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Abstract
Background and Objective  Hepcidin, an endogenous peptide hormone, binds to ferroportin and is the master regulator of iron 
trafficking. Rusfertide, a synthetic peptide, is a potent hepcidin mimetic. Clinical studies suggest rusfertide may be effective 
in the treatment of polycythemia vera. This study investigated the dose-ranging pharmacokinetics, pharmacodynamics, and 
safety of a lyophilized formulation of rusfertide.
Methods  A randomized open-label crossover study was conducted in two groups of healthy adult subjects to evaluate the 
safety, tolerability, pharmacokinetics, and pharmacodynamics of subcutaneous rusfertide doses that ranged from 10 to 60 
mg of a lyophilized formulation and 20 mg of an aqueous prefilled syringe formulation that were used in clinical trials.
Results  Rusfertide showed a rapid initial absorption. Median time to peak plasma concentrations for the lyophilized formula-
tion was 24 h for doses of 10–30 mg and 2–4 h for doses of 45 and 60 mg. Mean terminal half-life ranged from 19.6 to 57.1 
h. Rusfertide peak concentration and area under the concentration–time curve increased with an increasing dose, but in a 
less than dose-proportional manner. Metabolites M4 and M9 were identified as major metabolites. At the rusfertide 20-mg 
dose, the lyophilized formulation had an area under the concentration–time curve from time zero to infinity approximately 
1.5-fold higher than the aqueous formulation. The elimination half-life was comparable for the two formulations. Dose-
related decreases in serum iron and transferrin-iron saturation were seen following rusfertide treatment. The majority of 
treatment-emergent adverse events were mild; treatment-related treatment-emergent adverse events seen in ≥10% of subjects 
were injection-site erythema and injection-site pruritus.
Conclusions  Rusfertide was well tolerated; the pharmacokinetic and pharmacodynamic results indicate that lyophilized 
rusfertide is suitable for once-weekly or twice-weekly administration.

Plain Language Summary
Hepcidin is a natural peptide hormone produced by the liver that is responsible for iron homeostasis. Rusfertide is a potent 
peptide mimetic of hepcidin that is being investigated for the treatment of polycythemia vera. This trial was conducted in two 
groups of healthy subjects to describe the pharmacokinetics and pharmacodynamics of subcutaneous rusfertide. Doses of 
10–60 mg of a lyophilized powder formulation and 20 mg of an aqueous formulation were studied in a randomized manner. 
Following subcutaneous dosing, maximum plasma concentration and exposure measured by area under the concentration–
time curve increased with dose but in a less than proportional manner. Rusfertide reduced serum iron and transferrin-iron 
saturation in a dose-related manner. Rusfertide was generally well tolerated. Side effects seen in more than 10% of subjects 
that were considered possibly related to treatment were injection-site redness and itching.
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Key Points 

Rusfertide is a potent peptide mimetic of the natural pep-
tide hormone hepcidin. Rusfertide is being investigated 
for the treatment of polycythemia vera. Following subcu-
taneous administration of rusfertide over a dose range of 
10–60 mg in healthy subjects, peak plasma concentration 
and area under the concentration–time curve increased 
with dose but in a less-than dose-proportional manner.

Rusfertide resulted in reduction in serum iron and 
transferrin-iron saturation with maximum reduction 
noted approximately 24–48 h post-dose. The effect 
increased with dose with effects sustained up to 72 h at 
higher doses.

Rusfertide was generally well tolerated in healthy volun-
teers. Adverse effects noted in at least 10% of subjects 
that were considered possibly related to treatment were 
injection-site erythema and injection-site pruritus.

1  Introduction

Polycythemia vera (PV) is a chronic myeloproliferative neo-
plasm driven by activating mutations in the Janus kinase 2 
gene that results in unrestrained erythrocytosis and increased 
hematocrit and hemoglobin concentrations, placing patients 
at an increased risk of thrombotic events and mortality 
[1–3]. Treatment guidelines for PV recommend maintain-
ing hematocrit below 45% to minimize thromboembolic and 
cardiovascular risk [4–6]. Treatment is generally initiated 
with low-dose aspirin and a periodic therapeutic phlebotomy 
to maintain a hematocrit <45%. Pegylated interferon alpha-
2a or ropeginterferon alfa-2b may be considered in patients 
aged younger than 60 years and those without a history of a 
thrombotic event, who have low-risk disease, and who have 
frequent phlebotomies, severe pruritus, persistent symptoms, 
or symptomatic splenomegaly [7]. Patients with a high-risk 
disease defined as those aged older than 60 years or with a 
history of thrombosis are treated with hydroxyurea, a Janus 
kinase 2 inhibitor, or pegylated interferon alpha. However, 
current treatments are often ineffective for maintaining hem-
atocrit levels in the recommended range. Among high-risk 
patients with PV, only 25% had hematocrit levels consist-
ency below 45%, while 7% had hematocrit values always 
>50% [8].

Iron is an essential trace element for nearly every living 
organism and the most abundant trace element in humans 

[9, 10]. The human body contains approximately 3–4 g of 
iron, with most in erythrocyte hemoglobin (~ 2–3 g) [9]. 
Hepcidin, a 25-amino acid peptide hormone synthesized pri-
marily by hepatocytes, is the master regulator of systemic 
iron homeostasis [11, 12]. Hepcidin inhibits iron absorption 
in the proximal small intestine [13] and controls iron export 
to the plasma by inducing degradation of the iron exporter 
ferroportin in macrophages and hepatocytes [14, 15]. Iron 
and hepcidin regulate each other in a classical endocrine 
feedback loop. When hepcidin levels are low, iron enters 
the blood compartment; when hepcidin levels are high, fer-
roportin is internalized and iron is trapped in enterocytes, 
macrophages, and hepatocytes [16], and can lead to iron-
restricted anemia. This observation suggests that hepcidin 
could be a therapeutic useful for treating conditions of exces-
sive erythropoiesis, such as PV. However, synthesis of full-
length hepcidin is relatively inefficient, and the short plasma 
half-life of hepcidin due to proteolysis and renal clearance 
limits its use as a therapeutic agent [17, 18].

