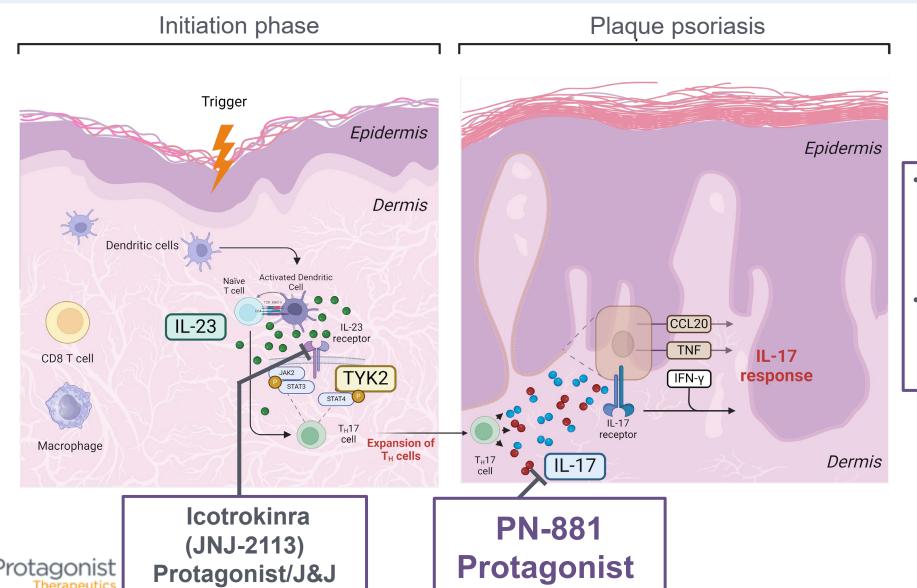
PN-881: First-in-class oral peptide targeting the IL-17 pathway

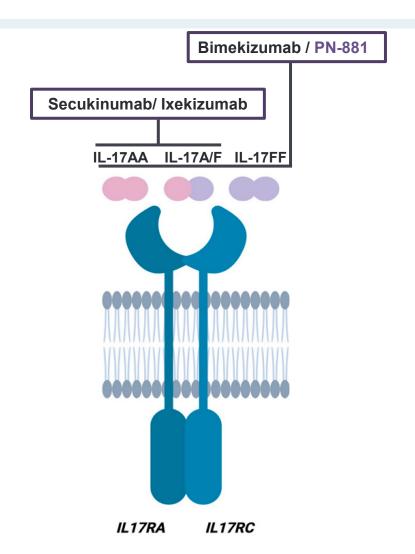
Mariana Manrique PhD
Protagonist Therapeutics, Inc

FC07.1B Inflammation skin diseases Friday 19th May 2025 **EADV 2025**

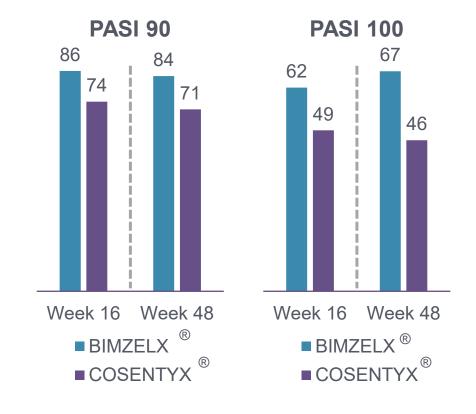


Disclosure statement

Mariana Manrique, Ph.D. is an employee of Protagonist Therapeutics, Inc. and may have an equity position in the company.



