Correlation of Humoral Immunogenicity Results Elicited by mRNA-1010 Seasonal Influenza Vaccine in Adults Aged ≥18 Years: A Comparative Phase 3 Analysis

Grace Huang,* Mieke Soens, Evelyn Du, Ren Chen, Andrei Avanesov, Lingyi Zheng, Bashir Dweik, Eleanor Wilson, Rituparna Das

Moderna, Inc., Cambridge, MA, USA *Presenting author.

BACKGROUND

- Seasonal influenza viruses cause respiratory illness and contribute to a global public health burden¹
- The effectiveness of the licensed seasonal influenza vaccines (produced by egg-, cell-, or recombinant-based methods) varies,1-3 owing to antigenic mismatch with circulating strains such as A/H3N24,5
- mRNA-based vaccines have the potential for improved relative efficacy compared with other currently licensed influenza vaccines and allow for better strain matching, faster production, and stronger T-cell immunity³
- mRNA-1010 is a novel mRNA-based seasonal influenza vaccine encoding hemagglutinin (HA) surface glycoproteins of strains recommended by the World Health Organization (WHO) for the 2023-2024 Northern Hemisphere season^{6,7}
- mRNA-1010 has previously demonstrated superior humoral immunogenicity compared with age-appropriate licensed comparators (standard dose [SD] for participants aged 18-64 years, or high dose [HD] for participants aged ≥65 years), as measured by the hemagglutination inhibition (HAI) assay in a phase 3 randomized trial⁷
- Microneutralization (MN) assays are also used to detect circulating antibodies against influenza viruses, in addition to HAI assays⁸
- Here, we present exploratory MN data from a subset of participants in the mRNA-1010 phase 3 trial and correlate these data with HAI

To evaluate humoral immunogenicity of mRNA-1010 (50 µg) relative to licensed SD comparator in adults aged 18 to 64 years (Part B) or HD comparator in adults aged ≥65 years (Part C), using a single-cycle MN assay, and correlate with HAI titers

METHODS

Study Design and Population

- This was a 3-part, phase 3, randomized, double-blind, activecontrolled study conducted at multiple sites in the United States (NCT05827978) to evaluate the immunogenicity, reactogenicity, and safety of mRNA-1010 in adults aged ≥18 years
- Part A: Participants aged ≥18 years were randomly assigned to receive either a single dose of mRNA-1010 or a licensed SD inactivated influenza vaccine, quadrivalent (SD-QIV; Fluarix® Quadrivalent; GlaxoSmithKline Biologicals, Dresden, Germany)
- Part B: Participants aged 18 to 64 years were randomly assigned to receive either a single dose of mRNA-1010 or a licensed SD-QIV (Fluarix® Quadrivalent; GlaxoSmithKline Biologicals, Dresden, Germany)
- Part C: Participants aged ≥65 years were randomly assigned to receive either a single dose of mRNA-1010 or a licensed HD inactivated influenza vaccine, quadrivalent (HD-QIV; Fluzone® HD Quadrivalent; Sanofi Pasteur Inc., Swiftwater, PA, USA)
- This analysis presents the exploratory findings on the humoral responses for 4 influenza strains (A/H1N1, A/H3N2, B/Victoria, and B/Yamagata) in Parts B and C of the study based on the WHO recommendations for the 2023-2024 Northern Hemisphere season
- MN titers at baseline and Day 29 were measured in 1000 participants (250 per arm in each part; 17% of study participants)

