$ASTROCOWINU

SACI 5% HOLDING REWARDS

$ASTROCOWINU ($ACI)

Hyper Deflationary Token with holders reward and automatic buyback
5% HOLDING REWARDS - TAX: 14% BUY/SELL

Holders reward 5% Buyback 6% Marketing 3%

https://www.grangefinance.app/ASTRO-COW-INU
https://t.me/grangefinance

Solidity Scan — rgep
' SHIELDS

Website: https://www.grangefinance.app
Telegram: https://t.me/grangefinance

14/12/2022, 15:10 SolidityScan

SolidityScan —rAED
SHIELDS

14 Dec 2022

Contents.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 1/94

14/12/2022, 15:10

SolidityScan

Project Summary

Audit Summary

Findings Summary

Vulnerability Details

ACCOUNT EXISTENCE CHECK FOR LOW LEVEL CALLS
HARD-CODED ADDRESS DETECTED
BLOCK VALUES AS A PROXY FOR TIME
CHEAPER INEQUALITIES IN IF()

CHEAPER INEQUALITIES IN REQUIRE()
CUSTOM ERRORS TO SAVE GAS
APPROVE FRONT-RUNNING ATTACK
EXTRA GAS USAGE IN LOOPS

USE OF FLOATING PRAGMA

FUNCTION SHOULD RETURN STRUCT
UNCHECKED ARRAY LENGTH

GAS OPTIMIZATION IN INCREMENTS
LONG REQUIRE/REVERT STRINGS
MISSING EVENTS

MISSING INDEXED KEYWORDS IN EVENTS
OUTDATED COMPILER VERSION
PRESENCE OF OVERPOWERED ROLE

USE OF SAFEMATH LIBRARY

FUNCTION SHOULD BE EXTERNAL
IN-LINE ASSEMBLY DETECTED

Scan History

Disclaimer

https://solidityscan.com/report/block/255b6cdfbded6f65ef86f63b08c38adc/7b58d2b58 1a8f2bd

2/94

14/12/2022, 15:10

SolidityScan

Project Summary

This report has been prepared for using SolidityScan to scan and discover
vulnerabilities and safe coding practices in their smart contract including the
libraries used by the contract that are not officially recognized. The SolidityScan
tool runs a comprehensive static analysis on the Solidity code and finds
vulnerabilities ranging from minor gas optimizations to major vulnerabilities
leading to the loss of funds. The coverage scope pays attention to all the
informational and critical vulnerabilities with over (100+) modules. The scanning
and auditing process covers the following areas:

Various common and uncommon attack vectors will be investigated to ensure
that the smart contracts are secure from malicious actors. The scanner modules
find and flag issues related to Gas optimizations that help in reducing the overall
Gas cost It scans and evaluates the codebase against industry best practices
and standards to ensure compliance It makes sure that the officially recognized
libraries used in the code are secure and up to date

The SolidityScan Team recommends running regular audit scans to identify any
vulnerabilities that are introduced after introduces new features or refactors the
code.

Audit Summary

Contract BuyBackToken
Name

Smart Contract

Contract Type

0Oxe48DA8BCF4AfS5ELE6946F36CF1B7B19D41aCa2c26
Contract
Platform

https://bscscan.com/address/Oxe48DA8CF4AfSELE6946F36CF1B7B19L

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86f63b08c38adc/7b58d2b581a8f2bd

3/94

14/12/2022, 15:10 SolidityScan

Contract

Chain Solidity
Contract URL Static Scanning
Language

Audit

Methodology

Findings Summary

Lines
TAS
‘..~ BuyBackToken gf)
Oxe48DA8CF4Af5ELE6946F36CF1B7B19D41aCa2¢c26 oee
993
Critical 0 Low
-
0 Informational
0 Gas
caE——

ACTION TAKEN

https://solidityscan.com/report/block/255b6cdfbded6f65ef86f63b08c38adc/7b58d2b58 1a8f2bd

4.141

Score

22

30

43

4/94

14/12/2022, 15:10 SolidityScan

Fixed False Positive Won't Fix Pending Fix
©0 &% 20) 0 () 95
Bug ID Severity Bug Type Status
SSB_1700_5 Medium ACCOUNT EXISTENCE CHECK FOR LOW @ False
LEVEL CALLS * Positive
SSB_1700.95 e |nformational HARD-CODED ADDRESS DETECTED @ False
* Positive
SSB_1700_.96 o |nformational HARD-CODED ADDRESS DETECTED @ False
* Positive
SSB_1700_.97 e |nformational HARD-CODED ADDRESS DETECTED @ False
x ..
Positive

SSB_1700_39 e |Informational BLOCK VALUES AS A PROXY FOR TIME ® Pending
Fix

SSB_1700_40 e |nformational BLOCK VALUES AS A PROXY FOR TIME ® Pending
Fix

SSB_1700_41 e Informational BLOCK VALUES AS A PROXY FOR TIME O Pending
Fix

SSB_1700_42 e Informational BLOCK VALUES AS A PROXY FOR TIME O Pending
Fix

SSB_1700_43 e Informational BLOCK VALUES AS A PROXY FOR TIME O Pending
Fix

SSB_1700_42 e Informational BLOCK VALUES AS A PROXY FOR TIME o Pending

Fix
SSB_1700_8 Gas CHEAPER INEQUALITIES IN IF() @ Pending
Fix
SSB_1700_9 Gas CHEAPER INEQUALITIES IN IF() @ Pending
Fix

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86f63b08c38adc/7b58d2b581a8f2bd 5/94

14/12/2022, 15:10 SolidityScan

SSB_1700.10 » Gas CHEAPER INEQUALITIES IN IF() @ Pending
Fix
SSB_170011 e Gas CHEAPER INEQUALITIES IN IF() @ Pending
Fix
SSB_170012 e Gas CHEAPER INEQUALITIES IN IF() @ Pending
Fix
SSB_170013 » Gas CHEAPER INEQUALITIES IN IF() @ Pending
Fix
SSB_1700_30 e Gas CHEAPER INEQUALITIES IN REQUIRE() @ Pending
Fix
SSB_1700_31 ¢ Gas CHEAPER INEQUALITIES IN REQUIRE() @ Pending
Fix
SSB_1700_32 ¢ Gas CHEAPER INEQUALITIES IN REQUIRE() @ Pending
Fix
SSB_1700_33 ¢ Gas CHEAPER INEQUALITIES IN REQUIRE() @ Pending
Fix
SSB_1700_34 ¢ Gas CHEAPER INEQUALITIES IN REQUIRE() @ Pending
Fix
SSB_1700_35 ¢ Gas CHEAPER INEQUALITIES IN REQUIRE() @ Pending
Fix
SSB_1700_36 ¢ Gas CHEAPER INEQUALITIES IN REQUIRE() @ Pending
Fix
SSB_1700_37 & Gas CHEAPER INEQUALITIES IN REQUIRE() o) Pending
Fix
SSB_1700_38 ¢ Gas CHEAPER INEQUALITIES IN REQUIRE() o) Pending
Fix
SSB_1700.14 e Gas CUSTOM ERRORS TO SAVE GAS @ False
X .
Positive
SSB_1700_46 e High APPROVE FRONT-RUNNING ATTACK @ False
X ..
Positive

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86f63b08c38adc/7b58d2b581a8f2bd 6/94

14/12/2022, 15:10 SolidityScan

SSB_1700_47 High APPROVE FRONT-RUNNING ATTACK @ False
* Positive
SSB_1700_48 o High APPROVE FRONT-RUNNING ATTACK @ False
X Ppositive
SSB_1700_49 ¢ High APPROVE FRONT-RUNNING ATTACK @ False
* Positive
SSB_1700_2 » Gas EXTRA GAS USAGE IN LOOPS @ Faise
¥ Ppositive
SSB_1700_3 « Gas EXTRA GAS USAGE IN LOOPS @ Faise
X Ppositive
SSB_1700_29 e | ow USE OF FLOATING PRAGMA @ False
* Positive
SSB_1700_50 » Gas FUNCTION SHOULD RETURN STRUCT @ False
¥ Positive
SSB_1700_4 e High UNCHECKED ARRAY LENGTH G\ False
¥ Ppositive
SSB_1700_6 Gas GAS OPTIMIZATION IN INCREMENTS G\ False
¥ Positive
SSB_1700_7 Gas GAS OPTIMIZATION IN INCREMENTS @ False
* Positive
SSB_1700_80 s Gas LONG REQUIRE/REVERT STRINGS @ Pending
Fix
SSB_1700_81 » Gas LONG REQUIRE/REVERT STRINGS @ Pending
Fix
SSB_1700_82 » Gas LONG REQUIRE/REVERT STRINGS @ Pending
Fix
SSB_1700_83 s Gas LONG REQUIRE/REVERT STRINGS @ Pending
Fix
SSB_1700_84 » Gas LONG REQUIRE/REVERT STRINGS @ Pending
Fix