Rusfertide (also known as PTG-300) is a synthetic pep-
tide mimetic of the natural peptide hormone hepcidin that 
is being investigated as a potential treatment for PV. The 
pharmacokinetic (PK) and pharmacodynamic (PD) charac-
teristics of rusfertide make it suitable as a therapeutic. In a 
cell-based ferroportin internalization assay, the EC50 values 
of hepcidin and rusfertide were 67.8 and 6.12 nM, respec-
tively [19]. Subcutaneous (SC) administration of rusfertide 
in cynomolgus monkeys resulted in a dose-dependent reduc-
tion of serum iron and anemia. A single SC injection of 
rusfertide 0.3 mg/kg in cynomolgus monkeys resulted in a 
maximum reduction in serum iron of 54.9% 24 h post-dose. 
Maximum rusfertide plasma concentrations (172 ± 31 nM) 
were noted at 8 h post-dose, and the estimated elimination 
half-life was approximately 24 h [20].

Rusfertide has shown efficacy in PV in phase II studies, 
reducing elevated hematocrit levels [21] and maintaining 
hematocrit levels < 45% in patients with PV [22] and recent 
reports have demonstrated that rusfertide treatment can 
provide long-term control of hematocrit [23]. Rusfertide is 
currently being investigated in a randomized, double-blind, 
placebo-controlled phase III study in patients with PV [24]. 
In addition, a proof-of-concept clinical study has indicated 
that rusfertide was also well tolerated and effective for con-
trolling iron overload in patients with HFE-related hemo-
chromatosis [25].

The dose-ranging pharmacokinetics and pharmaco-
dynamics of an aqueous prefilled syringe formulation 
of rusfertide that was used in phase II studies in patients 
with PV has been reported previously [26]. Following SC 
administration of the aqueous formulation in healthy sub-
jects, rusfertide plasma concentrations are noted within 1 
h of dosing, and peak concentration (Cmax) occurred at a 
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median of approximately 2–24 h. Following the peak, rus-
fertide concentrations for the aqueous formulation decreased 
with an elimination half-life of 17.9–52.5 h. Peak plasma 
concentration and area under the concentration–time curve 
increased with rusfertide dose but less than dose proportion-
ally. Corresponding with the pharmacokinetics, dose-related 
PD decreases in serum iron and transferrin-iron saturation 
(TSAT) were noted.

While the aqueous formulation was suitable for phase II 
safety and efficacy studies, it has limited stability and was 
not considered suitable for large global studies. Lyophiliza-
tion is frequently used to prepare peptides in a solid state, 
increasing chemical and physical stability [27, 28]. The 
present study evaluated the dose-ranging pharmacokinetics, 
pharmacodynamics, and tolerability of a lyophilized formu-
lation of rusfertide compared to the aqueous formulation.

2 � Methods

The trial protocol, consent form, and other information 
provided to participants were reviewed and approved by 
the Advarra Institutional Review Board (Pro00059393, 
Approval 23 November, 2021). The trial was conducted 
in compliance with the ethical principles originating in or 
derived from the Declaration of Helsinki and in compliance 
with all International Council for Harmonization Good 
Clinical Practice Guidelines, and all study procedures were 
conducted by scientifically and medically qualified person-
nel. Written informed consent was obtained from each par-
ticipant before any study-specific activity was performed.

2.1 � Study Design

In this randomized, open-label, dose-ranging, four-way 
crossover study, the pharmacokinetics, pharmacodynamics, 
safety, and tolerability of single doses of rusfertide were 
evaluated in two groups of 16 healthy subjects at a single 
US site using two formulations: a lyophilized powder for-
mulation for reconstitution and an aqueous formulation in a 
pre-filled syringe. The study was conducted between January 
and March 2022. Subjects in Group 1 received SC doses of 
rusfertide 20, 30, and 60 mg as a lyophilized formulation 
and 20 mg as the aqueous formulation in a randomized man-
ner. Subjects in Group 2 received SC doses of rusfertide 10, 
20, and 45 mg as a lyophilized formulation and 20 mg as 
an aqueous formulation in a randomized manner. Subjects 
in both groups received 20 mg of both formulations. This 
study design was chosen to provide a direct comparison of 
the 20-mg dose of both formulations and to limit the number 
of treatments in each subject to four treatments to reduce 
the number of dropouts. The lyophilized formulation was 

reconstituted by clinical staff using the accompanying dilu-
ent and administered to subjects. All dose injections were 
0.5 mL in volume, administered subcutaneously to the abdo-
men, 2 inches from the navel, with a washout period of at 
least 13 days between treatments. This study  in healthy sub-
jects did not meet the definition of “applicable clinical trial,” 
and it was not required to be registered on clinicaltrials.gov.

2.2 � Study Population

Eligible subjects were male or female, aged 18–65 years, 
inclusive, in good general health with no significant abnor-
malities on a physical examination, with no laboratory val-
ues considered clinically significant by the investigator, and 
a body mass index between 18 and 32 kg/m2. Women were 
surgically sterile, postmenopausal, or, if of childbearing 
potential, agreed to use medically acceptable contraception 
(< 1% annual failure rate) during the study and for 30 days 
after the last dose of study medication. Key exclusion cri-
teria included a history of clinically significant endocrine, 
neurological, gastrointestinal, cardiovascular, hematological, 
hepatic, immunological, renal, respiratory, or genitourinary 
abnormalities or disorders, non-invasive squamous cell car-
cinoma of the skin (unless adequately treated), a history of 
invasive malignancies within the previous 5 years (except 
localized cured prostrate or cervical cancer), a history of 
severe allergic or anaphylactic reactions, supine blood pres-
sure outside 90–139 mm Hg systolic and 50–89 mm Hg 
diastolic, or a heart rate greater than 100 beats per minute.