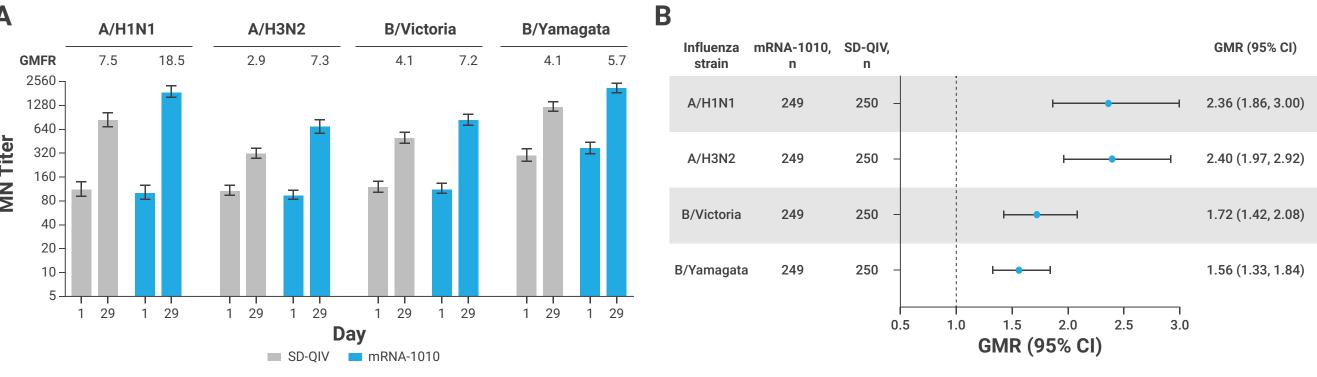
HAI and MN Assays

- HAI and MN assays were validated using WHO matched cell-propagated viruses and study-specific sera from consenting participants
- The HAI assay was based on guinea pig-derived red blood cells, while the MN assay was validated using Madin-Darby Canine Kidney cells and detection of all antibodies with functional and neutralizing antibody potential against influenza virus
- Serum antibody titers from study participants were derived from a 2-fold sample dilution scheme, starting with 1:10. Results were reported as geometric mean titers (GMTs) from duplicate measurements
- The MN subset represented a randomly stratified subset of the population tested by HAI
- The MN subset was descriptive and not powered for statistical significance, in accordance with the prespecified exploratory objective

Study Objectives and Endpoints

- To conduct exploratory evaluation of the humoral immunogenicity of mRNA-1010 relative to licensed SD-QIV or HD-QIV against vaccinematched influenza A and B strains
- GMTs and geometric mean fold rises (GMFRs) of neutralizing antibodies against vaccine-matched strains on Day 29 compared with Day 1 (baseline) based on a validated MN assay
- Pearson correlations were calculated based on log-transformed MN and HAI titers