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86f63b08c38adc/7b58d2b581a8f2bd 7/94

14/12/2022, 15:10 SolidityScan

SSB_1700_85 ¢ Gas LONG REQUIRE/REVERT STRINGS Pending
@ Fix
SSB_1700_86 ¢ Gas LONG REQUIRE/REVERT STRINGS Pending
@ Fix
SSB_1700_87 ¢ Gas LONG REQUIRE/REVERT STRINGS Pending
@ Fix
SSB_1700_88 ¢ Gas LONG REQUIRE/REVERT STRINGS Pending
@ Fix
SSB_1700_89 ¢ Gas LONG REQUIRE/REVERT STRINGS Pending
@ Fix
SSB_1700_90 ¢ Gas LONG REQUIRE/REVERT STRINGS Pending
@ Fix
SSB_1700_91 ¢ Gas LONG REQUIRE/REVERT STRINGS Pending
@ Fix
SSB_1700_92 ¢ Gas LONG REQUIRE/REVERT STRINGS Pending
@ Fix
SSB_1700_93 ¢ Gas LONG REQUIRE/REVERT STRINGS Pending
@ Fix
SSB_1700_94 ¢ Gas LONG REQUIRE/REVERT STRINGS Pending
@ Fix
SSB_1700_58 ¢ Low MISSING EVENTS Pending
@ Fix
SSB_1700_59 ¢ Low MISSING EVENTS Pending
o
ix
SSB_1700_60 e Low MISSING EVENTS Pending
O
ix
SSB_1700_61 e Low MISSING EVENTS Pending
o}h
ix
SSB_1700_62 e Low MISSING EVENTS Pending
@ Fix

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86f63b08c38adc/7b58d2b581a8f2bd 8/94

14/12/2022, 15:10

SSB_1700_63 & | ow

SSB_1700_64 e Low

SSB_1700_65 e Low

SSB_1700_66 e Low

SSB_1700_67 o Low

SSB_1700_68 o Low

SSB_1700_69 e | ow

SSB_1700_70 e Low

SSB_1700_71 e Low

SSB_1700_72 e Low

SSB_1700_73 e Low

SSB_1700_74 & Low

SSB_1700_75 e Low

SSB_1700_76 & | ow

SSB_1700_77 & Low

MISSING EVENTS

MISSING EVENTS

MISSING EVENTS

MISSING EVENTS

MISSING EVENTS

MISSING EVENTS

MISSING EVENTS

MISSING EVENTS

MISSING EVENTS

MISSING EVENTS

MISSING EVENTS

MISSING EVENTS

MISSING EVENTS

MISSING EVENTS

MISSING EVENTS

SolidityScan

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86f63b08c38adc/7b58d2b581a8f2bd

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
© Fix

Pending
© Fix

Pending
© Fix

Pending
© Fix

Pending
© Fix

Pending
© Fix

9/94

14/12/2022, 15:10

SSB_1700_78 e

SSB_1700_79 e

SSB_1700_51 e

SSB_1700_.52 «

SSB_1700_53 e

SSB_1700_54 «

SSB_1700_55 »

SSB_1700_56 »

SSB_1700_57 »

SSB_1700_28

SSB_1700_98 »

SSB_1700_99 »

SSB_1700_10 »

0

SSB_1700_10 »
1

SSB_1700_10 »
2

Low

Low

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Low

Informational

Informational

Informational

Informational

Informational

SolidityScan

MISSING EVENTS

MISSING EVENTS

MISSING INDEXED KEYWORDS IN EVENTS

MISSING INDEXED KEYWORDS IN EVENTS

MISSING INDEXED KEYWORDS IN EVENTS

MISSING INDEXED KEYWORDS IN EVENTS

MISSING INDEXED KEYWORDS IN EVENTS

MISSING INDEXED KEYWORDS IN EVENTS

MISSING INDEXED KEYWORDS IN EVENTS

OUTDATED COMPILER VERSION

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86f63b08c38adc/7b58d2b581a8f2bd

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

False
vx oy
Positive

Pending
© Fix

Pending
© Fix

Pending
© Fix

Pending
© Fix

Pending
© Fix

10/94

14/12/2022, 15:10

SSB_1700_10 »

3

SSB_1700_10 o

4

SSB_1700_10 »

5

SSB_1700_10 o

6

SSB_1700_10 o

7

SSB_1700_10

8

SSB_1700_10 »

9

SSB_1700_11 »

0

SSB_1700_111e

SSB_1700_112e

SSB_1700_11 »

3

SSB_1700_11 »

4

SSB_1700_1

SSB_1700_15

SSB_1700_16

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Gas

Gas

Gas

SolidityScan

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

PRESENCE OF OVERPOWERED ROLE

USE OF SAFEMATH LIBRARY

FUNCTION SHOULD BE EXTERNAL

FUNCTION SHOULD BE EXTERNAL

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86f63b08c38adc/7b58d2b581a8f2bd

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
© Fix

Pending
© Fix

Pending
© Fix

False
vx ..
Positive

Pending
© Fix

Pending
© Fix

11/94

14/12/2022, 15:10

SSB_1700_17

SSB_1700_18

SSB_1700_19

SSB_1700_20

SSB_1700_21

SSB_1700_22

SSB_1700_23

SSB_1700_24

SSB_1700_25

SSB_1700_26

SSB_1700_27

SSB_1700_44 e |nformational

SSB_1700_45 e |nformational

Gas

Gas

Gas

Gas

Gas

Gas

Gas

Gas

Gas

Gas

Gas

SolidityScan

FUNCTION SHOULD BE EXTERNAL

FUNCTION SHOULD BE EXTERNAL

FUNCTION SHOULD BE EXTERNAL

FUNCTION SHOULD BE EXTERNAL

FUNCTION SHOULD BE EXTERNAL

FUNCTION SHOULD BE EXTERNAL

FUNCTION SHOULD BE EXTERNAL

FUNCTION SHOULD BE EXTERNAL

FUNCTION SHOULD BE EXTERNAL

FUNCTION SHOULD BE EXTERNAL

FUNCTION SHOULD BE EXTERNAL

IN-LINE ASSEMBLY DETECTED

IN-LINE ASSEMBLY DETECTED

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86f63b08c38adc/7b58d2b581a8f2bd

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
O Fix

Pending
© Fix

Pending
© Fix

False
"x -
Positive

False
vx oy e
Positive

12/94

14/12/2022, 15:10 SolidityScan

Details.

SSB_1700_5

Medium Tentative107-113 @& Fals.e.
Positive

ACCOUNT EXISTENCE CHECK FOR LOW LEVEL CALLS

contract.sol

» Issue Description

The low-level calls such as the delegatecall, call, or callcode, do not
validate prior to the call if the destination account exists or not. They will always
return true even if the account is non-existent, therefore, giving invalid output.

v Issue Remediation

It is recommended to have an account existence check before making these low-
level calls to confirm the presence of an external account with some valid code. Eg:
using extcodesize.

SSB_1700_95
Informatio Tentative 426-426 Fals,e,
nal Positive

HARD-CODED ADDRESS DETECTED

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 13/94

14/12/2022, 15:10 SolidityScan

contract.sol

_» Issue Description

The contract contains an unknown hard-coded address. This address might be used
for some malicious activity. Please check the hard-coded address and its usage.
These hard-coded addresses may be used everywhere throughout the code to
define states and interact with the functions and external calls.

Therefore, it is extremely crucial to ensure the correctness of these token contracts
as they define various important aspects of the protocol operation.

A misconfigured address mapping could lead to the potential loss of user funds or
compromise of the contract owner depending on the function logic.

The following hard-coded addresses were found -
0x000000000000000000000000000000000000dEaD

v Issue Remediation

It is required to check the address. Also, it is required to check the code of the called
contract for vulnerabilities.

Ensure that the contract validates if there's an address or a code change or test
cases to validate if the address is correct.

SSB_1700_96

Inf ti

nrormatio o htative 509-500 @ °°¢
nal Positive

HARD-CODED ADDRESS DETECTED

contract.sol

» Issue Description

The contract contains an unknown hard-coded address. This address might be used
for some malicious activity. Please check the hard-coded address and its usage.
These hard-coded addresses may be used everywhere throughout the code to
define states and interact with the functions and external calls.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 14/94

14/12/2022, 15:10

SolidityScan

Therefore, it is extremely crucial to ensure the correctness of these token contracts
as they define various important aspects of the protocol operation.

