward 1 when c0 = 12 in
Table 3,whereas it hadbeen closer to 20% at full load (fromTable 2).

3.2. Admitting observation patients

Following the opening of the SSU, suppose the hospital were
to decide that patients from the ED requiring observation should
also be admitted here (so that λ0 > 0). It is obvious that more
beds are required in the SSU to maintain the decreased blocking
probabilities for urgent patients (see Table 4 for an example with
λ0 = 2), but the blocking probabilities for elective patients remain
about the same (similar conclusions can be drawn from Table 5 in
the case of reduced load).

3.3. Increasing urgent admissions

Asmentioned in the Introduction, one of the reasons to open an
SSU is to increase the number of urgent patient admissions through
the ED. Table 6 shows for various rates of increase, fu, in the arrival
rate of urgent patients, λiu, the required size of the SSU for which
P(Biu) ≈ 1%. Note that λ0 = 0.

We see that an increase in the number of urgent patient admis-
sions has a profound effect on the number of elective patient ad-
missions. For example in the case of a 10% increase, the number of
elective patient admissions decreases by 3% from 21,745 to 21,065
per year.

3.4. Maintaining the number of elective patient admissions

If the hospitalwishes tomaintain the number of elective patient
admissions, it has two options: increase the number of beds at
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Table 6
Results for increasing urgent admissions.

fu c0 P(B1e) B1e P(B1u) B1u P(B2e) B2e P(B2u) B2u EP/y UP/y

5% 8 0.0758 1.9716 0.0120 0.1758 0.0688 2.5465 0.0086 0.1176 21,346 10,241
10% 10 0.0910 2.3664 0.0104 0.1601 0.0789 2.9208 0.0067 0.0954 21,065 10,747
20% 12 0.1221 3.1753 0.0126 0.2112 0.0993 3.6731 0.0096 0.1502 20,495 11,694
50% 22 0.2224 5.7827 0.0134 0.2816 0.1660 6.1434 0.0100 0.1955 18,642 14,608
Table 7
Results for maintaining the number of elective patient admissions.

fu c0 c1 c2 Added beds

0% 6 203 202 5
5% 6 207 205 12

10% 6 210 208 18
20% 6 215 215 30
50% 8 238 229 67

the wards, or stop repatriating patients from the SSU back to the
wards. The latter option would transform the SSU to a long stay
ward for urgent patients, and therefore we only analyze the first
option. Table 7 gives for each value of fu the required number of
beds at thewards, c1 and c2, compared to the initial situationwhere
c1 = c2 = 200, such that the elective patient blocking probability
is maintained at its initial value of ≈5%. For the purposes of these
calculations, we have assumed that the SSU is functioning purely
as an overflow unit; i.e., λ0 = 0.

Since the number of inpatient beds increases, more urgent
patients can be admitted directly at the wards, and thus less SSU
capacity is required to keep P(Biu) ≈ 1%.

3.5. Sensitivity of the elective patient arrival process

The calculations performed in the preceding tables have been
based upon the assumption that all patient arrival streams are
Poisson distributed. In reality, elective procedures are scheduled
so that the intended instant of an elective arrival is known in
advance; it is not randomly distributed. However, as we have
already noted in our first remark on our modeling assumptions,
there is variability in the number of elective procedures, so
that a deterministic arrival process is likewise not an adequate
representation of reality. This variation in number from day to day,
week to week, and possibly season to season has been seen as a
justification in [23] for the use of a Poisson distribution tomodel it.

Queues featuring both Poisson and non-Poisson arrival streams
are such that the respective customers perceive different levels
of congestion at their respective arrival instants. For instance,
Wolff [25] established the PASTA principle (‘‘Poisson Arrivals See
Time Averages’’), which applies both to loss and delay systems.
Methods to deal with the waiting time distribution in a delay sys-
tem, as seen by the non-Poisson stream, were developed in the
first-come, first-served case by Ott [26], and extended by Stan-
ford [27] in the non-preemptive priority context where the non-
Poisson stream has the lowest priority. As a general rule, the more
variable the arrival stream, the greater the blocking probability in
a loss system, and the longer the waiting time in a delay system.

We performed a simulation-based sensitivity analysis for the
shape of the elective arrival process, to compare the situation with
Poisson-distributed elective arrivals with another featuring deter-
ministic elective arrivals. Four lengthy simulation experiments,
representing 12 replications of 2000-week-long runs with a 200-
week-longwarm-up periodwere performed. Thesewere run at the
attenuated arrival rate equal to 95% load in bothwards, both for the
case of c0 = 4 SSU beds and c0 = 12 SSU beds. The results are pre-
sented in Tables 8 and 9.

