

2024 ASCO

ANNUAL MEETIN

Individualized neoantigen therapy mRNA-4157 (V940) plus pembrolizumab in resected melanoma: 3-year update from the mRNA-4157-P201 (KEYNOTE-942) trial

Jeffrey S. Weber,¹ Muhammad Adnan Khattak,² Matteo S. Carlino,³ Tarek Meniawy,⁴ Matthew H. Taylor,⁵ George Ansstas,⁶ Kevin B. Kim,⁷ Meredith McKean,⁸ Ryan J. Sullivan,⁹ Mark B. Faries,¹⁰ Thuy Tran,¹¹ C. Lance Cowey,¹² Theresa M. Medina,¹³ Jennifer M. Segar,¹⁴ Victoria Atkinson,¹⁵ Geoffrey T. Gibney,¹⁶ Jason J. Luke,¹⁷ Elizabeth I. Buchbinder,¹⁸ Georgina V. Long,¹⁹ INT Research and Development Author Group,^{20,21,a} Robert S. Meehan²⁰

^aManju Morrissey,²⁰ Igor Feldman,²⁰ Vasudha Sehgal,²⁰ Huzhang Mao,²⁰ Jia Guo,²⁰ Min Liu,²⁰ Anjali Rao,²⁰ Wei Zheng,²⁰ Praveen Aanur,²⁰ Lakshmi Srinivasan,²⁰ Mo Huang,²¹ Tal Zaks,²⁰ Michelle Brown,²⁰ Tracey Posadas²⁰

¹Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA; ²Hollywood Private Hospital and Edith Cowan University, Perth, Australia; ³Melanoma Institute Australia and Westmead Hospital, Sydney, Australia; ⁴Saint John of God Subiaco Hospital, Subiaco, Australia; ⁵Earle A. Chiles Research Institute, Portland, OR, USA; ⁶Washington University School of Medicine, St Louis, MO, USA; ⁷California Pacific Medical Center Research Institute, San Francisco, CA, USA; ⁸Sarah Cannon Research Institute, Nashville, TN, USA; ⁹Massachusetts General Hospital, Boston, MA, USA; ¹⁰The Angeles Clinic and Research Institute, Los Angeles, CA, USA; ¹¹Yale-New Haven Hospital, New Haven, CT, USA; ¹²Baylor Charles A. Sammons Cancer Center, Dallas, TX, USA; ¹³University of Colorado, Aurora, CO, USA; ¹⁴University of Arizona Cancer Center, Tucson, AZ, USA; ¹⁵Princess Alexandra Hospital, Woolloongabba, Australia; ¹⁶Lombardi Comprehensive Cancer Center, Washington, DC, USA; ¹⁷UPMC Hillman Cancer Center, Pittsburgh, PA, USA; ¹⁸Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁹Melanoma Institute Australia, Sydney, Australia; ²⁰Moderna, Inc., Cambridge, MA, USA; ²¹Merck & Co., Inc., Rahway, NJ, USA.

Sponsored by Moderna, Inc., in collaboration with Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.

Background/Introduction

mRNA-4157 (V940) is a novel, mRNA-based individualized neoantigen therapy designed to increase endogenous antitumor T-cell responses by targeting unique patient tumor mutations

In the primary analysis of the phase 2 mRNA-4157-P201 (**KEYNOTE-942**) trial (median planned follow-up, 23 months), patients with completely resected high-risk stage IIIB–IV cutaneous melanoma receiving mRNA-4157 + pembrolizumab had **prolonged RFS and DMFS** versus pembrolizumab alone¹

Objective: Assess 3-year median planned follow-up (median [range], 34.9 [25.1–51.0] months)

DMFS, distant metastasis-free survival; RFS, recurrence-free survival. 1. Weber JS, et al. *Lancet*. 2024;403:632-644.

#ASCO24

PRESENTED BY: Jeffrey S. Weber, MD, PhD

mRNA-4157-P201/KEYNOTE-942 (NCT03897881) study design

Randomized, phase 2, open-label study in patients with adjuvant resected melanoma at high risk of recurrence

Designed with 80% power to detect a hazard ratio of 0.5 with 40 RFS events (with a 1-sided alpha of 0.1 per protocol) Primary analysis **triggered after a minimum of 1-year planned follow-up**^c (November 14, 2022 data cut) and at least 40 RFS events have been observed. DMFS analysis was prespecified for testing following positive RFS in the ITT population

Supportive analysis was **triggered after a minimum of 2 years of planned follow-up**^c (<u>November 3, 2023 data cut</u>) **Median planned follow-up**^c: ~3yrs

^aPatients with stage IIIB disease were eligible only if relapse occurred within 3 months of prior surgery of curative intent; ^bAccording to the 8th edition of the American Joint Committee on Cancer Staging Manual ^cDefined as the time from the first dose date (or date of randomization if not treated) to date of clinical cut-off.