2.3 � Dose Selection

Single doses of 10, 20, 30, 45, and 60 mg of the lyophilized 
rusfertide formulation were chosen for this trial to study the 
complete range of rusfertide dose strengths that are included 
in the larger phase III safety and efficacy study. The 20-mg 
aqueous formulation dose strength was included for com-
parison with the 20-mg lyophilized formulation because 20 
mg is the recommended starting dose of rusfertide.

2.4 � Pharmacokinetic (PK) Assessments

To assess the PK profile of rusfertide and its metabolites, 
plasma samples were collected pre-dose, and at 1, 2, 4, 8, 12, 
24, 36, 48, 72, 96, 120, 144, 168, 192, and 216 h following 
dosing. Subjects were released from the clinical unit follow-
ing the 48-h sample, with subsequent samples collected at 
outpatient visits. Plasma samples were isolated by centrifu-
gation and stored at − 70 °C within 60 min of collection.

Twelve subjects had detectable pre-dose rusfertide 
plasma concentrations during at least one of the treatments. 
For these subjects, prior to conducting PK analyses, the 
plasma concentrations were corrected assuming a first-order 
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elimination using the average elimination half-life estimated 
following intravenous administration of rusfertide from a 
separate trial.

Pharmacokinetic parameters were estimated by non-com-
partmental methods using Phoenix WinNonlin version 8.3 
(Certara, Princeton, NJ, USA). Peak plasma concentration 
and time to Cmax (Tmax) were observed values. The elimina-
tion rate was estimated from the slope of the least-squares 
regression on the terminal log-linear phase. Area under the 
concentration–time curve (AUC) from time zero to the last 
quantifiable concentration was estimated by a linear trap-
ezoidal method and was extrapolated to infinity (AUC​inf) by 
dividing the last quantifiable concentration by the elimina-
tion rate. To allow a comparison across treatments in this 
crossover study conducted in two groups of subjects, sum-
maries of PK data are based on the group of subjects that 
completed all treatments.

The PK analysis set included all subjects who received at 
least one dose of study medication and had data for at least 
one PK parameter. Pharmacokinetic completers were sub-
jects who had received all four study doses. Pharmacokinetic 
parameters were summarized using descriptive statistics.

2.5 � Bioanalytical Methods

Plasma concentrations of rusfertide and metabolites (M1, 
M4, M6, M9) were determined using two liquid chroma-
tography/tandem mass spectrometry methods that were per-
formed under Good Laboratory Practice guidelines: a multi-
analyte liquid chromatography/tandem mass spectrometry 
method for rusfertide, M1, M6, and M9; and a separate liq-
uid chromatography/tandem mass spectrometry method for 
M4. The bioanalytical methods were developed in accord-
ance with current ICH guidelines on bioanalytical method 
validation and study sample analysis [29].

The analytical methods for determination of rusfertide 
and M4 concentrations were validated for selectivity, linear-
ity, reproducibility, recovery, precision, and accuracy over 
the concentration range of 2.00–500 ng/mL and qualified 
for M1, M6, and M9 over a concentration range of 3.00–750 
ng/mL.

Quality-control cumulative accuracy (percent relative 
error) was − 2.0 to 3.0% for rusfertide and − 12.6% to 6.7% 
for the metabolites. Cumulative precision (percent coeffi-
cient of variation) was ≤ 3.8% for rusfertide and ≤ 11.5% 
for the metabolites.

2.6 � Pharmacodynamic (PD) Assessments

The PD effects of rusfertide were assessed by measuring 
serum iron and transferrin-iron saturation. Samples were 
collected pre-dose, and at 4, 8, 24, 48, 72, 96, 120, 144, and 
168 h following dosing.

Pharmacodynamic effects on serum iron and TSAT were 
summarized by estimating the area under the PD effect-
time curve (AUEC) from zero to 168 h. The rusfertide 
AUC–AUEC relationship for serum iron and for TSAT was 
investigated. All subjects who received at least one dose of 
study medication and had AUEC data for at least one PD 
endpoint were included in the PD analyses.

2.7 � Safety Assessments

Safety evaluations were based on adverse events (AEs) and 
the use of concomitant medications, as well as clinical labo-
ratory test values, physical examinations, vital sign meas-
urements, and electrocardiogram findings, each assessed 
at pre-specified timepoints. Adverse event occurrences and 
concomitant medication usage were recorded throughout the 
study. Physical examinations were conducted at screening 
and at the end of the study. Clinical laboratory assessments, 
including hematology, clinical chemistry, coagulation, and 
urinalysis, were conducted at check-in and at 4 and 48 h 
following dosing, and at the end of the study. Electrocardio-
gram measurements and vital sign recordings were made 
pre-dose, and at 2, 4, 8, 12, 24, 48, 72, 120, and 216 h fol-
lowing dosing and at the end of the study.

All participants who received at least one dose of study 
medication were included in the safety analyses. Adverse 
events were considered treatment emergent if they started or 
worsened after the first administration of treatment. Sever-
ity grading of AEs was done according to the Common 
Terminology Criteria for Adverse Events Version 5.0 [30]. 
Adverse events were coded using the Medical Dictionary 
for Regulatory Activities (Version 24.1) and evaluated by 
the principal investigator. The intensity of the AE was rated 
as mild, moderate, severe, life threatening, or fatal, and the 
relationship between the AE and study medication was indi-
cated as not related, unlikely related, possibly related, or 
related.