A misconfigured address mapping could lead to the potential loss of user funds or
compromise of the contract owner depending on the function logic.

The following hard-coded addresses were found -
OxEe89c2E6462141356¢c580F97BE3D5a35Abc3b27e

v Issue Remediation

It is required to check the address. Also, it is required to check the code of the called
contract for vulnerabilities.

Ensure that the contract validates if there's an address or a code change or test
cases to validate if the address is correct.

SSB_1700_97
Informatio . False
Tentative 528-528 & .
nal Positive

HARD-CODED ADDRESS DETECTED

contract.sol

_» Issue Description

The contract contains an unknown hard-coded address. This address might be used
for some malicious activity. Please check the hard-coded address and its usage.
These hard-coded addresses may be used everywhere throughout the code to
define states and interact with the functions and external calls.

Therefore, it is extremely crucial to ensure the correctness of these token contracts
as they define various important aspects of the protocol operation.

A misconfigured address mapping could lead to the potential loss of user funds or
compromise of the contract owner depending on the function logic.

The following hard-coded addresses were found -
0x10ED43C718714eb63d5aA57B78B54704E256024E

v Issue Remediation

It is required to check the address. Also, it is required to check the code of the called
contract for vulnerabilities.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

15/94

14/12/2022, 15:10 SolidityScan

Ensure that the contract validates if there's an address or a code change or test
cases to validate if the address is correct.

SSB_1700_39
| . .
nformatio 191-191 Pgndmg
nal Fix

BLOCK VALUES AS A PROXY FOR TIME

contract.sol

_» lIssue Description

Contracts often need access to time values to perform certain types of functionality.
Values such as block.timestamp and block.number can be used to determine
the current time or the time delta. However, they are not recommended for most use
cases.

For block.number , as Ethereum block times are generally around 14 seconds, the
delta between blocks can be predicted. The block times, on the other hand, do not
remain constant and are subject to change for a number of reasons, e.g., fork
reorganizations and the difficulty bomb.

Due to variable block times, block.number should not be relied on for precise
calculations of time.

v Issue Remediation

Smart contracts should be written with the idea that block values are not precise,
and their use can have unexpected results. Alternatively, oracles can be used.

SSB_1700_40

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 16/94

14/12/2022, 15:10 SolidityScan

Informatio Pendi
197-197 ending
nal Fix

BLOCK VALUES AS A PROXY FOR TIME

contract.sol

» Issue Description

Contracts often need access to time values to perform certain types of functionality.
Values such as block.timestamp and block.number can be used to determine
the current time or the time delta. However, they are not recommended for most use
cases.

For block.number , as Ethereum block times are generally around 14 seconds, the
delta between blocks can be predicted. The block times, on the other hand, do not
remain constant and are subject to change for a number of reasons, e.g., fork
reorganizations and the difficulty bomb.

Due to variable block times, block.number should not be relied on for precise
calculations of time.
v Issue Remediation

Smart contracts should be written with the idea that block values are not precise,
and their use can have unexpected results. Alternatively, oracles can be used.

SSB_1700_41
| . .
nformatio 203-203 P.endlng
nal Fix

BLOCK VALUES AS A PROXY FOR TIME

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 17/94

14/12/2022, 15:10 SolidityScan

_» Issue Description

Contracts often need access to time values to perform certain types of functionality.
Values such as block.timestamp and block.number can be used to determine
the current time or the time delta. However, they are not recommended for most use
cases.

For block.number , as Ethereum block times are generally around 14 seconds, the
delta between blocks can be predicted. The block times, on the other hand, do not
remain constant and are subject to change for a number of reasons, e.g., fork
reorganizations and the difficulty bomb.

Due to variable block times, block.number should not be relied on for precise
calculations of time.
v Issue Remediation

Smart contracts should be written with the idea that block values are not precise,
and their use can have unexpected results. Alternatively, oracles can be used.

SSB_1700_42
I i i
nformatio 240-740 Pgndmg
nal Fix

BLOCK VALUES AS A PROXY FOR TIME

contract.sol

» Issue Description

Contracts often need access to time values to perform certain types of functionality.
Values such as block.timestamp and block.number can be used to determine
the current time or the time delta. However, they are not recommended for most use
cases.

For block.number , as Ethereum block times are generally around 14 seconds, the
delta between blocks can be predicted. The block times, on the other hand, do not
remain constant and are subject to change for a number of reasons, e.g., fork
reorganizations and the difficulty bomb.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 18/94

14/12/2022, 15:10

SolidityScan
Due to variable block times, block.number should not be relied on for precise
calculations of time.

¥ Issue Remediation

Smart contracts should be written with the idea that block values are not precise,
and their use can have unexpected results. Alternatively, oracles can be used.

SSB_1700_43
I i i
nformatio 257757 P.endlng
nal Fix

BLOCK VALUES AS A PROXY FOR TIME

contract.sol

» lIssue Description

Contracts often need access to time values to perform certain types of functionality.
Values such as block.timestamp and block.number can be used to determine
the current time or the time delta. However, they are not recommended for most use
cases.

For block.number , as Ethereum block times are generally around 14 seconds, the
delta between blocks can be predicted. The block times, on the other hand, do not
remain constant and are subject to change for a number of reasons, e.g., fork
reorganizations and the difficulty bomb.

Due to variable block times, block.number should not be relied on for precise
calculations of time.
v Issue Remediation

Smart contracts should be written with the idea that block values are not precise,
and their use can have unexpected results. Alternatively, oracles can be used.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 19/94

14/12/2022, 15:10 SolidityScan

SSB_1700_42
I i i
nformatio 274-774 P'endlng
nal Fix

BLOCK VALUES AS A PROXY FOR TIME

contract.sol

_» Issue Description

Contracts often need access to time values to perform certain types of functionality.
Values such as block.timestamp and block.number can be used to determine
the current time or the time delta. However, they are not recommended for most use
cases.

For block.number , as Ethereum block times are generally around 14 seconds, the
delta between blocks can be predicted. The block times, on the other hand, do not
remain constant and are subject to change for a number of reasons, e.g., fork
reorganizations and the difficulty bomb.

Due to variable block times, block.number should not be relied on for precise
calculations of time.

v Issue Remediation

Smart contracts should be written with the idea that block values are not precise,
and their use can have unexpected results. Alternatively, oracles can be used.

SSB_1700_8

Pending

Gas 141-141
Fix

CHEAPER INEQUALITIES IN IF()

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 20/94

14/12/2022, 15:10 SolidityScan

contract.sol

_» Issue Description

The contract was found to be doing comparisons using inequalities inside the if
statement.

When inside the if statements, non-strict inequalities (>=, <=) are usually
cheaper than the strict equalities (>, <).

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the strict
inequalities with the non-strict ones to save ~3 gas as long as the logic of the code
is not affected.

SSB_1700_9

Pending

Gas 638-638 .
Fix

CHEAPER INEQUALITIES IN IF()

contract.sol

» lIssue Description

The contract was found to be doing comparisons using inequalities inside the if
statement.

When inside the if statements, non-strict inequalities (>=, <=) are usually
cheaper than the strict equalities (>, <).

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the strict
inequalities with the non-strict ones to save ~3 gas as long as the logic of the code
is not affected.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 21/94

14/12/2022, 15:10 SolidityScan

SSB_1700_10

Pending

Gas 687-687 .
Fix

CHEAPER INEQUALITIES IN IF()

contract.sol

» lIssue Description

The contract was found to be doing comparisons using inequalities inside the if
statement.

When inside the if statements, non-strict inequalities (>=, <=) are usually
cheaper than the strict equalities (>, <).

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the strict
inequalities with the non-strict ones to save ~3 gas as long as the logic of the code
is not affected.

SSB_1700_11

Pending

Gas 689-689 .
Fix

CHEAPER INEQUALITIES IN IF()

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 22/94

14/12/2022, 15:10 SolidityScan

_» Issue Description

The contract was found to be doing comparisons using inequalities inside the if
statement.

When inside the if statements, non-strict inequalities (>=, <=) are usually
cheaper than the strict equalities (>, <).

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the strict
inequalities with the non-strict ones to save ~3 gas as long as the logic of the code
is not affected.

SSB_170012

Pending

Gas 721-721 .
Fix

CHEAPER INEQUALITIES IN IF()

contract.sol

_» Issue Description

The contract was found to be doing comparisons using inequalities inside the if
statement.

When inside the if statements, non-strict inequalities (>=, <=) are usually
cheaper than the strict equalities (>, <).

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the strict
inequalities with the non-strict ones to save ~3 gas as long as the logic of the code
is not affected.

SSB_170013

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 23/94

14/12/2022, 15:10 SolidityScan

Pending

Gas 875-875
Fix

CHEAPER INEQUALITIES IN IF()

contract.sol

_» Issue Description

The contract was found to be doing comparisons using inequalities inside the if
statement.

