Heating 300 Liters of Water with Oil or Electricity: Which is Most Efficient?

Here's a breakdown of the calculations and a side-by-side comparison of the cost to heat 300 liters of water using electricity or oil.

Step 1: Energy Required

To heat 300 liters of water (mass = 300 kg) from 10°C to 60°C ($\Delta T = 50$ °C): Energy (kWh) = mass × specific heat capacity × temperature rise ÷ 3600 Energy = $300 \times 4.186 \times 50 \div 3600 \approx 17.45$ kWh

Step 2: Cost with Electricity

Assuming night rate electricity at €0.125 per kWh: Cost = $17.45 \times 0.125 \approx €2.18$

Step 3: Cost with Oil

1 litre of kerosene provides ~10 kWh energy. Required input = 17.45 ÷ 0.9 ≈ 19.39 kWh (90% boiler efficiency). Oil needed = 19.39 ÷ 10 ≈ 1.94 litres. At €0.81 per litre: Cost ≈ $1.94 \times 0.81 \approx €1.57$

Cost Comparison

Electricity (Night Rate)	Oil (Kerosene, 90% efficiency)
Approx. €2.18	Approx. €1.57
17.45 kWh used	1.94 L oil used

Conclusion

Heating with oil comes out slightly cheaper in this example.