2.8 � Immunogenicity Assessments

Serum samples were collected prior to the first rusfertide 
dose and at the end of study participation for determination 
of rusfertide antidrug antibodies. Serum antidrug antibodies 
were examined via a validated enzyme-linked immunosorb-
ent assay using a three-tiered approach (screening, confirma-
tion, and titration analysis).

2.9 � Statistical Analyses

As this study was not a bioequivalence study, no formal 
sample size estimations were performed in this single-dose 
trial. The number of participants enrolled in each group was 
consistent with the customary size employed in PK studies 
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and was expected to allow a meaningful assessment of phar-
macokinetics and pharmacodynamics and clinical judgment 
of safety and tolerability.

Statistical analyses were performed using SAS version 
9.4 (SAS Institute, Cary, NC, USA). The PK-PD analysis 
was conducted using GraphPad Prism version 10.3.1 for 
Windows (GraphPad Software, Boston, MA, USA). Dose 
proportionality of Cmax and AUC​inf for the rusfertide lyo-
philized formulation was assessed based on a power model 
[Y = α·(dose)β] as described by Gough et al. [31] using the 
modification by Smith et al. [32]. In the power model, Y is 
the PK parameter, α is the expected value of Y for a dose of 
unity, and β is the proportionality exponent. A mixed-effects 
model, allowing for random between-subject variability in 
α and β, was implemented to estimate the proportionality 
constant and its 90% confidence interval (CI). Dose propor-
tionality was declared if the calculated 90% CI lay within 
the acceptance range [1 + ln(ΘL)/log(R), 1 + ln(ΘH)/log(R)], 
where ΘL and ΘH are the lower and upper limits of the CI 
(0.8 and 1.25, respectively) and R is the ratio between the 
highest and lowest doses (R = 6 in this study).

3 � Results

3.1 � Subject Disposition

Two groups of 16 subjects were enrolled. Eleven subjects 
completed all four treatments in Group 1; one subject was 
withdrawn for protocol non-compliance, one withdrew 
because of a family emergency, and three discontinued 
because of AEs. One subject experienced injection-site 
erythema, induration, and itching, another experienced 
injection-site erythema, and a third reported urticaria. Four-
teen subjects completed all four treatments in Group 2; one 
subject discontinued because of coronavirus disease 2019 
infection and another withdrew to care for a relative with 
coronavirus disease 2019 infection. Overall, 25 of 32 sub-
jects enrolled (78.1%) completed the study.

3.2 � Demographics and Baseline Characteristics

The demographics and baseline characteristics of sub-
jects in the two groups are summarized in Table 1. Sub-
jects ranged in age from 28 to 63 years and were equally 
distributed by sex. The majority of subjects were Black or 
African American (56%), and 31% were White. The mean 
body mass index was 27.2 kg/m2 (range 21.2–30.9 kg/m2). 
Subject demographics were generally well balanced between 
the two groups.

3.3 � Pharmacokinetics

3.3.1 � Rusfertide

The mean rusfertide plasma concentration–time profiles 
following single doses of rusfertide for both formulations 
are presented in Fig. 1. Semi-logarithmic profiles are pre-
sented in Fig. 1 of the Electronic Supplementary Material 
(ESM). A summary of rusfertide pharmacokinetics is pre-
sented in Table 2. Following SC administration, rusfertide 
concentrations were detected within 1 h of dosing, with 
plasma concentrations increasing and sustained over time. 
The median Tmax for rusfertide for the lyophilized formu-
lation was 24 h for doses up to 30 mg, and 2–4 h for the 
45- and 60-mg doses. The median Tmax for rusfertide for 
the 20-mg dose of the aqueous formulation was 1 h. For 
doses of 20 mg and higher of the lyophilized formulation, 
there was a rapid increase in rusfertide concentration; in 
some instances, a dual peak could be seen in the rusfer-
tide concentration profile. Dose-related increases were 
seen in rusfertide Cmax and AUC. The mean elimination 
half-life for rusfertide ranged from 19.6 to 57.1 h. Mean 
apparent plasma clearance of rusfertide for the lyophi-
lized formulation ranged from approximately 0.63 to 1.5 
L/h, with apparent clearance increasing with an increas-
ing rusfertide dose. The apparent clearance for rusfertide 
20 mg as the aqueous formulation was 1.5 L/h compared 
with an apparent clearance of 0.98 L/h for the lyophilized 
formulation. The rusfertide 20-mg lyophilized formula-
tion had an approximate 1.5-fold higher AUC​inf exposure 
than the 20-mg dose of the aqueous formulation.

Rusfertide dose proportionality was evaluated for the 
lyophilized formulation doses using a power analysis 
(Table 3; Fig. 2). Following single-dose administration of 
rusfertide, rusfertide Cmax and AUC​inf values increased in 
a less than dose-proportional manner. The proportionality 
exponent (β) for Cmax and AUC​inf were less than unity. 
The acceptance interval for dose proportionality for this 
study was (0.8755, 1.12450). The 90% CI of β (Table 3) 
was not wholly contained within this interval, indicating 
a less than dose-proportional increase in Cmax and AUC​inf.

3.3.2 � Metabolites M1, M4, M6, and M9

Metabolite M9 exposure was 24.9% of all drug-related expo-
sure (AUC) for the aqueous formulation and ranged from 
25.4 to 32.6% of all drug-related exposure for the lyophilized 
formulation (Table 2). Metabolite M4 AUC exposure was 
20.9% of all drug-related exposure in the aqueous formula-
tion, while for the lyophilized product, the percentage of M4 
exposure relative to all drug-related exposure increased with 
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dose, with a range from 1.9% at 10 mg to 18.5% at 60 mg. 
Therefore, M9 is considered a major metabolite (≥ 10%) and 
conservatively, M4 is also considered a major metabolite for 
this single-dose study. Across all the dose levels, Tmax of M4 
and M9 appeared later than that of rusfertide. The elimina-
tion half-lives for M4 and M9 were comparable to that for 
rusfertide. Metabolites M1 and M6 were detected only spo-
radically and are considered minor metabolites, comprising 
< 1% of all drug-related AUC.