RESULTS

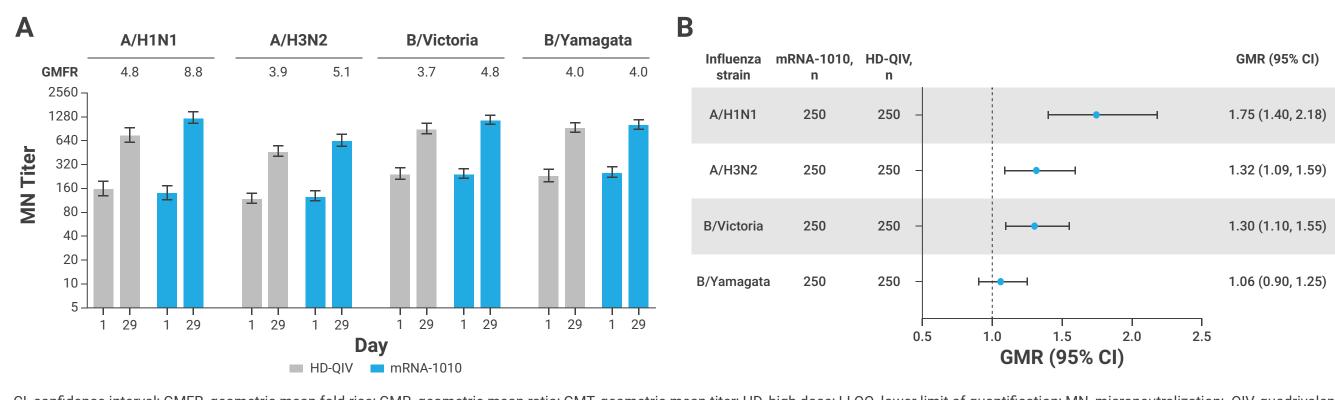

Baseline Demographics and Characteristics

- The exploratory MN analysis was conducted in a subset of participants in the per-protocol immunogenicity set from Parts B and C of the study and included participants who had MN values at Day 1 and Day 29
- Overall, 499 participants in Part B (mRNA-1010 group, n = 249; SD-QIV)group, n = 250), and 500 participants in Part C (mRNA-1010 group, n = 250; SD-QIV group, n = 250) were included in the analysis
- There were no notable differences in the demographic characteristics among participants with MN data in the mRNA-1010 group and the respective licensed QIV comparator groups in each part (SD-QIV, Part B; HD-QIV, Part C)
- In both parts, the majority of participants were female (Part B: 293/499 [58.7%]; Part C: 276/500 [55.2%]), White (Part B: 319/499 [63.9%]; Part C: 415/500 [83.0%]), and non-Hispanic/Latino (Part B: 376/499 [75.4%]; Part C: 322/500 [64.4%]); the median age of participants was 48.0 years (range, 18-64 years) in Part B and 70.0 years (range, 65-88 years) in Part C

Immunogenicity

- In Part B, mRNA-1010 showed superior MN immune responses compared with SD-QIV across all 4 strains (**Figure 1**)
- Day 29 GMTs and GMFRs from baseline were higher in mRNA-1010 compared with SD-QIV (Figure 1A)
- Overall, geometric mean ratios (GMRs) of mRNA-1010 compared with SD-QIV were 2.36, 2.40, 1.72, and 1.56 for A/H1N1, AH3N2, B/Victoria, and B/Yamagata, respectively (Figure 1B)

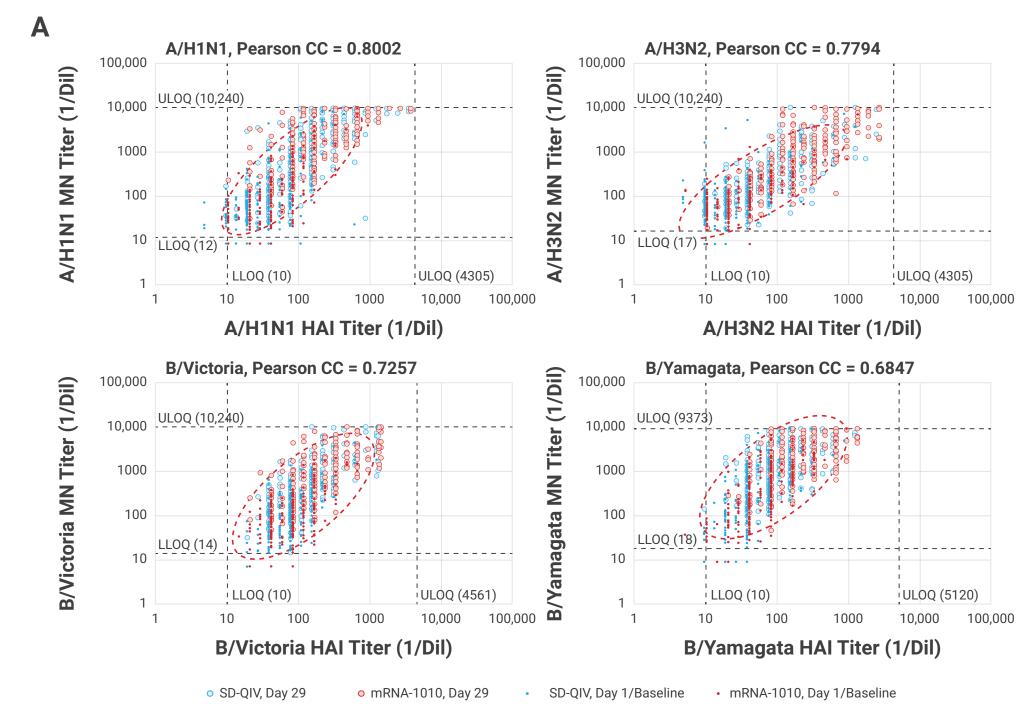
Figure 1. (A) MN GMTs and GMFRs for mRNA-1010 and SD-QIV and (B) Overall GMRs of **Antibody Levels for mRNA-1010 Compared With SD-QIV Through Day 29**