When inside the if statements, non-strict inequalities (>=, <=) are usually
cheaper than the strict equalities (>, <).

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the strict
inequalities with the non-strict ones to save ~3 gas as long as the logic of the code
is not affected.

SSB_1700_30

Pending

Gas 44-44 .
Fix

CHEAPER INEQUALITIES IN REQUIRE()

contract.sol

_» Issue Description

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 24/94

14/12/2022, 15:10 SolidityScan

The contract was found to be performing comparisons using inequalities inside the
require statement. When inside the require statements, non-strict inequalities
(>=, <=) are usually costlier than strict equalities (>, <) .

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the non-
strict inequalities with the strict ones to save ~3 gas as long as the logic of the code
is not affected.

SSB_1700_31

Pending

Gas 54-54 .
Fix

CHEAPER INEQUALITIES IN REQUIRE()

contract.sol

» Issue Description

The contract was found to be performing comparisons using inequalities inside the
require statement. When inside the require statements, non-strict inequalities
(>=, <=) are usually costlier than strict equalities (>, <) .

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the non-
strict inequalities with the strict ones to save ~3 gas as long as the logic of the code
is not affected.

SSB_1700_32

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 25/94

14/12/2022, 15:10 SolidityScan
Pending

Gas 108-108
Fix

CHEAPER INEQUALITIES IN REQUIRE()

contract.sol

_» Issue Description

The contract was found to be performing comparisons using inequalities inside the
require statement. When inside the require statements, non-strict inequalities
(>=, <=) are usually costlier than strict equalities (>, <) .

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the non-
strict inequalities with the strict ones to save ~3 gas as long as the logic of the code
is not affected.

SSB_1700_33

Pending

Gas 129-129
Fix

CHEAPER INEQUALITIES IN REQUIRE()

contract.sol

_» Issue Description

The contract was found to be performing comparisons using inequalities inside the
require statement. When inside the require statements, non-strict inequalities
(>=, <=) are usually costlier than strict equalities (>, <) .

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

26/94

14/12/2022, 15:10

SolidityScan

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the non-
strict inequalities with the strict ones to save ~3 gas as long as the logic of the code
is not affected.

SSB_1700_34

Pending

Gas 500-500)
Fix

CHEAPER INEQUALITIES IN REQUIRE()

contract.sol

_» Issue Description

The contract was found to be performing comparisons using inequalities inside the
require statement. When inside the require statements, non-strict inequalities
(>=, <=) are usually costlier than strict equalities (>, <) .

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the non-
strict inequalities with the strict ones to save ~3 gas as long as the logic of the code
is not affected.

SSB_1700_35

Pending

Gas 619-619
Fix

CHEAPER INEQUALITIES IN REQUIRE()

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

27/94

14/12/2022, 15:10 SolidityScan

contract.sol

_» Issue Description

The contract was found to be performing comparisons using inequalities inside the
require statement. When inside the require statements, non-strict inequalities
(>=, <=) are usually costlier than strict equalities (>, <) .

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the non-
strict inequalities with the strict ones to save ~3 gas as long as the logic of the code
is not affected.

SSB_1700_36

Pending

Gas 630-630
Fix

CHEAPER INEQUALITIES IN REQUIRE()

contract.sol

_» Issue Description

The contract was found to be performing comparisons using inequalities inside the
require statement. When inside the require statements, non-strict inequalities
(>=, <=) are usually costlier than strict equalities (>, <) .

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the non-
strict inequalities with the strict ones to save ~3 gas as long as the logic of the code
is not affected.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 28/94

14/12/2022, 15:10 SolidityScan

SSB_1700_37

Pending

Gas 675-675
Fix

CHEAPER INEQUALITIES IN REQUIRE()

contract.sol

» Issue Description

The contract was found to be performing comparisons using inequalities inside the
require statement. When inside the require statements, non-strict inequalities
(>=, <=) are usually costlier than strict equalities (>, <) .

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the non-
strict inequalities with the strict ones to save ~3 gas as long as the logic of the code
is not affected.

SSB_1700_38

Pending

Gas 946-946
Fix

CHEAPER INEQUALITIES IN REQUIRE()

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

29/94

14/12/2022, 15:10 SolidityScan

_» Issue Description

The contract was found to be performing comparisons using inequalities inside the
require statement. When inside the require statements, non-strict inequalities
(>=, <=) are usually costlier than strict equalities (>, <) .

v Issue Remediation

It is recommended to go through the code logic, and, if possible, modify the non-
strict inequalities with the strict ones to save ~3 gas as long as the logic of the code
is not affected.

SSB_1700_14

False

Gas Certain 147-147 X .
Positive

CUSTOM ERRORS TO SAVE GAS

contract.sol

_» Issue Description

The contract was found to be using revert() statements. Since Solidity v0.8.4,
custom errors have been introduced which are a better alternative to the revert.
This allows the developers to pass custom errors with dynamic data while reverting
the transaction and also making the whole implementation a bit cheaper than using
revert.

v Issue Remediation

It is recommended to replace all the instances of revert() statements with
error() to save gas.

SSB_1700_46

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 30/94

14/12/2022, 15:10

SolidityScan

Fal
* High Tentative 571-574 @ - -°
Positive

APPROVE FRONT-RUNNING ATTACK

contract.sol

_» Issue Description

The approve() method overrides current allowance regardless of whether the
spender already used it or not, so there is no way to increase or decrease allowance
by a certain value atomically unless the token owner is a smart contract, not an
account.

This can be abused by a token receiver when they try to withdraw certain tokens
from the sender's account.

Meanwhile, if the sender decides to change the amount and sends another
approve transaction, the receiver can notice this transaction before it's mined and
can extract tokens from both the transactions, therefore, ending up with tokens from
both the transactions. This is a front-running attack affecting the ERC2@0 Approve
function.

The function approve can be front-run by abusing the _approve function.

v Issue Remediation

Only use the approve function of the ERC/BEP standard to change the allowed
amount to 0 or from O (wait till transaction is mined and approved).

Token owner just needs to make sure that the first transaction actually changed
allowance from N to 0, i.e., that the spender didn't manage to transfer some of N
allowed tokens before the first transaction was mined. Such checking is possible
using advanced blockchain explorers such as [Etherscan.io](https://etherscan.io/)
Another way to mitigate the threat is to approve token transfers only to smart
contracts with verified source code that does not contain logic for performing
attacks like described above, and to accounts owned by the people you may trust.

SSB_1700_47

Fal
* High Tentative 576-580 as'e.
Positive

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 31/94

https://etherscan.io/

14/12/2022, 15:10 SolidityScan

APPROVE FRONT-RUNNING ATTACK

contract.sol

» Issue Description

The transferFrom() method overrides current allowance regardless of whether
the spender already used it or not, so there is no way to increase or decrease
allowance by a certain value atomically unless the token owner is a smart contract,
not an account.

This can be abused by a token receiver when they try to withdraw certain tokens
from the sender's account.

Meanwhile, if the sender decides to change the amount and sends another
approve transaction, the receiver can notice this transaction before it's mined and
can extract tokens from both the transactions, therefore, ending up with tokens from
both the transactions. This is a front-running attack affecting the ERC2@0 Approve
function.

The function transferFrom can be front-run by abusing the _approve function.

v Issue Remediation

Only use the approve function of the ERC/BEP standard to change the allowed
amount to 0 or from O (wait till transaction is mined and approved).

Token owner just needs to make sure that the first transaction actually changed
allowance from N to 0, i.e., that the spender didn't manage to transfer some of N
allowed tokens before the first transaction was mined. Such checking is possible
using advanced blockchain explorers such as [Etherscan.io](https://etherscan.io/)
Another way to mitigate the threat is to approve token transfers only to smart
contracts with verified source code that does not contain logic for performing
attacks like described above, and to accounts owned by the people you may trust.

SSB_1700_48

Fal
* High Tentative726-744 @ °°°
Positive

APPROVE FRONT-RUNNING ATTACK

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 32/94

https://etherscan.io/

14/12/2022, 15:10 SolidityScan

contract.sol

» Issue Description

The swapTokensForEth() method overrides current allowance regardless of
whether the spender already used it or not, so there is no way to increase or
decrease allowance by a certain value atomically unless the token owner is a smart
contract, not an account.

This can be abused by a token receiver when they try to withdraw certain tokens
from the sender's account.

Meanwhile, if the sender decides to change the amount and sends another
approve transaction, the receiver can notice this transaction before it's mined and
can extract tokens from both the transactions, therefore, ending up with tokens from
both the transactions. This is a front-running attack affecting the ERC2@0 Approve
function.