3.4 � Pharmacodynamics

3.4.1 � Serum Iron

A dose-related acute decrease in serum iron levels was seen 
following SC rusfertide (Fig. 3A). Peak decrease in serum 
iron was noted at 24 h and at higher doses, the decrease was 
sustained until 72 h after which serum iron levels started to 
return to baseline. A dose-related recovery of the PD effect 
to baseline was noted, with a faster recovery following 10 
mg and a slower recovery following 60 mg. At 10 mg, there 
was an overshoot in the effect above baseline, reflective of 
the transient effect at this dose and the general variability in 
the response. The 20-mg dose of the lyophilized formulation 
had a similar reduction in serum iron compared with the 
20-mg aqueous formulation with a similar return to baseline 
(Fig. 3A).

3.4.2 � Transferrin‑Iron Saturation (TSAT)

Consistent with the effects seen with serum iron, TSAT 
decreased following SC administration, with peak effects 
noted at 24–48 h (Fig. 3B), and the effect was sustained 
at the higher doses. Following the nadir, TSAT levels 

returned towards baseline and for the lower doses of 10 
and 20 mg, the TSAT levels were essentially back to base-
line by 168 h. The 20-mg doses of the lyophilized formula-
tion and the aqueous formulation had a similar PD effect 
on TSAT.

3.5 � Pharmacokinetic (PK) and Pharmacodynamic 
(PD) Correlation

The PD effects on serum iron and TSAT generally matched 
the rusfertide plasma concentration profile. The relation-
ship between AUEC for serum iron and for TSAT and 
rusfertide AUC was well described by a linear relation-
ship (Fig. 4). A comparison of the y-intercept and slope 
for the linear relationships for the lyophilized formulation 
and the aqueous formulation for serum iron and for TSAT 
indicated that the slopes and intercepts between the two 
formulations were not significantly different (p = 0.427 
and 0.503 for slope and intercept, respectively, for serum 
iron, and p = 0.195 and p = 0.379 for slope and intercept, 
respectively, for TSAT) and a single linear relationship 
could be used for both formulations (Table 4). Examining 
the relationship for serum iron and for TSAT using data 
just for the 20-mg dose for both formulations showed simi-
lar findings that a single linear relationship could be used 
for both formulations (Fig. 2 and Table 1 of the ESM).

3.6 � Safety and Tolerability

Sixteen (50%) of the 32 subjects enrolled in the study 
experienced a treatment-emergent AE (TEAE) [Table 5]. 
No serious TEAEs were reported. Most TEAEs were mild 
or moderate in severity. One subject in each of the 20-mg 

Table 1   Subject demographics 
and baseline characteristics

Data are presented as mean ± standard deviation unless otherwise stated
BMI body mass index

Group 1 (N = 16) Group 2 (N = 16) Total (N = 32)

Age, years 41.6 ± 9.7 44.3 ± 10.5 42.9 ± 10.0
Sex, n (%)
 Male 9 (56) 7 (44) 16 (50)
 Female 7 (44) 9 (56) 16 (50)

Race, n (%)
 Black or African American 10 (63) 8 (50) 18 (56)
 White 4 (25) 6 (38) 10 (31)
 American Indian or Alaska native 1 (6) 0 1 (3)
 Other 1 (6) 2 (13) 3 (9)

Weight, kg 82.0 ± 10.2 76.1 ± 7.2 79.0 ± 9.2
BMI, kg/m2 27.5 ± 2.6 26.8 ± 2.8 27.2 ± 2.7
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aqueous formulation and the 60-mg lyophilized formula-
tion experienced injection-site erythema that was consid-
ered severe. Three subjects experienced treatment-related 
AEs that led to discontinuation of treatment; injection-site 
erythema, induration, and pruritus in one subject, injec-
tion-site erythema in a second subject, and urticaria in 
the third subject. Treatment-emergent AEs reported in at 
least two subjects that were considered treatment related 

were injection-site erythema (13%), injection-site pruri-
tus (13%), injection-site induration (9%), and injection-
site pain (9%). Overall, 9 of 32 subjects (28%) reported 
injection-site reactions.

There was no relationship between the severity of AEs 
and dose. Overall, there was no difference in the AE profile 
between the two formulations at the 20-mg dose. No consist-
ent clinically meaningful changes were noted in the clinical 
laboratory results, vital signs, or electrocardiogram results.

3.7 � Immunogenicity

A total of 58 samples were screened for the presence of anti-
rusfertide antibodies in human serum. Of these, all samples 
except one were considered negative. One sample at the early 
termination visit from one subject, a 57-year-old man who 
discontinued the study after the second treatment, yielded an 
optical density value above the corresponding plate specific 
cut-off point with a positive titer of 507 units. Evaluation of the 
rusfertide concentrations in this subject did not indicate any 
difference in the exposure compared to other subjects. Apart 
from injection-site erythema following a 60-mg dose that led 
to treatment discontinuation, the subject also did not report 
any other TEAEs.