Targeting IL-17 Results in Rapid Onset of Response


- IL-17 and IL-23 pathways are key mediators of psoriasis pathogenesis
- Proximity of IL-17 to skin pathology may lead to more rapid disease response

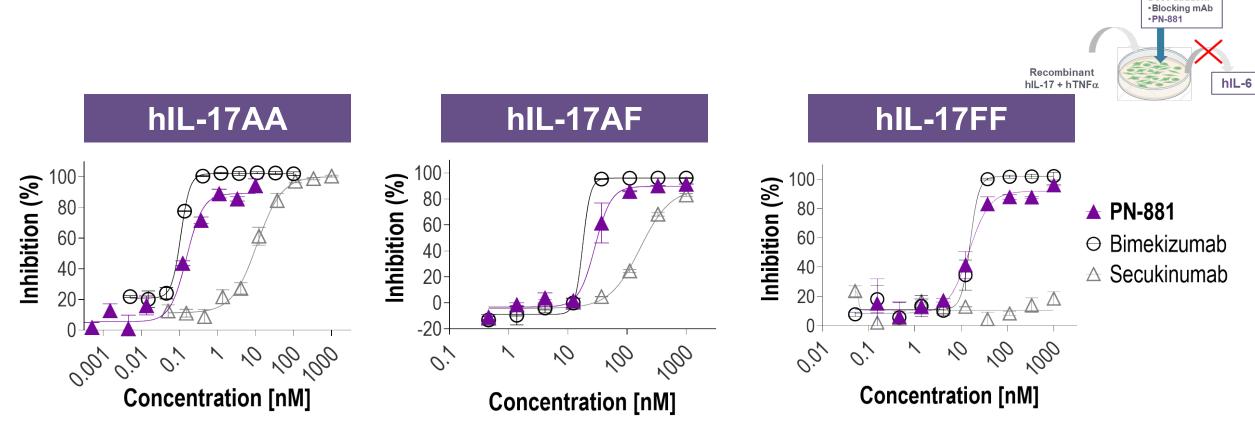
IL-17 Receptor Activated by Three Dimeric Forms of IL-17: IL-17AA, AF, and FF¹

BE RADIANT Clinical Trial:

Blockade of IL-17A and F Yields Greater Efficacy in Psoriasis¹

¹Reich et al., N Engl J Med 2021;385:142-52. DOI: 10.1056/NEJMoa2102383

Oral PN-881 was designed to inhibit IL-17AA, AF and FF to achieve maximal clinical benefit


Criteria for nomination of Oral PN-881 Development Candidate

Attribute	Criteria	
Potency	 Sub-nM potency vs. IL-17 AA Blocks all dimeric forms of IL-17: AA, AF, FF 	
Stability	 Stable in simulated gastric and intestinal fluids Stable in serum with t_{1/2} >24 hr Metabolic stability Thermostability 	
PK	Oral exposure and half-life in rodent and higher species sufficient for oral daily dosing	
PD model	Mouse hlL-17 challenge, CXCL1 model	
Efficacy Model	Rat IL-23-induced skin inflammation model	

Oral PN-881 achieved all the criteria for a development candidate nomination

PN-881 inhibits IL-17-induced IL-6 responses with similar potency as Bimekizumab in primary human dermal fibroblast (HDFn) assay

- PN-881 has similar blocking curves as Bimekizumab for all three IL-17 isoforms while Secukinumab's curves for IL-17AA and AF are shifted to the right
- Secukinumab does not block IL-17FF

PN-881 Potently Inhibits IL-17AA and IL-17FF Similar potency to Bimekizumab and ~70-fold more potent than Secukinumab