The function swapTokensForEth can be front-run by abusing the _approve
function.

v Issue Remediation

Only use the approve function of the ERC/BEP standard to change the allowed
amount to 0 or from O (wait till transaction is mined and approved).

Token owner just needs to make sure that the first transaction actually changed
allowance from N to O, i.e., that the spender didn't manage to transfer some of N
allowed tokens before the first transaction was mined. Such checking is possible
using advanced blockchain explorers such as [Etherscan.io] (https://etherscan.io/)
Another way to mitigate the threat is to approve token transfers only to smart
contracts with verified source code that does not contain logic for performing
attacks like described above, and to accounts owned by the people you may trust.

SSB_1700_49

Fal
* High Tentative 763-776 @ -
Positive

APPROVE FRONT-RUNNING ATTACK

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 33/94

https://etherscan.io/

14/12/2022, 15:10 SolidityScan

_» Issue Description

The addLiquidity() method overrides current allowance regardless of whether
the spender already used it or not, so there is no way to increase or decrease
allowance by a certain value atomically unless the token owner is a smart contract,
not an account.

This can be abused by a token receiver when they try to withdraw certain tokens
from the sender's account.

Meanwhile, if the sender decides to change the amount and sends another
approve transaction, the receiver can notice this transaction before it's mined and
can extract tokens from both the transactions, therefore, ending up with tokens from
both the transactions. This is a front-running attack affecting the ERC20 Approve
function.

The function addLiquidity can be front-run by abusing the _approve function.

v Issue Remediation

Only use the approve function of the ERC/BEP standard to change the allowed
amount to 0 or from O (wait till transaction is mined and approved).

Token owner just needs to make sure that the first transaction actually changed
allowance from N to 0, i.e., that the spender didn't manage to transfer some of N
allowed tokens before the first transaction was mined. Such checking is possible
using advanced blockchain explorers such as [Etherscan.io](https://etherscan.io/)
Another way to mitigate the threat is to approve token transfers only to smart
contracts with verified source code that does not contain logic for performing
attacks like described above, and to accounts owned by the people you may trust.

SSB_1700_2

Fal
Gas 647-647 @ °°°
Positive

EXTRA GAS USAGE IN LOOPS

contract.sol

_» Issue Description

State variables such as .balance, or .length of a non-memory array are used in
the condition of for or while loop.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 34/94

https://etherscan.io/

14/12/2022, 15:10

SolidityScan

In this case, every iteration of the loop consumes extra gas because state variables
are being referred to.
v Issue Remediation

If state variables such as .balance, or .length are used several times, holding its
value in a local variable is more gas efficient. If .length of calldata-array is placed
into a local variable, the optimization will be less significant.

SSB_1700_3

Fal
Gas 870-870 @ °°°
Positive

EXTRA GAS USAGE IN LOOPS

contract.sol

» Issue Description

State variables such as .balance, or .length of a non-memory array are used in
the condition of for or while loop.

In this case, every iteration of the loop consumes extra gas because state variables
are being referred to.

v Issue Remediation

If state variables such as .balance, or .length are used several times, holding its
value in a local variable is more gas efficient. If .length of calldata-array is placed
into a local variable, the optimization will be less significant.

SSB_1700_29

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

35/94

14/12/2022, 15:10 SolidityScan

False

Low Certain 12-12 X .
Positive

USE OF FLOATING PRAGMA

contract.sol

_» Issue Description

Solidity source files indicate the versions of the compiler they can be compiled with

using a pragma directive at the top of the solidity file. This can either be a floating

pragma or a specific compiler version.

The contract was found to be using a floating pragma which is not considered safe

as it can be compiled with all the versions described.

The following affected files were found to be using floating pragma:
['contract.sol'] - ~0.8.5

v Issue Remediation

It is recommended to use a fixed pragma version, as future compiler versions may
handle certain language constructions in a way the developer did not foresee.
Using a floating pragma may introduce several vulnerabilities if compiled with an
older version.

The developers should always use the exact Solidity compiler version when
designing their contracts as it may break the changes in the future.

Instead of 70.8.5 use pragma solidity @.8.7, which is a stable and
recommended version right now.

SSB_1700_50

False

Gas Tentative 841-845 @ .
Positive

FUNCTION SHOULD RETURN STRUCT

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 36/94

14/12/2022, 15:10 SolidityScan

_» Issue Description

The function _getValues was detected to be returning multiple values.
Consider using a struct instead of multiple return values for the function. It can
improve code readability.

v Issue Remediation

Use struct for returning multiple values inside a function, which returns several
parameters and improves code readability.

SSB_1700_4

False

* High Tentative 647-647 & Positive

UNCHECKED ARRAY LENGTH

contract.sol

_» Issue Description

Ethereum is a very resource-constrained environment. Prices per computational step
are orders of magnitude higher than with centralized providers. Moreover, Ethereum
miners impose a limit on the total number of Gas consumed in a block. If

array. length is large enough, the function exceeds the block gas limit, and
transactions calling it will never be confirmed.

for (uint256 i = @; i < array.length ; i++) { cosltyFunc(); }

This becomes a security issue, if an external actor influences array. length.

E.g., if an array enumerates all registered addresses, an adversary can register many
addresses, causing the problem described above.

v Issue Remediation

Either explicitly or just due to normal operation, the number of iterations in a loop can
grow beyond the block gas limit, which can cause the complete contract to be stalled
at a certain point. Therefore, loops with a bigger or unknown number of steps should
always be avoided.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 37/94

14/12/2022, 15:10 SolidityScan

SSB_1700_6

Fal
Gas Tentative 647-647 @ -0
Positive

GAS OPTIMIZATION IN INCREMENTS

contract.sol

~» lssue Description

++1 costs less gas compared to i++ or i += 1 for unsigned integers. In i++, the
compiler has to create a temporary variable to store the initial value. This is not the
case with ++1i in which the value is directly incremented and returned, thus, making

it a cheaper alternative.

v Issue Remediation

Consider changing the post-increments (i++) to pre-increments (++i) aslong as
the value is not used in any calculations or inside returns. Make sure that the logic of

the code is not changed.

SSB_1700_7

Fal
Gas Tentative 870-870 & as.e.
Positive

GAS OPTIMIZATION IN INCREMENTS

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

38/94

14/12/2022, 15:10 SolidityScan

_» Issue Description

++1 costs less gas compared to i++ or i += 1 for unsigned integers. In i++, the
compiler has to create a temporary variable to store the initial value. This is not the
case with ++1i in which the value is directly incremented and returned, thus, making
it a cheaper alternative.

v Issue Remediation

Consider changing the post-increments (i++) to pre-increments (++i) aslong as
the value is not used in any calculations or inside returns. Make sure that the logic of
the code is not changed.

SSB_1700_80

Pending

Gas Tentative 66-66 Fix

LONG REQUIRE/REVERT STRINGS

contract.sol

» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 39/94

14/12/2022, 15:10 SolidityScan

SSB_1700_81

Pending

Gas Tentative 112-112 Fiy

LONG REQUIRE/REVERT STRINGS

contract.sol

_» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

SSB_1700_82

Pending

Gas Tentative 129-129 Fix

LONG REQUIRE/REVERT STRINGS

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 40/94

14/12/2022, 15:10

SolidityScan

_» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

SSB_1700_83

Pending

Gas Tentative 181-181 Fix

LONG REQUIRE/REVERT STRINGS

contract.sol

_» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

41/94

14/12/2022, 15:10 SolidityScan

SSB_1700_84

Pending

Gas Tentative 202-202 Fiy

LONG REQUIRE/REVERT STRINGS

contract.sol

» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

SSB_1700_85

Pending

Gas Tentative 500-500 Fix

LONG REQUIRE/REVERT STRINGS

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 42/94

14/12/2022, 15:10

SolidityScan

_» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

SSB_1700_86

Pending

Gas Tentative 610-610 Fix

LONG REQUIRE/REVERT STRINGS

contract.sol

_» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

43/94

14/12/2022, 15:10 SolidityScan

SSB_1700_87

Pending

Gas Tentative 630-630 Fiy

LONG REQUIRE/REVERT STRINGS

contract.sol

» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

SSB_1700_88

Pending

Gas Tentative 659-659 Fix

LONG REQUIRE/REVERT STRINGS

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 44/94

14/12/2022, 15:10

SolidityScan

_» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

SSB_1700_89

Pending

Gas Tentative 660-660 Fix

LONG REQUIRE/REVERT STRINGS

contract.sol

_» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

45/94

14/12/2022, 15:10 SolidityScan

SSB_1700_90

Pending

Gas Tentative 671-671 Fiy

LONG REQUIRE/REVERT STRINGS

contract.sol

» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

SSB_1700_91

Pending

Gas Tentative 672-672 Fix

LONG REQUIRE/REVERT STRINGS

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 46/94

14/12/2022, 15:10

SolidityScan

_» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

SSB_1700_92

Pending

Gas Tentative 673-673 Fix

LONG REQUIRE/REVERT STRINGS

contract.sol

_» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

47/94

14/12/2022, 15:10 SolidityScan

SSB_1700_93

Pending

Gas Tentative 675-675 Fiy

LONG REQUIRE/REVERT STRINGS

contract.sol

» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

SSB_1700_94

Pending

Gas Tentative 946-946 Fix

LONG REQUIRE/REVERT STRINGS

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 48/94

14/12/2022, 15:10

SolidityScan

_» Issue Description

The require() and revert() functions take an input string to show errors if the
validation fails.