4 � Discussion

Rusfertide, a peptide mimetic of the natural peptide hormone 
hepcidin, is currently under investigation for the treatment of 
PV. Clinical trials in healthy subjects and phase II trials in 
patients with PV or hemochromatosis used rusfertide as an 
aqueous formulation. In phase II trials in patients with PV, 
the aqueous formulation demonstrated significant efficacy in 
maintaining hematocrit < 45%, essentially eliminating the 
need for phlebotomies, and demonstrated long-term control 
of hematocrit [22, 23]. While the aqueous formulation was 
suitable for phase II studies, this formulation was not consid-
ered suitable for phase III and long-term trials. A lyophilized 
formulation provides a longer shelf-life, allowing for global 
trials over a wider geographic temperature range. Lyophili-
zation is often used as a means of improving the shelf-life 
of peptide and protein drugs that are frequently subject to 
instabilities because of the presence of water [27, 28]. The 
current study investigated the dose-ranging pharmacokinet-
ics, pharmacodynamics, and safety of a lyophilized formula-
tion of rusfertide (10–60 mg) and an aqueous formulation 
(20 mg) in healthy volunteers. The recommended starting 
dose of rusfertide for both formulations is 20 mg, support-
ing the use of this dose strength for comparison of the two 
formulations. In clinical practice, the dose of rusfertide is 
titrated for each subject to identify a dose that maintains 
hematocrit levels below 45%. The mean weekly rusfertide 
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dose in subjects who completed the open-label dose-titration 
phase of the phase II REVIVE study was 41.3 mg [33], sup-
porting the dose range of 10–60 mg selected for the current 
study. Because rusfertide is titrated to effect, the current PK 
and PD investigation was not designed as a bioequivalence 

trial and rather was intended to provide an understanding of 
the improvement in the rusfertide exposure from the lyophi-
lized formulation relative to the previously studied aqueous 
formulation.

Following SC administration, rusfertide plasma concen-
trations were noted within 1 h, the first sampling timepoint. 
Median peak concentrations occurred 24–48 h following 
dose administration for the 10–30-mg doses of the lyo-
philized formulation and occurred earlier for the 45- and 
60-mg doses. The SC absorption of rusfertide is extended, 
possibly a result of dual absorption pathways, which in 
combination with a modestly long elimination half-life 
results in sustained plasma concentrations and a delayed 
Tmax. An earlier Tmax is noted at higher doses, possibly 
reflecting an increase in the fraction of rusfertide absorbed 

Table 2   Pharmacokinetic parameters of rusfertide and metabolites M4 and M9 following subcutaneous dosing

Data are mean ± standard deviation unless otherwise noted
AUC​ area under the concentration–time curve, CL/F apparent clearance, Cmax peak plasma concentration, Tmax time to maximum concentration, 
t1/2 elimination half-life, total AUC sum of AUC for rusfertide and all metabolites, Vz/F apparent volume of distribution
a Median (minimum, maximum)
b N = 23
c N = 12
d N = 8
e N = 10
f N = 20

Lyophilized formulation Aqueous formulation

10 mg (N = 14) 20 mg (N = 25) 30 mg (N = 11) 45 mg (N = 14) 60 mg (N = 11) 20 mg (N = 25)

Rusfertide
Cmax (ng/mL) 261 ± 64.4 264 ± 73.9 287 ± 90.0 460 ± 106 776 ± 842 171 ± 52.0
Tmax (h)a 24 (24, 48) 24 (4, 48) 24 (4, 36) 4 (2, 48) 2 (1, 12) 1 (1, 72)
AUC​inf (ng·h/mL) 16,400 ± 2990 21,600 ± 5130 26,400 ± 6800 40,600 ± 8900 47,000 ± 18200 14,300 ± 4580
t½ (h) 19.6 ± 5.22 28.6 ± 11.3 26.6 ± 6.39 33.0 ± 18.4 57.1 ± 73.0 33.5 ± 19.3
CL/F (L/h) 0.629 ± 0.123 0.979 ± 0.245 1.20 ± 0.299 1.16 ± 0.242 1.48 ± 0.629 1.54 ± 0.508
Vz/F (L) 18.2 ± 7.54 40.5 ± 20.1 47.3 ± 18.4 54.2 ± 32.0 104 ± 84.8 79.2 ± 59.7
Ratio of rusfertide AUC​inf to 

total AUC​inf (%)
65.5 ± 3.96 61.7 ± 4.53 58.2 ± 4.16 55.2 ± 4.55 55.2 ± 4.96 53.7 ± 3.66

M4
Cmax (ng/mL) 7.67 ± 5.62 31.3 ± 17.1 63.4 ± 33.0 110 ± 68.8 119 ± 80.2 49.5 ± 21.8
Tmax (h)a 36 (8, 48) 48 (36, 96) 48 (36, 72) 48 (36, 144) 48 (36, 96) 48 (36, 144)
AUC​inf (ng·h/mL) – 2960 ± 1130b 6760 ± 2640 12,000 ± 4800c 17,700 ± 6210d 5750 ± 1720f

t½ (h) – 36.6 ± 14.9b 33.9 ± 8.99 36.4 ± 17.4c 37.5 ± 17.1d 34.1 ± 12.3f

Ratio of M4 AUC​inf to Total 
AUC​inf (%)

1.90 ± 1.74 8.39 ± 3.82 14.6 ± 4.35 15.5 ± 7.03 18.5 ± 7.78 20.9 ± 5.87

M9
Cmax (ng/mL) 105 ± 27.1 105 ± 33.2 113 ± 53.8 177 ± 46.9 197 ± 149 59.5 ± 27.6
Tmax (h)a 48 (36, 48) 48 (24, 72) 48 (36, 96) 48 (24, 144) 36 (12, 48) 48 (36, 96)
AUC​inf (ng·h/mL) 8260 ± 1670 10,700 ± 2930 12,800 ± 4450 21,700 ± 5210 21,800 ± 9360e 6830 ± 2300
t½ (h) 25.4 ± 4.79 32.8 ± 8.53 36.8 ± 9.52 39.8 ± 15.5 45.2 ± 16.0e 41.0 ± 15.8
Ratio of M9 AUC​inf to Total 

AUC​inf (%)
32.6 ± 4.08 29.7 ± 4.44 26.8 ± 4.11 28.7 ± 4.23 25.4 ± 6.30 24.9 ± 3.53

Table 3   Rusfertide proportionality analysis

AUC​inf area under the concentration–time curve from time zero to 
infinity, Cmax peak plasma concentration, SE standard error

Pharmacokinetic param-
eter

Proportionality expo-
nent (β) value (SE)

90% confidence 
interval

Cmax (ng/mL) 0.683 (0.0868) 0.539, 0.828
AUC​inf (h·ng/mL) 0.766 (0.0580) 0.669, 0.862
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rapidly compared with a portion that may be absorbed 
more slowly at lower doses.