ECOG PS, Eastern Cooperative Oncology Group performance status; IM, intramuscular; ITT, intent-to-treat; IV, intravenous; NGS, next-generation sequencing; Q3W, every 3 weeks.

Sustained improvement of RFS primary efficacy endpoint

^aThe hazard ratio and 95% CI for mRNA-4157 (V940) + pembrolizumab versus pembrolizumab were estimated using a Cox proportional hazards model with treatment group as a covariate, stratified by disease stage (stages IIIB or IIIC or IIID vs stage IV) used for randomization. The *P* value is based on a 2-sided log-rank test stratified by disease stage (stages IIIB or IIIC or IIID vs stage IV) used for randomization; ^bFormal hypothesis testing of RFS was performed using November 2022 data cut. *P* value reported above used the November 2023 data cut; it's nominal and not for formal hypothesis testing. NE, not estimable.

#ASCO24

Sustained improvement of DMFS secondary endpoint

^aThe hazard ratio and 95% CI for mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab were estimated using a Cox proportional hazards model with treatment group as a covariate, stratified by disease stage (stages IIIB or IIIC or IIID vs stage IV) used for randomization. The *P* value is based on a 2-sided log-rank test stratified by disease stage (stages IIIB or IIIC or IIID vs stage IV) used for randomization; ^bFormal hypothesis testing of DMFS was performed using November 2022 data cut. *P* value reported above used the November 2023 data cut; it's nominal and not for formal hypothesis testing.

#ASCO24

Overall survival shows encouraging trend with mRNA-4157 (V940) + pembrolizumab

^aThe hazard ratio and 95% CI for mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab were estimated using a Cox proportional hazards model with treatment group as a covariate, stratified by disease stage (stages IIIB or IIIC or IIID vs stage IV) used for randomization

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

PRESENTED BY: Jeffrey S. Weber, MD, PhD

2024 ASCO

ANNUAL MEETING

#ASCO24

Biomarker analyses suggest mRNA-4157 (V940) + pembrolizumab may benefit a broad patient population

- HLA class I plays a key role in CD8 T cell immunosurveillance
- HLA diversity has been linked with differential immune responses to infection and autoimmune diseases
- No significant associations between individual HLA alleles and RFS were observed for mRNA-4157 + pembrolizumab

#ASCO24

The benefit of mRNA-4157 (V940) + pembrolizumab continued to be observed irrespective of PD-L1, TMB, and ctDNA status,^d as presented previously

Note: In a large dataset, HLA diversity has not been shown as a determinant of response to pembrolizumab.¹

^aAnalyses are based on subpopulation with HLA data (n = 154) and excluded 3 patients who did not receive treatment in either arm; ^bHLA heterozygous: heterozygous at all HLA-A/B/C loci; ^cHLA homozygous at > 1 locus of HLA-A, HLA-B, and HLA-C; ^dSupportive analysis RFS HR (95% CI) for mRNA-4157 + pembrolizumab versus pembrolizumab in TMB-high: 0.564 (0.253–1.258); TMB-non-high: 0.571 (0.245–1.331); PD-L1-positive: 0.471 (0.226–0.979); PD-L1-negative: 0.147 (0.034–0.630); and ctDNA-negative: 0.207 (0.091–0.470) subgroups; ctDNApositive HR was not estimable. CD, cluster of differentiation; ctDNA, circulating tumor DNA; HLA, human leukocyte antigen; PD-L1, programmed death ligand 1; TMB, tumor mutational burden. 1. Chhibber A. et al. Immunity 2022:55:56-64.e4.