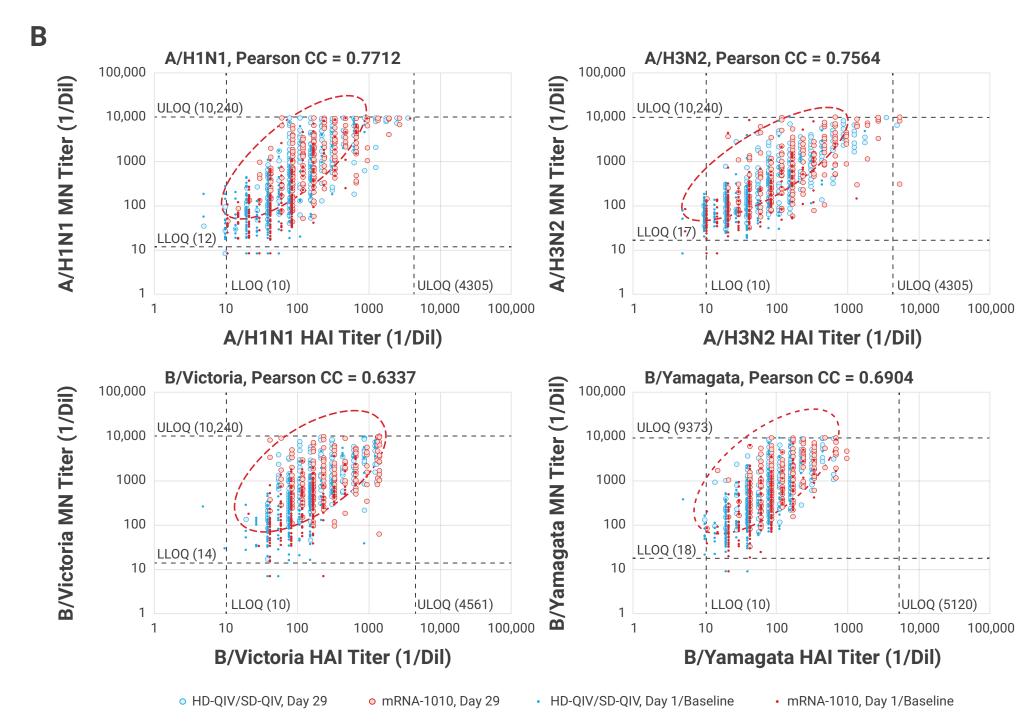


CI, confidence interval; GMFR, geometric mean fold rise; GMR, geometric mean ratio; GMT, geometric mean titer; LLOQ, lower limit of quantification; MN, microneutralization; QIV, quadrivalent influenza vaccine LLOQ was 17 for A/H1N1 and A/H3N2, 14 for B/Victoria, and 18 for B/Yamagata. ULOQ was 9738 for A/H1N1, 10,240 for A/H3N2 and B/Victoria, and 9373 for B/Yamagata. Antibody values reported as

- In Part C, mRNA-1010 elicited superior or comparable MN immune responses for all 4 strains compared with HD-QIV (Figure 2)
 - Day 29 GMTs and GMFR from baseline were higher in mRNA-1010 compared with HD-QIV (Figure 2A)
- Overall, GMRs of mRNA-1010 compared with HD-QIV were 1.75, 1.32, 1.30, and 1.06 for A/H1N1 AH3N2, B/Victoria, and B/Yamagata, respectively (Figure 2B)
- Figure 2. (A) MN GMTs and GMFRs for mRNA-1010 and HD-QIV and (B) Overall GMRs of **Antibody Levels for mRNA-1010 Compared With HD-QIV Through Day 29**

below the LLOQ were replaced by 0.5 × LLOQ. Values greater than the ULOQ were converted to the ULOQ.


below the LLOQ were replaced by 0.5 × LLOQ. Values greater than the ULOQ were converted to the ULOQ.