Similar to a previous study with the aqueous formulation 
[26], a less-than-proportional increase in exposure (Cmax and 
AUC) was seen for the lyophilized formulation over the dose 
range of 10–60 mg in the current study. The mean elimina-
tion half-life for the lyophilized formulation was 19.6–57.1 
h. There was a trend of increasing apparent clearance and 
apparent volume of distribution with an increasing rusfer-
tide dose, which may explain the less-than-proportional 
increases in Cmax and AUC. Rusfertide likely follows clear-
ance through linear and non-linear (saturable, potentially 
target-mediated drug disposition) mechanisms. The increase 
in apparent clearance and volume of distribution with 
increasing dose may be reflective of the saturation of the 
non-linear clearance, resulting in an increase in the amount 
of free drug and a higher rate of clearance. This non-linear 
clearance may be reflective of target-mediated drug dispo-
sition, which would be consistent with the mechanism of 
action of rusfertide with saturable binding to the ferroportin 
receptor. At lower doses, rusfertide may bind to ferroportin 

receptors, which remove the drug from the plasma circula-
tion and leads to the shorter half-life. With increasing dose, 
ferroportin binding may become saturated, resulting in more 
free drug available for linear (non-saturable) clearance. This 
leads to the increased clearance at higher doses and may also 
reflect the true systemic elimination half-life of rusfertide. 
Alternatively, the increase in apparent clearance with an 
increasing dose may reflect differences in bioavailability or 
changes in metabolism with dose, especially M4.

Compared with the aqueous formulation, lyophilized 
rusfertide had an approximately 1.5-fold higher AUC at 20 
mg. The reconstituted lyophilized formulation contains zinc 
acetate and mannitol, which may contribute to the improved 
PK behavior of this formulation. The addition of zinc has 
been shown to chelate trace amounts of free thiols that may 
form during the drug substance manufacturing process for 
peptides [34, 35]. Furthermore, zinc has been shown to have 
additional benefits as a formulation additive, aiding in the 
stabilization of peptides and contributing to bioavailability 
enhancements [36, 37].

Pharmacokinetics of the 20-mg dose of the rusfertide 
aqueous formulation was comparable to that noted in a 
previous study [26]. Although the lyophilized formulation 
resulted in higher Cmax and AUC values compared with the 
aqueous formulation at 20 mg, there did not appear to be a 
difference in the PD effect on serum iron and TSAT at this 
dose level between the two formulations. We attribute this 
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partly to the asymptotic concentration–effect relationship 
wherein the effect on change in serum iron and TSAT is sim-
ilar for the two formulations up to approximately a rusfertide 
concentration of 130 ng/mL, the common range in rusfertide 
concentrations, above which there are smaller changes from 
baseline in the PD effects with further increases in the rus-
fertide concentration (Fig. 3 of the ESM).

M1 and M6 comprise < 1% of the total drug-related 
AUC and are considered minor metabolites. According to 
the metabolites in safety testing guidelines, M9, and con-
servatively M4, are considered major metabolites for the 
lyophilized formulation because their AUC values comprise 
> 10% of the total AUC [38]. At the 20-mg dose, rusfertide 
AUC​inf comprised 61.7% of the total drug-related AUC​inf for 
the lyophilized formulation and 53.7% for the aqueous for-
mulation. M4 comprised 8.4% of the total drug-related AUC 
for the lyophilized formulation and 20.9% for the aqueous 
formulation. In contrast, there was a smaller difference in the 
M9 exposure between the two formulations; M9 comprised 
29.7% of the total AUC for the lyophilized formulation and 
24.9% for the aqueous formulation. Metabolites M4 and M9 
have approximately 1.5-fold and 7.2-fold lower potencies, 
respectively, than rusfertide in a cell-based, in vitro ferro-
portin internalization assay. Taking the relative potency into 
account, based on the AUC​inf of rusfertide, M4 and M9, at 
20 mg, rusfertide accounts for approximately 86% of the 
pharmacologic activity with the M4 and M9 metabolites 
accounting for 8% and 6% of the activity, respectively, for 
the lyophilized formulation.

Median time to peak concentration for both major metab-
olites, M4 and M9, occurred similar to or later than that of 
rusfertide, suggesting the absence of pre-systemic metab-
olism for these metabolites. Metabolites M4 and M9 had 
similar mean elimination half-lives as rusfertide, suggest-
ing that these two metabolites follow formation rate-limited 
pharmacokinetics.

There is increasing recent interest in the use of hepci-
din, mini-hepcidins [39], and targeting transmembrane ser-
ine protease 6 using antisense nucleotides [40–42], small 
interfering RNA [1, 43], or monoclonal antibodies [44, 45] 
for iron overload disorders. Hepcidin is reported to have a 
rapid clearance, primarily through renal excretion and reab-
sorption, which limits it use as a therapeutic [46]. Rusfer-
tide appears to have favorable PK and PD characteristics 
compared with some other investigational agents that have 
effects on the ferroportin receptor.

