FIRST-IN-CLASS ORAL PEPTIDE SYSTEMICALLY TARGETING THE IL-23 PATHWAY

A. Foure,1 X. Cheng,2 L. Chang,3 C. Greving,1 A. Patrick,1 B. Knight,1 D. Polidori,1 R. Patch,1 A. Bhandari,2 D. Liu,2 K. Huie,2 S. Li,2 M. Rodriguez,3 A. Kannan,1 J. Sherlock,1 N. Modi†
1Janssen Research & Development, LLC, La Jolla, CA/Spring House, PA, USA; 2Protagonist Therapeutics, Inc., Newark, CA, USA

BACKGROUND/OBJECTIVE

- Human genetic associations and the efficacy of anti-IL-23 mAbs clearly define IL-23 pathway relevance in PsO, PsA, CD, and UC
- Currently, there are no orally delivered therapeutics selectively targeting this pathway
- To provide additional treatment options for patients, we developed an oral therapeutic peptide, JNJ-77242113, selectively targeting IL-23 to block IL-23 signaling

RESULTS

Figure 1. In Vitro Pharmacology
- JNJ-77242113 is a competitive peptide antagonist that binds with high affinity to IL-23R and selectively inhibits IL-23 proximal signaling and downstream cytokine production with high potency

Figure 2. Orally Dosed JNJ-77242113 Attenuates Weight Loss and Colon Inflammation in the Rat TNBS-induced Colitis Model
- Body weight change (%)
- Colon edema/microstructure

Figure 3. Orally Dosed JNJ-77242113 Shows Systemic Pharmacodynamic Activity in Rat Blood
- Oral dose vehicle or JNJ-77242113
- Draw blood and stimulate with IL-23

Figure 4. Oral JNJ-77242113 Achieves Inhibition of IL-23-induced Rat Skin Inflammation Equivalent to Anti-IL-23 Antibody

Figure 5. JNJ-77242113 Phase 1 Study: Safety, Pharmacokinetics, Systemic Pharmacodynamics
- Single and multiple oral doses were safe and generally well tolerated with no safety signal of concern

CONCLUSIONS

- Oral therapeutics selectively targeting the IL-23 pathway will provide additional options for patients
- JNJ-77242113 is a peptide antagonist, that binds with picomolar affinity to IL-23R, and potently blocks IL-23 signaling and downstream cytokine production
- Due to exquisite potency, GI stability and effective tissue distribution, orally dosed JNJ-77242113 in rats showed inhibition of
 - colon tissue inflammation
 - ex vivo IL-23-induced IL-17A production in blood
 - skin inflammation, achieving similar efficacy to an anti-IL-23 antibody
- Preclinical findings successfully translated to a Phase 1 human study, where systemic inhibition of ex vivo IL-23-induced IFN-γ production in blood was observed
- Accelerated development to Phase 2b in PsO

Acknowledgments

Disclosures

X. Cheng, A. Bhandari, D. Liu, K. Huie, S. Li, and N. Modi: current and former employees of Protagonist Therapeutics, Inc.

Presented at ISED Meeting May 10-11, 2023, Tokyo, Japan