

FT Energy

- Solar PV detailed analysis.

System assumptions

PV production: 6,000 kWh / year (16 panels facing south)

https://www.ftenergy.ie/solar-calculator

- Electricity day price: €0.27 / kWh
- Electricity night price: €0.13 / kWh → day-night delta = €0.14 / kWh
- Export price: €0.20 / kWh
- Battery round-trip efficiency: 90% (10% loss) stated and applied
- Load-shifting available assumption: 70% of battery capacity (conservative)
- Solar full-charge days used for battery: 300 days/year

Step 1 — Baseline PV (no battery) — fixed baseline

(These numbers show PV value without a battery and remain the reference.)

- Self-consumed (25% baseline): 6,000 × 25% = 1,500 kWh → 1,500 × €0.27 = €405
- Exported (75%): 6,000 1,500 = 4,500 kWh → 4,500 × €0.20 = €900
- Baseline PV value (no battery) = €405 + €900 = €1,305 / year

Step 2 — PV + Battery (self-consumption increases to 50%)

- Self-consumed (50%): 6,000 × 50% = 3,000 kWh → 3,000 × €0.27 = €810
- Exported (50%): 6,000 3,000 = 3,000 kWh → 3,000 × €0.20 = €600

Load-shifting (conservative 70% of usable battery capacity, using 90% efficiency):

- 5 kWh battery: usable = 5 × 0.90 = 4.5 kWh/day → 70% = 3.15 kWh/day → annual 3.15×365 = 1,149.75 kWh → × €0.14 = €160.97 / yr
- 10 kWh battery: usable = 10 × 0.90 = 9.0 kWh/day → 70% = 6.3 kWh/day → annual 6.3×365 = 2,299.50 kWh → × €0.14 = €321.93 / yr

Total Value (Self-consumption + Export + Load-shifting):

Battery Size Self-Consumed (€) Export (€) Load-shift (€) Total Value (€ / yr)

5 kWh	€810	€600	€160.97	€1,570.97
10 kWh	€810	€600	€321.93	€1,731.93

Note: Total Value = Self-consumption value + Export income + Load-shifting benefit.

Step 3 — Increase vs baseline (how much extra the battery brings)

- Baseline (no battery): €1,305 / yr
- With battery totals:
 - o 5 kWh: €1,570.97 → Increase = €1,570.97 €1,305 = €265.97 / yr
 - o 10 kWh: €1,731.93 → Increase = €1,731.93 €1,305 = €426.93 / yr

Explanation: these increases reflect (a) higher self-consumption (50% vs baseline 25%) which reduces exports and grid imports, and (b) the load-shifting benefit of using stored energy at higher day rates.

Step 4 — System cost & payback (PV + battery)

- PV system cost (no battery): €7,500
- Battery costs: 5 kWh = €1,800, 10 kWh = €3,400

Total investment and payback:

Battery Size	Total Investment (€)	Total Annual Value (€)	Payback (yrs)
5 kWh	€7,500 + €1,800 = €9,300	€1,570.97	9,300 ÷ 1,570.97 ≈ 5.92 yrs
10 kWh	€7,500 + €3,400 = €10,900	€1,731.93	10,900 ÷ 1,731.93 ≈ 6.29 yrs

- With battery and self-consumption=50%, total system value becomes:
 €1,570.97 / yr (5 kWh) or €1,731.93 / yr (10 kWh).
- The battery therefore adds €266 / yr (5 kWh) or €427 / yr (10 kWh) above baseline.

• Example payback (PV + battery): roughly 5.9 years (5 kWh) or 6.3 years (10 kWh) under these assumptions.

Notes & caveats

70% load-shift is a conservative, "mild" estimate. If the battery can cycle more than once per day (depending on solar profile & demand), the load-shift benefit can be larger.

- Battery efficiency = 90% is applied to usable battery energy (i.e., losses are accounted for).
- Export income reduces when battery is fitted because stored PV replaces exported kWh — this is shown above (export falls from baseline 4,500 kWh to 3,000 kWh).
- All figures are estimates actual results depend on consumption timing, real PV production profile, inverter controls, weather, and future tariff changes.