CI, confidence interval; GMFR, geometric mean fold rise; GMR, geometric mean ratio; GMT, geometric mean titer; HD, high dose; LLOQ, lower limit of quantification; MN, microneutralization; QIV, quadrivalent Per-protocol immunogenicity population (participants with MN immunogenicity values) included participants without major protocol deviations impacting immunogenicity assessment; 500 selected LLOQ was 17 for A/H1N1 and A/H3N2, 14 for B/Victoria, and 18 for B/Yamagata. ULOQ was 9738 for A/H1N1, 10,240 for A/H3N2 and B/Victoria, and 9373 for B/Yamagata. Antibody values reported as

- Pearson correlations demonstrated MN and HAI titers following vaccination were positively correlated in all strains (Figure 3)
- High correlation coefficients of ≥0.7 were observed for both A strains in Parts B and C, as well as B/Victoria in Part B

Figure 3. Correlation Between MN and HAI Titers at Days 1 and 29 in (A) Part B and (B) Part C

HAI, hemagglutination inhibition; HD, high dose; LLOQ, lower limit of quantification; MN, microneutralization; QIV, quadrivalent influenza vaccine; SD standard dose; ULOQ, upper limit of quantification.

CONCLUSIONS

- MN immune responses to mRNA-1010 are higher than or comparable to licensed QIV comparators, either SD or HD administered as per standard of care; MN immune responses are strongly correlated with HAI titers across all strains
- The strong correlation between single-cycle MN and HAI provides further support for HAI as a predictor of disease prevention with mRNA-based influenza vaccination

References

- 1. World Health Organization. Wkly Epidemiol Rec. 2022;97(19):185-208.
- Barr IG, et al. NPJ Vaccines. 2018;3:44.
- doi:10.1038/s41541-018-0079-z Dolgin E. Nat Rev Drug Discov. 2021;20(11):801-
- 803. doi:10.1038/d41573-021-00176-7 4. Okoli G, et al. Vaccine. 2021;39(8):1225-1240.
- Centers for Disease Control and Prevention. Effectiveness Against Different Flu Viruses. Accessed August 13, 2025.
- https://www.cdc.gov/flu-vaccines-work/effectiveness/index.html#print 6. Lee IT, et al. Nat Commun. 2023;14(1):3631. doi:10.1038/s41467-023-39376-7
- Soens M, et al. Vaccine. 2025;50:126847. doi:10.1016/j.vaccine.2025.126847
- 8. Rumfelt KE, et al. Influenza Other Respir Viruses. 2023;17(4):e13141 doi:10.1111/irv.13141

Acknowledgments

The authors would like to acknowledge HuiLing Chen, MS, PhD (Senior Manager, Moderna, Inc.), for her contribution to the study. Medical writing and editorial assistance were provided by Renata Cunha, PharmD, and Aliscia Daniels, PhD, of MEDiSTRAVA in accordance with Good Publication Practice guidelines, funded by Moderna, Inc., and under the direction of authors.

This study was funded by Moderna, Inc.

Disclosures

GH, MS, ED, RC, AA, LZ, BD, EW, and RD are employees of Moderna, Inc., and may hold stock or stock options.

Please scan the QR code for a PDF copy of the poster. Copies of this presentation obtained through QR codes are for personal use only and may not be reproduced without permission of the authors.

For additional information, please contact Grace Huang (Grace.Huang@modernatx.com).