This strings inside these functions that are longer than 32 bytes require at least
one additional MSTORE , along with additional overhead for computing memory
offset, and other parameters.

v Issue Remediation

It is recommended to short the strings passed inside require() and revert() to
fit under 32 bytes . This will decrease the gas usage at the time of deployment and
at runtime when the validation condition is met.

SSB_1700_58

Pending

Low 107-113 .
Fix

MISSING EVENTS

contract.sol

_» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract Address was found to be missing these events on the function
sendValue which would make it difficult or impossible to track these transactions off-
chain.

¥ Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

49/94

14/12/2022, 15:10 SolidityScan

SSB_1700_59

Pending

Low 116-118
Fix

MISSING EVENTS

contract.sol

» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract Address was found to be missing these events on the function
functionCall which would make it difficult or impossible to track these transactions
off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_60

Pending
Fix

Low 120-122

MISSING EVENTS

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 50/94

14/12/2022, 15:10

SolidityScan

» lIssue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract Address was found to be missing these events on the function
functionCall which would make it difficult or impossible to track these transactions
off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_61

Pending

Low 124-126 .
Fix

MISSING EVENTS

contract.sol

_# lIssue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract Address was found to be missing these events on the function
functionCallWithValue which would make it difficult or impossible to track these
transactions off-chain.

v Issue Remediation

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

51/94

14/12/2022, 15:10

SolidityScan

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_62

Pending

Low 128-131
Fix

MISSING EVENTS

contract.sol

» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract Address was found to be missing these events on the function
functionCallWithValue which would make it difficult or impossible to track these
transactions off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_63

Pending

Low 133-150
Fix

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

52/94

14/12/2022, 15:10

SolidityScan

MISSING EVENTS

contract.sol

_# lIssue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract Address was found to be missing these events on the function
_functionCallWithValue which would make it difficult or impossible to track these
transactions off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_64

Pending

Low 608-615
Fix

MISSING EVENTS

contract.sol

_» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

53/94

14/12/2022, 15:10

SolidityScan
The contract BuyBackToken was found to be missing these events on the function
deliver which would make it difficult or impossible to track these transactions off-
chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_65

Pending

Low 635-643
Fix

MISSING EVENTS

contract.sol

_» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract BuyBackToken was found to be missing these events on the function
excludeFromReward which would make it difficult or impossible to track these
transactions off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_66

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

54/94

14/12/2022, 15:10 SolidityScan

Pending

Low 645-656
Fix

MISSING EVENTS

contract.sol

_» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract BuyBackToken was found to be missing these events on the function
includelnReward which would make it difficult or impossible to track these
transactions off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_67

Pending

Low 836-839)
Fix

MISSING EVENTS

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 55/94

14/12/2022, 15:10

SolidityScan

_» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract BuyBackToken was found to be missing these events on the function
_reflectFee which would make it difficult or impossible to track these transactions
off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_68

Pending

Low 879-885
Fix

MISSING EVENTS

contract.sol

» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract BuyBackToken was found to be missing these events on the function
_takeLiquidity which would make it difficult or impossible to track these transactions
off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

56/94

14/12/2022, 15:10 SolidityScan

SSB_1700_69

Pending

Low 899-911 .
Fix

MISSING EVENTS

contract.sol

» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract BuyBackToken was found to be missing these events on the function
removeAllFee which would make it difficult or impossible to track these transactions
off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_70

Pending

Low 913-918 .
Fix

MISSING EVENTS

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 57/94

14/12/2022, 15:10

SolidityScan

contract.sol

» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract BuyBackToken was found to be missing these events on the function
restoreAllFee which would make it difficult or impossible to track these transactions
off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_71

Pending

Low 924-926
Fix

MISSING EVENTS

contract.sol

_# lIssue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract BuyBackToken was found to be missing these events on the function
excludeFromFee which would make it difficult or impossible to track these
transactions off-chain.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

58/94

14/12/2022, 15:10

SolidityScan

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_72

Pending

Low 928-930
Fix

MISSING EVENTS

contract.sol

_» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract BuyBackToken was found to be missing these events on the function
includelnFee which would make it difficult or impossible to track these transactions
off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_73

Pending

Low 932-934 .
Fix

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

59/94

14/12/2022, 15:10

SolidityScan

MISSING EVENTS

contract.sol

» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract BuyBackToken was found to be missing these events on the function
setTaxFee which would make it difficult or impossible to track these transactions off-
chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_74

Pending

Low 936-939
Fix

MISSING EVENTS

contract.sol

_# Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

60/94

14/12/2022, 15:10

SolidityScan
by developers and auditors to keep track of the transactions.
The contract BuyBackToken was found to be missing these events on the function
setBuybackFee which would make it difficult or impossible to track these
transactions off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_75

Pending

Low 941-943 .
Fix

MISSING EVENTS

contract.sol

» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract BuyBackToken was found to be missing these events on the function
setMaxTxAmount which would make it difficult or impossible to track these
transactions off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_76

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

61/94

14/12/2022, 15:10 SolidityScan

Pending

Low 945-949
Fix

MISSING EVENTS

contract.sol

_» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract BuyBackToken was found to be missing these events on the function
setMarketingFee which would make it difficult or impossible to track these
transactions off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_77

Pending

Low 951-953 .
Fix

MISSING EVENTS

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 62/94

14/12/2022, 15:10

SolidityScan

_» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract BuyBackToken was found to be missing these events on the function
setNumTokensSellToAddToLiquidity which would make it difficult or impossible to
track these transactions off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_78

Pending

Low 955-957
Fix

MISSING EVENTS

contract.sol

» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract BuyBackToken was found to be missing these events on the function
setBuybackUpperLimit which would make it difficult or impossible to track these
transactions off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

63/94

14/12/2022, 15:10 SolidityScan

SSB_1700_79

Pending

Low 959-961 .
Fix

MISSING EVENTS

contract.sol

» Issue Description

Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log—a special data structure in the
blockchain.

These logs are associated with the address of the contract which can then be used
by developers and auditors to keep track of the transactions.

The contract BuyBackToken was found to be missing these events on the function
setMarketingAddress which would make it difficult or impossible to track these
transactions off-chain.

v Issue Remediation

Consider emitting events for the functions mentioned above. It is also recommended
to have the addresses indexed.

SSB_1700_51

Informati |
MOrmatio certain 260-260 () "o
nal Fix

MISSING INDEXED KEYWORDS IN EVENTS

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 64/94

14/12/2022, 15:10

SolidityScan

contract.sol

» Issue Description

Events are essential for tracking off-chain data and when the event paraemters are
indexed they can be used as filter options which will help getting only the specific
data instead of all the logs.

v Issue Remediation

Consider adding indexed keyword to crucial event parameters that could be used
in off-chain tracking. Do remember that the indexed keyword costs more gas.

SSB_1700_52
Informatio . Pending
Certain 473-473)
nal Fix

MISSING INDEXED KEYWORDS IN EVENTS

contract.sol

_» Issue Description

Events are essential for tracking off-chain data and when the event paraemters are
indexed they can be used as filter options which will help getting only the specific
data instead of all the logs.

v Issue Remediation

Consider adding indexed keyword to crucial event parameters that could be used
in off-chain tracking. Do remember that the indexed keyword costs more gas.

SSB_1700_53

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

65/94

14/12/2022, 15:10 SolidityScan

Informatio i
Certain 474-474 Pending
nal Fix

MISSING INDEXED KEYWORDS IN EVENTS

contract.sol

» lIssue Description

Events are essential for tracking off-chain data and when the event paraemters are
indexed they can be used as filter options which will help getting only the specific
data instead of all the logs.

v Issue Remediation

Consider adding indexed keyword to crucial event parameters that could be used
in off-chain tracking. Do remember that the indexed keyword costs more gas.