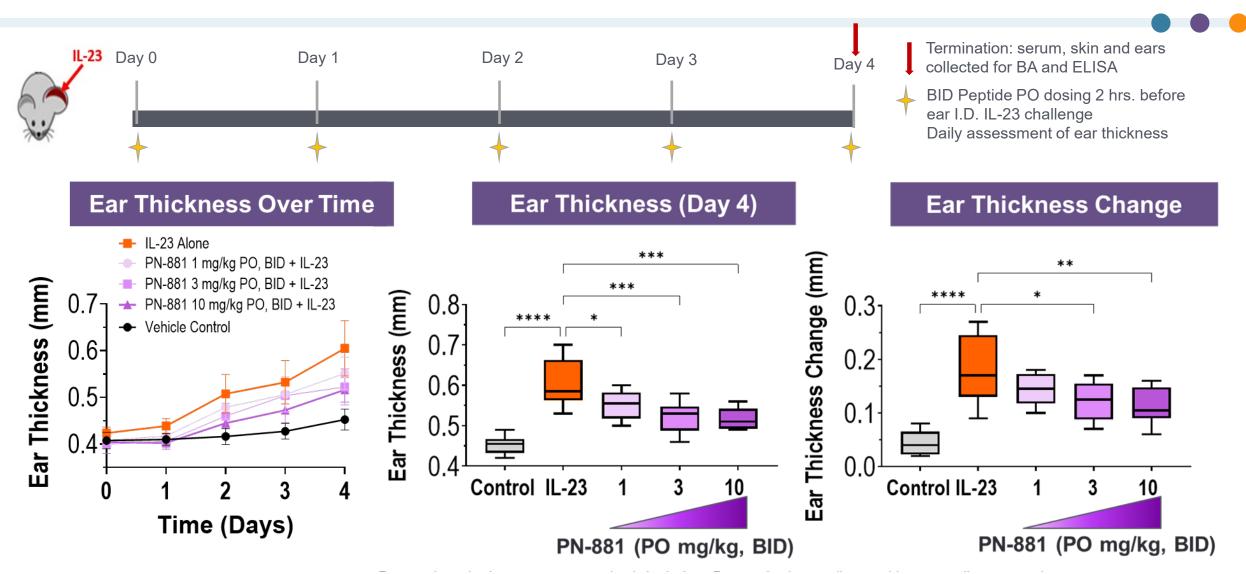
HDFn IC ₅₀ (nM)					
		IL-17 AA	IL-17 AF	IL-17 FF	
PN-881	oral	0.15	29	15	

nHDF IC ₅₀ (nM)		
IL-17 AA	IL-17 AF	IL-17 FF
0.13	27	14


		IL-17 AA	IL-17 AF	IL-17 FF
Bimekizumab	SC	0.12	18	14
Secukinumab	SC	10	175	Inactive

IL-17 AA	IL-17 AF	IL-17 FF
0.17	19.5	13
11	151	Inactive

- PN-881 has sub-nM IL-17AA blocking potency (IC₅₀) similar to Bimekizumab and 70 times more potent than Secukinumab
- PN-881 inhibited IL-17 AF and FF with similar potency than Bimekizumab


Oral PN-881 Neutralizes Human IL-17 in Mouse IL-17 Challenge PD Model PN-881 significantly reduces serum and skin CXCL1 levels after oral administration

- Human IL-17 s.c. challenge induced systemic and skin production of CXCL1
- Oral administration of PN-881 significantly reduced CXCL1 responses in serum and skin

Oral PN-881 in the Rat IL-23-induced Skin Inflammation Efficacy Model PN-881 significantly reduces IL-23-induced ear thickness after oral administration

*p<0.05, **p<0.001, ****p<0.0001. Data points depict mean <u>+</u> standard deviation. Boxes depict median and interquartile ranges; bars depict min. and max

Summary

Oral PN-881 (QD) has the potential to be the first-in-class oral peptide targeting all three IL-17 isoforms, the main driver of skin inflammation

- PN-881 exhibited comparable potency values (IC₅₀) to Bimekizumab and superior (>70-fold) to Secukinumab
 in primary dermal fibroblast
- Demonstrated PD-based target engagement after PO dosing
- Demonstrated target engagement in 5-day efficacy study after PO dosing
- Oral exposure and half-life in rodent and higher species sufficient for oral daily dosing
- Anticipate Phase I initiation Q4 2025

Thank you!

Acknowledgments:

Ashok Bhandari (EVP, Chief Discovery Officer) Jason Halladay (SVP DMPK) Newman Yeilding (CSO) Peter Morello (VP Communication) Yanping Pu (Sr. Director Project manager)

Biology Team

- Catarina Tran
- Carolyn Denson
- Tenny Tang

Chemistry Team

- Bo Yang
- Naveen Rayala
- Chengguo Dong
- Kenneth Dickson
- Jenny Zhang
- Greg Bourne
- Tran Tran
- Fei Tang
- Dehui Kong
- James Daniel
- Jack Duncan

DMPK Team:

- Li Zhao
- Diana Carrero
- Larry Lee
- Padmapriya Kumaraswamy
- Yan Huang
- Huan Jin
- James Tovera
- Lucy Yuan
- Virna Kim