Subcutaneous administration of LJPC-401, a synthetic 
hepcidin, in healthy subjects resulted in peak concentra-
tions at approximately 2 h and the mean terminal half-life 
ranged from ~ 3 to 11 h [47]. Mean maximum reduction in 
serum iron with LJPC-401 occurred 4–8 h post-dose with 
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Table 4   Summary of relationship between rusfertide area under the 
concentration–time curve and pharmacodynamic area under the effect 
curve for serum iron and transferrin-iron saturation

TSAT transferrin-iron saturation

Intercept Slope P-value for 
comparison

Serum iron Aqueous 2235 − 0.04256
Lyophilized 2060 − 0.0234
Combined 2064 − 0.02452 Slope: 0.4268

Intercept: 0.5030
TSAT Aqueous 3798 − 0.0939

Lyophilized 3257 − 0.04075
Combined 3283 − 0.04388 Slope: 0.1945

Intercept: 0.3789
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a return to baseline within 48 h. In contrast, SC rusfer-
tide as the lyophilized formulation has a more sustained 
absorption, with Cmax noted approximately 4–24 h fol-
lowing injection and a longer apparent elimination half-
life, supporting less frequent dosing. Consistent with the 
PK profile, rusfertide led to dose-related, rapid, robust, 
and sustained effects on serum iron and transferrin-iron 
saturation, with effects noted within 4 h of dose admin-
istration. Maximum reductions in serum iron and TSAT 
were noted approximately 24–48 h following rusfertide 
administration with a subsequent dose-dependent return 
to baseline generally at 168 h or later.

VIT-2763, a small-molecule oral ferroportin inhibi-
tor, has a median Tmax of 0.5–3 h and a geometric mean 
elimination half-life of 1.9–5.3 h following single doses 
in healthy subjects [48]. Correspondingly, the nadir in 
serum iron levels was observed 4–8 h post-dose, and 
mean serum iron levels rebounded to baseline or above 
by 24 h post-dose. The longer duration of effect with rus-
fertide (nadir at 24 h, which is sustained until 72–96 h) 
would allow once-weekly or twice-weekly dosing.

This PK and PD trial in healthy subjects guided the 
choice of the starting dose of 20 mg for the planned 
phase III safety and efficacy study and ensured patient 
safety given the demonstrated tolerability of the range 
of rusfertide exposures previously studied. The similar 

relationship between rusfertide exposure (AUC) and 
serum iron AUEC (Fig. 4) for both formulations suggests 
that given a desired reduction in serum iron, it would be 
possible to select the dose of rusfertide required with each 
formulation.

In phase II studies, SC rusfertide has shown a rapid, 
robust, and sustained reduction in hematocrit in patients 
with PV, essentially eliminating the need for phlebotomies 
[22], an outcome of restricting iron availability for eryth-
ropoiesis [49]. These findings in patients with PV are con-
sistent with the PK and PD profile of rusfertide observed 
in healthy subjects. Rusfertide shows acute reductions in 
serum iron (Fig. 3A) and an exposure-related decrease in 
AUEC for serum iron (Fig. 4A), reflecting limited avail-
ability of serum iron for erythropoiesis.

Single doses of SC rusfertide doses were generally well 
tolerated. Approximately 28% of subjects experienced 
injection-site reactions, with two subjects discontinuing 
the study early because of these events. No serious AEs 
were identified in this dose-ranging trial, and no clini-
cally meaningful effects were seen on clinical laboratory 
parameters, vital signs, or electrocardiograms. The over-
all safety profile of SC rusfertide was as expected for a 
hepcidin mimetic intended to limit iron availability.

A limitation of the current study, the presence of low 
detectable rusfertide concentrations in some subjects in 

Table 5   Summary of TEAEs in two or more subjects overall following subcutaneous dosing of rusfertide as a lyophilized formulation and as a 
pre-filled syringe aqueous formulation

Data reported are number of subjects (percentage)
COVID-19 coronavirus disease 2019, TEAE treatment-emergent adverse event

Formulation Overall (N = 32)

Lyophilized Aqueous

10 mg (N = 15) 20 mg (N = 31) 30 mg (N = 12) 45 mg (N = 14) 60 mg (N = 13) 20 mg (N = 29)

All TEAEs 4 (27) 5 (16) 1 (8) 2 (14) 5 (39) 5 (17) 16 (50)
Treatment-related 

TEAE
3 (20) 4 (13) 0 1 (7) 4 (31) 2 (7) 12 (38)

TEAE leading to 
discontinuation

0 1 (3) 0 0 1 (8) 1 (3) 3 (9)

Severe TEAEs 0 0 0 0 1 (8) 1 (3) 2 (6)
General disorders and administrative-site conditions
 Injection-site 

erythema
0 0 0 1 (7) 3 (23) 1 (3) 4 (13)

 Injection-site 
pruritus

1 (7) 1 (3) 0 1 (7) 0 1 (3) 4 (13)

 Injection-site 
induration

0 0 0 1 (7) 1 (8) 1 (3) 3 (9)

 Injection-site pain 0 2 (7) 0 0 1 (8) 0 3 (9)
Infections and infestations
 COVID-19 1 (7) 1 (3) 0 0 0 2 (7) 4 (13)

Skin and subcutaneous tissue disorders
 Dermatitis 0 0 1 (8.3) 0 1 (8) 0 2 (6)
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subsequent treatment periods, was likely a result of the 
short (2-week) washout period. These instances were gen-
erally limited to cases where the previous treatment was 
60 mg and the baseline concentration generally comprised 
less than 7% of the Cmax on average. In these cases, the 
rusfertide plasma concentrations were corrected using an 
average elimination rate from a previous study with intra-
venous rusfertide.

5 � Conclusions

Results from this single-dose trial in healthy subjects dem-
onstrate that following SC administration, rusfertide is rap-
idly absorbed, with plasma concentrations noted within 1 
h. The lyophilized formulation of rusfertide results in an 
approximately 1.5-fold higher AUC compared with the 
aqueous formulation. Pharmacodynamic results in healthy 
subjects indicate a sustained dose-related and exposure-
related effect on limiting systemic availability of iron. Sub-
cutaneous rusfertide was generally well tolerated in healthy 
subjects, with the most common TEAEs being injection-site 
reactions.
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