SSB_1700_54

Inf ' i
nformatio . iain 475-475 Pending
nal Fix

MISSING INDEXED KEYWORDS IN EVENTS

contract.sol

» Issue Description

Events are essential for tracking off-chain data and when the event paraemters are
indexed they can be used as filter options which will help getting only the specific
data instead of all the logs.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

66/94

14/12/2022, 15:10 SolidityScan

v Issue Remediation

Consider adding indexed keyword to crucial event parameters that could be used
in off-chain tracking. Do remember that the indexed keyword costs more gas.

SSB_1700_55
| . .
nformatio Certain 476-480 P.endmg
nal Fix

MISSING INDEXED KEYWORDS IN EVENTS

contract.sol

_» Issue Description

Events are essential for tracking off-chain data and when the event paraemters are
indexed they can be used as filter options which will help getting only the specific
data instead of all the logs.

v Issue Remediation

Consider adding indexed keyword to crucial event parameters that could be used
in off-chain tracking. Do remember that the indexed keyword costs more gas.

SSB_1700_56
| . .
nformatio Certain 482-485 P.endmg
nal Fix

MISSING INDEXED KEYWORDS IN EVENTS

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

67/94

14/12/2022, 15:10

SolidityScan

contract.sol

_» Issue Description

Events are essential for tracking off-chain data and when the event paraemters are
indexed they can be used as filter options which will help getting only the specific
data instead of all the logs.

v Issue Remediation

Consider adding indexed keyword to crucial event parameters that could be used
in off-chain tracking. Do remember that the indexed keyword costs more gas.

SSB_1700_57
Informatio . Pending
Certain 487-490 .
nal Fix

MISSING INDEXED KEYWORDS IN EVENTS

contract.sol

_# Issue Description

Events are essential for tracking off-chain data and when the event paraemters are
indexed they can be used as filter options which will help getting only the specific
data instead of all the logs.

v Issue Remediation

Consider adding indexed keyword to crucial event parameters that could be used
in off-chain tracking. Do remember that the indexed keyword costs more gas.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

68/94

14/12/2022, 15:10 SolidityScan

SSB_1700_28

False

Low Certain 12-12 X .
Positive

OUTDATED COMPILER VERSION

contract.sol

» Issue Description

Using an outdated compiler version can be problematic especially if there are
publicly disclosed bugs and issues that affect the current compiler version.
The following outdated versions were detected:

['contract.sol'] - ~0.8.5

v Issue Remediation

It is recommended to use a recent version of the Solidity compiler that should not be
the most recent version, and it should not be an outdated version as well. Using very
old versions of Solidity prevents the benefits of bug fixes and newer security checks.
Consider using the solidity version 0.8.7 , which patches most solidity
vulnerabilities.

SSB_1700_98
| .)
nformatio 175-178 Pgndmg
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 69/94

14/12/2022, 15:10

SolidityScan

_» Issue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700_99
I i i
nformatio 180-184 Pgndmg
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

_» Issue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.qg., if the private key of
this address is compromised, then an attacker can take control of the contract.

v Issue Remediation

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

70/94

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol

14/12/2022, 15:10 SolidityScan

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700.100

Informatio i
194-199 Pending
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

~» Issue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700_101

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 71/94

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol

14/12/2022, 15:10 SolidityScan

Informatio Pendi
635-643 ending
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

_» Issue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700.102

Informatio Pendi
645-656 ending
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 72/94

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol

14/12/2022, 15:10

SolidityScan

_» Issue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700.103

Informatio i
924-926 Pending
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

~» Issue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

73/94

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol

14/12/2022, 15:10 SolidityScan

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700_.104

Informatio i
928-930 Pending
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

~# Issue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700_.105

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 74/94

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol

14/12/2022, 15:10 SolidityScan

Informatio Pendi
932-934 ending
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

_» Issue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700_106

Informatio i
936-939 Pending
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 75/94

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol

14/12/2022, 15:10

SolidityScan

_» Issue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700_.107

Informatio i
941-943 Pending
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

~» lssue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

76/94

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol

14/12/2022, 15:10 SolidityScan

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700.108

Informatio i
945-949 Pending
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

~# lIssue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700_.109

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 77/94

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol

14/12/2022, 15:10 SolidityScan

Informatio Pendi
951-953 ending
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

_» Issue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700.110

Informatio Pendi
955-957 ending
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 78/94

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol

14/12/2022, 15:10

SolidityScan

_» Issue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700.111

Informatio Pendi
959-961 ending
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

~» lssue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

79/94

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol

14/12/2022, 15:10 SolidityScan

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700_112

Informatio Pending

963-966 .
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

~# Issue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700113

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 80/94

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol

14/12/2022, 15:10 SolidityScan

Informatio Pendi
968-971 ending
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

_» Issue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700_114

Informatio Pendi
973-984 ending
nal Fix

PRESENCE OF OVERPOWERED ROLE

contract.sol

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 81/94

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol

14/12/2022, 15:10 SolidityScan

_» Issue Description

The overpowered owner (i.e., the person who has too much power) is a project
design where the contract is tightly coupled to their owner (or owners); only they can
manually invoke critical functions.

Due to the fact that this function is only accessible from a single address, the system
is heavily dependent on the address of the owner. In this case, there are scenarios
that may lead to undesirable consequences for investors, e.g., if the private key of
this address is compromised, then an attacker can take control of the contract.

v Issue Remediation

We recommend designing contracts in a trust-less manner. For instance, this
functionality can be implemented in the contract's constructor. Another option is to
use a MultiSig wallet for this address. For systems that are provisioned for a single
user, you can use [Ownable.sol].

For systems that require provisioning users in a group, you can use
[@openzeppelin/Roles.sol] or [@hg20/Whitelist.sol].

SSB_1700_1

False

Gas Certain 421-421 X .
Positive

USE OF SAFEMATH LIBRARY

contract.sol

“# lIssue Description

SafeMath library is found to be used in the contract. This increases gas
consumption than traditional methods and validations if done manually.

Also, Solidity 0.8.0 includes checked arithmetic operations by default, and this
renders SafeMath unnecessary.

v Issue Remediation

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 82/94

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/access/Roles.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol

14/12/2022, 15:10 SolidityScan

We do not recommend using SafeMath library for all arithmetic operations. It is
good practice to use explicit checks where it is really needed and to avoid extra
checks where overflow/underflow is impossible.

The compiler should be upgraded to Solidity version 0.8.0+ which automatically
checks for overflows and underflows.

SSB_170015

Pending

Gas Certain 201-206 Fix

FUNCTION SHOULD BE EXTERNAL

contract.sol

_» Issue Description

A function with public visibility modifier was detected that is not called internally.
public and external differs in terms of gas usage. The former use more than the
latter when used with large arrays of data. This is due to the fact that Solidity copies
arguments to memory on a public function while external read from calldata
which a cheaper than memory allocation.

v Issue Remediation

If you know the function you create only allows for external calls, use the
external visibility modifier instead of public. It provides performance benefits
and you will save on gas.

SSB_1700_16

Pending

Gas Certain 194-199 Fix

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 83/94

14/12/2022, 15:10 SolidityScan

FUNCTION SHOULD BE EXTERNAL

contract.sol

» Issue Description

A function with public visibility modifier was detected that is not called internally.
public and external differs in terms of gas usage. The former use more than the
latter when used with large arrays of data. This is due to the fact that Solidity copies
arguments to memory on a public function while external read from calldata
which a cheaper than memory allocation.

v Issue Remediation

If you know the function you create only allows for external calls, use the
external visibility modifier instead of public. It provides performance benefits
and you will save on gas.

SSB_1700_17

Pending

Gas Certain 180-184 Eix

FUNCTION SHOULD BE EXTERNAL

contract.sol

_# lIssue Description

A function with public visibility modifier was detected that is not called internally.
public and external differs in terms of gas usage. The former use more than the
latter when used with large arrays of data. This is due to the fact that Solidity copies
arguments to memory on a public function while external read from calldata
which a cheaper than memory allocation.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 84/94

14/12/2022, 15:10 SolidityScan

v Issue Remediation

If you know the function you create only allows for external calls, use the
external visibility modifier instead of public. It provides performance benefits
and you will save on gas.

SSB_170018

Pending

Gas Certain 175-178 .
Fix

FUNCTION SHOULD BE EXTERNAL

contract.sol

» Issue Description

A function with public visibility modifier was detected that is not called internally.
public and external differs in terms of gas usage. The former use more than the
latter when used with large arrays of data. This is due to the fact that Solidity copies
arguments to memory on a public function while external read from calldata
which a cheaper than memory allocation.

v Issue Remediation

If you know the function you create only allows for external calls, use the
external visibility modifier instead of public. It provides performance benefits
and you will save on gas.