PRESENTED BY: Jeffrey S. Weber, MD, PhD

3-year safety follow-up on safety demonstrates a manageable profile consistent with the primary analysis

	pembrolizumab (n = 104)		Pembrolizumab (n = 50)			
Event, n (%)	Any grade	Grade ≥ 3		Any grade		Grade ≥ 3
Any AE	104 (100%)	36 (34.6%)		46 (92.0%)		18 (36.0%)
Any treatment-related AE	104 (100%)	26 (25.0%)		41 (82.0%)		10 (20.0%)
Serious AE ^a	15 (14.4%)			5 (10.0%)		
Immune-related AE ^b	39 (37.5%)	11 (10.6%)		18 (36%)		7 (14.0%)
mRNA-4157 (V940) + pembrolizumab (n = 104), n (%)	Grade 1	Grade 2	Grade	3	Grade 4/5	Total (n = 104)
Patients with mRNA-4157 (V940)–related AE $^\circ$	35 (33.7%)	51 (49.0%)	12 (11.5	%)	0	98 (94.2%)
Fatigue	40 (38.5%)	18 (17.3%)	5 (4.8%	b)	0	63 (60.6%)
Injection site pain	37 (35.6%)	22 (21.2%)	0		0	59 (56.7%)
Chills	48 (46.2%)	3 (2.9%)	0		0	51 (49.0%)
Pyrexia	34 (32.7%)	15 (14.4%)	1 (1.0%	b)	0	50 (48.1%)
Headache	20 (19.2%)	13 (12.5%)	0		0	33 (31.7%)
Injection site erythema	29 (27.9%)	4 (3.8%)	0		0	33 (31.7%)
Influenza-like illness	21 (20.2%)	10 (9.6%)	0		0	31 (29.8%)
Nausea	23 (22.1%)	3 (2.9%)	0		0	26 (25.0%)
Myalgia	16 (15.4%)	5 (4.8%)	1 (1.0%	b)	0	22 (21.2%)

Safety analyses were conducted in the safety population, which was defined as all randomly assigned patients who received ≥ 1 dose of treatment. Grading per National Cancer Institute Common Terminology Criteria for Adverse Events version 5.0. aSerious AEs were not evaluated by toxicity grade; ^bBased on established list of pembrolizumab immune-related AEs (CMQ Pembrolizumab AEOSI); ^cmRNA-4157 (V940)-related AEs included events attributed by the investigator to mRNA-4157 (V940) alone as well as events attributed to both mRNA-4157 (V940) and pembrolizumab. AE, adverse event; AEOSI, adverse event of special interest; CMQ, customized MedDRA queries.

#ASCO24

Conclusions

mRNA-4157 (V940) + pembrolizumab demonstrated a durable clinically significant improvement in RFS & DMFS compared with standard of care pembrolizumab in high-risk resected melanoma, with a 49% reduction in the risk of recurrence or death and a 62% reduction of distant recurrence or death with 3 years of follow-up

3-year exploratory endpoint showed an **encouraging trend in overall survival** with the combination versus pembrolizumab monotherapy

mRNA-4157 (V940) + pembrolizumab has a **manageable safety profile** without potentiation of immune-related AEs compared with pembrolizumab monotherapy

Translational analyses suggest mRNA-4157 (V940) + pembrolizumab may benefit a **broad patient** population **irrespective of the status of PD-L1**, **TMB**, **ctDNA**, **and HLA heterozygosity**

#ASCO24

Acknowledgments

Thank you to the following groups who made this trial possible:

- The patients and their families, along with all of the site staff
- The personnel at all our vendors and collaborators
- The scientists, regulatory, operations, and manufacturing teams who discovered, improved, and enabled mRNA-4157 (V940)

The following were members of the INT Research and Development Author Group^a:

Manju Morrissey, Igor Feldman, Vasudha Sehgal, Huzhang Mao, Jia Guo, Min Liu, Anjali Rao, Wei Zheng, Praveen Aanur, Lakshmi Srinivasan, Mo Huang, Tal Zaks, Michelle Brown, Tracey Posadas This study (ClinicalTrials.gov identifier: NCT03897881) was sponsored by Moderna, Inc. in collaboration with Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.

Editorial and medical writing support were provided by Caudex, a division of IPG Health Medical Communications, New York, NY, USA, in accordance with the Good Publication Practice (2022) guidelines, and were funded by Moderna, Inc. in collaboration with Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.

#ASCO24

Additional information

- Please scan the QR code for a copy of the oral presentation and a plain-language summary
- Copies of this oral presentation and plain-language summary obtained through the QR code are for personal use only and may not be reproduced without written permission of the authors
- Copies will be available for 30 days after the congress has closed

^aThe authors would like to acknowledge Jane Healy's contributions to the study

THANK YOU!