As both tables show, the simulation suggests that introduction
of 8 extra SSU beds (from 4 to 12) all but eliminates blocking for
the urgent patient streams. The next observation to note is that the
confidence intervals from Table 8 are generally supportive of our
results presented in Table 3 using the Equivalent Random Method
approximation.

We turn next to what the simulation experiments have to
say about our assertion, in the absence of any speed up in
recovery rendered by an SSU, that the increased access for urgent
patients comes at the expense of increased levels of elective stream
blocking.When comparing the rows to see the impact of the 8 extra
SSU beds, we see that three of the four 95% confidence intervals
for the blocking levels are non-overlapping, while the fourth (for
elective blocking in ward 2, assuming Poisson-distributed elective
arrival streams) has a slight overlap. This would appear to confirm
that the reduced blocking to the urgent streams is leading to
increased blocking to the elective streams, consistent with the
rationale proposed above.

We also observe that the blocking levels for the deterministic
arrival streams in Table 9 are about 60% of those seen in the Poisson
arrival case in Table 8. The relevant measure for an actual elective
stream can be expected to lie between these extremes, for the
reasons noted above.

4. Discussion

As stated in the abstract, two purposes of Short Stay Units
(SSU) are the reduction of Emergency Department crowding and
increased urgent patient admissions. At an SSU urgent patients are
temporarily held until they either can go home or are transferred
to an inpatient ward. In this paper we have presented an overflow
model to evaluate the effect of an SSU on elective and urgent
patient admissions, under the scenario that no reduction in
overall treatment time can be achieved. The model generalizes
Wilkinson’s Equivalent Random Method [19–21], to include an
extra arrival stream and different service rates at the primary cells
(the wards in our example) and at the overflow cell (the SSU). For
analytical tractability, we have assumed the LOS at the wards and
SSU to be exponentially distributed.

For a hospital with two wards, we have shown that an SSU
results in desirable increases in urgent patient admissions, but
this comes at the expense of a decrease in the number of elective
patient admissions (the elective cancellations we observe are
always fewer in number than the increase in urgent admissions).
The elective patients are blocked by the increased occupancy of the
wards due to urgent patients repatriated from the SSU. In reality,
these patients are not in fact blocked; most would merely be
rescheduledwhile otherswould seek treatment at another hospital
as a result of the negative experience due to the cancellation.
We have assumed that the urgent patient flow remained constant
over time. Furthermore, the added capacity may attract extra
urgent patients, which will in turn result in even less capacity
for elective patients. To overcome this effect, as well as the SSU
capacity created, additional inpatient beds should be added. This
in turn results in a decrease of the number of SSU beds required,
which makes the SSU a small ward that may be difficult to staff.
From a patient flow perspective, the SSU is thus an interesting
phenomenon with numerous logistical challenges. In the example
we have incorporated only two, very large inpatient wards. In case
of more wards with fewer beds, blocking probabilities are more
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Table 8
Simulated confidence intervals for blocking assuming Poisson elective arrival streams—the 95% confidence interval lower and upper end points are denoted by subscripts L
and U, respectively.

c0 P(B1e)L P(B1e)U P(B1u)L P(B1u)U P(B2e)L P(B2e)U P(B2u)L P(B2u)U

4 0.0308 0.0325 0.0074 0.0079 0.0301 0.0313 0.0059 0.0063
12 0.0331 0.0347 0.0001 0.0002 0.0311 0.0322 0.0001 0.0001
Table 9
Simulated confidence intervals for blocking assuming deterministic elective arrival streams—the 95% confidence interval lower and upper end points are denoted by
subscripts L and U, respectively.

c0 P(B1e)L P(B1e)U P(B1u)L P(B1u)U P(B2e)L P(B2e)U P(B2u)L P(B2u)U

4 0.0185 0.0198 0.0071 0.0077 0.0166 0.0175 0.0054 0.0059
12 0.0201 0.0210 0.0001 0.0002 0.0175 0.0184 0.0001 0.0001
sensitive to an increase in patient arrivals, and thus the blocking
effect will remain, and might even worsen.

The question naturally arises as to what circumstances might
warrant an SSU or other specialized front-end facility from a
performance standpoint. Clearly, if the facility were capable of
rendering sufficiently shorter stays at comparable expense, it
would be beneficial. The question remains as to how much of
a reduction is needed to produce this result. Specialized units
that go by names such as Short Stay Units, Medical Assessment
Units, and Clinical Decision Units [7–9] aim to attend to suitable
patients in a 24–48 time frame without formal admission to the
hospital in question; patients still present at that point are typically
admitted. Performance analysis of SSUs and similar units under
the assumption of a shorter stay in the unit is an extension of the
present paper we hope to explore in future work.
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