SSB_170019

Pending

Gas Certain 968-971 Fiy

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

85/94

14/12/2022, 15:10 SolidityScan

FUNCTION SHOULD BE EXTERNAL

contract.sol

» Issue Description

A function with public visibility modifier was detected that is not called internally.
public and external differs in terms of gas usage. The former use more than the
latter when used with large arrays of data. This is due to the fact that Solidity copies
arguments to memory on a public function while external read from calldata
which a cheaper than memory allocation.

v Issue Remediation

If you know the function you create only allows for external calls, use the
external visibility modifier instead of public. It provides performance benefits
and you will save on gas.

SSB_1700_20

Pending

Gas Certain 608-615 Eix

FUNCTION SHOULD BE EXTERNAL

contract.sol

» Issue Description

A function with public visibility modifier was detected that is not called internally.
public and external differs in terms of gas usage. The former use more than the
latter when used with large arrays of data. This is due to the fact that Solidity copies
arguments to memory on a public function while external read from calldata
which a cheaper than memory allocation.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 86/94

14/12/2022, 15:10 SolidityScan

v Issue Remediation

If you know the function you create only allows for external calls, use the
external visibility modifier instead of public. It provides performance benefits
and you will save on gas.

SSB_1700_21

Pending

Gas Certain 635-643 Fix

FUNCTION SHOULD BE EXTERNAL

contract.sol

» lIssue Description

A function with public visibility modifier was detected that is not called internally.
public and external differs in terms of gas usage. The former use more than the
latter when used with large arrays of data. This is due to the fact that Solidity copies
arguments to memory on a public function while external read from calldata
which a cheaper than memory allocation.

v Issue Remediation

If you know the function you create only allows for external calls, use the
external visibility modifier instead of public. It provides performance benefits
and you will save on gas.

SSB_1700_22

Pending

Gas Certain 576-580 Fix

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

87/94

14/12/2022, 15:10 SolidityScan

FUNCTION SHOULD BE EXTERNAL

contract.sol

» lIssue Description

A function with public visibility modifier was detected that is not called internally.
public and external differs in terms of gas usage. The former use more than the
latter when used with large arrays of data. This is due to the fact that Solidity copies
arguments to memory on a public function while external read from calldata
which a cheaper than memory allocation.

v Issue Remediation

If you know the function you create only allows for external calls, use the
external visibility modifier instead of public. It provides performance benefits
and you will save on gas.

SSB_1700_23

Pending

Gas Certain 587-590 Eix

FUNCTION SHOULD BE EXTERNAL

contract.sol

_» lIssue Description

A function with public visibility modifier was detected that is not called internally.
public and external differs in terms of gas usage. The former use more than the
latter when used with large arrays of data. This is due to the fact that Solidity copies
arguments to memory on a public function while external read from calldata
which a cheaper than memory allocation.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 88/94

14/12/2022, 15:10 SolidityScan

v Issue Remediation

If you know the function you create only allows for external calls, use the
external visibility modifier instead of public. It provides performance benefits
and you will save on gas.

SSB_1700_24

Pending

Gas Certain 571-574 Fiy

FUNCTION SHOULD BE EXTERNAL

contract.sol

» Issue Description

A function with public visibility modifier was detected that is not called internally.
public and external differs in terms of gas usage. The former use more than the
latter when used with large arrays of data. This is due to the fact that Solidity copies
arguments to memory on a public function while external read from calldata
which a cheaper than memory allocation.

v Issue Remediation

If you know the function you create only allows for external calls, use the
external visibility modifier instead of public. It provides performance benefits
and you will save on gas.

SSB_1700_25

Pending

Gas Certain 928-930 Fiy

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

89/94

14/12/2022, 15:10 SolidityScan

FUNCTION SHOULD BE EXTERNAL

contract.sol

» lIssue Description

A function with public visibility modifier was detected that is not called internally.
public and external differs in terms of gas usage. The former use more than the
latter when used with large arrays of data. This is due to the fact that Solidity copies
arguments to memory on a public function while external read from calldata
which a cheaper than memory allocation.

v Issue Remediation

If you know the function you create only allows for external calls, use the
external visibility modifier instead of public. It provides performance benefits
and you will save on gas.

SSB_1700_26

Pending

Gas Certain 924-926 Eix

FUNCTION SHOULD BE EXTERNAL

contract.sol

» Issue Description

A function with public visibility modifier was detected that is not called internally.
public and external differs in terms of gas usage. The former use more than the
latter when used with large arrays of data. This is due to the fact that Solidity copies
arguments to memory on a public function while external read from calldata
which a cheaper than memory allocation.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd 90/94

14/12/2022, 15:10 SolidityScan

v Issue Remediation

If you know the function you create only allows for external calls, use the
external visibility modifier instead of public. It provides performance benefits
and you will save on gas.

SSB_1700_27

Pending

Gas Certain 582-585 Fix

FUNCTION SHOULD BE EXTERNAL

contract.sol

» Issue Description

A function with public visibility modifier was detected that is not called internally.
public and external differs in terms of gas usage. The former use more than the
latter when used with large arrays of data. This is due to the fact that Solidity copies
arguments to memory on a public function while external read from calldata
which a cheaper than memory allocation.

v Issue Remediation

If you know the function you create only allows for external calls, use the
external visibility modifier instead of public. It provides performance benefits
and you will save on gas.

SSB_1700_44

Informatio False

Certain 103-103 @ .
nal Positive

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

91/94

14/12/2022, 15:10

SolidityScan

IN-LINE ASSEMBLY DETECTED

contract.sol

» Issue Description

Inline assembly is a way to access the Ethereum Virtual Machine at a low level. This
bypasses several important safety features and checks of Solidity. This should only
be used for tasks that need it and if there is confidence in using it.

Multiple vulnerabilities have been detected previously when the assembly is not

properly used within the Solidity code; therefore, caution should be exercised while
using them.

v Issue Remediation

Avoid using inline assembly instructions if possible because it might introduce certain

issues in the code if not dealt with properly because it bypasses several safety
features that are already implemented in Solidity.

SSB_1700_45
Informatio

' Certain 142-145 @ ¢
nal Positive

IN-LINE ASSEMBLY DETECTED

contract.sol

_» Issue Description

Inline assembly is a way to access the Ethereum Virtual Machine at a low level. This
bypasses several important safety features and checks of Solidity. This should only
be used for tasks that need it and if there is confidence in using it.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86{63b08c38adc/7b58d2b58 1a8f2bd

92/94

14/12/2022, 15:10 SolidityScan

Multiple vulnerabilities have been detected previously when the assembly is not
properly used within the Solidity code; therefore, caution should be exercised while
using them.

v Issue Remediation

Avoid using inline assembly instructions if possible because it might introduce certain
issues in the code if not dealt with properly because it bypasses several safety
features that are already implemented in Solidity.

History

® Critical e High Medium e Low Informational Gas
No Date Score Scan Overview
1. 2022-12-14 4.41 0] 0] 0 e 22 30 43

The Reports neither endorse nor condemn any specific project or team, nor do
they guarantee the security of any specific project. The contents of this report
do not, and should not be interpreted as having any bearing on, the economics
of tokens, token sales, or any other goods, services, or assets.

The security audit is not meant to replace functional testing done before a
software release.

https://solidityscan.com/report/block/255b6cdfb4ed6f65ef86f63b08c38adc/7b58d2b581a8f2bd 93/94

14/12/2022, 15:10 SolidityScan
There is no warranty that all possible security issues of a particular smart
contract(s) will be found by the tool, i.e., It is not guaranteed that there will not
be any further findings based solely on the results of this evaluation.

Emerging technologies such as Smart Contracts and Solidity carry a high level of
technical risk and uncertainty. There is no warranty or representation made by
this report to any Third Party in regards to the quality of code, the business
model or the proprietors of any such business model, or the legal compliance of
any business.

In no way should a third party use these reports to make any decisions about
buying or selling a token, product, service, or any other asset. It should be noted
that this report is not investment advice, is not intended to be relied on as
investment advice, and has no endorsement of this project or team. It does not
serve as a guarantee as to the project's absolute security.

The assessment provided by SolidityScan is subject to dependencies and under
continuing development. You agree that your access and/or use, including but
not limited to any services, reports, and materials, will be at your sole risk on an
as-is, where-is, and as-available basis. SolidityScan owes no duty to any third
party by virtue of publishing these Reports.

As one audit-based assessment cannot be considered comprehensive, we
always recommend proceeding with several independent manual audits
including manual audit and a public bug bounty program to ensure the security
of the smart contracts.

https://solidityscan.com/report/block/255b6cdfbded6f65ef86f63b08c38adc/7b58d2b58 1a8f2bd 94/94

