ANNUAL WATER OUALITY REPORT

Reporting Year 2024

We are pleased to present to you this year's annual water quality report. This report is a snapshot of last year's water quality covering all testing performed between January 1 and December 31, 2024. Included are details about your source of water, what it contains, and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and providing you with this information because informed customers are our best allies.

Where Does My Water Come From?

ERMU wells are supplied by the Mt. Simon-Hinckley aquifer. We maintain eight wells ranging from 225 to 454 feet deep, six wells have water treatment facilities that remove iron and manganese from the source water. There are four water towers, over 125 miles of water main, 1,334 hydrants and just under 3,000 valves in our system. In 2024, ERMU pumped over 841 million gallons of water. We are proud to serve over 5,800 water customers.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health-care providers. U.S. Environmental Protection Agency (U.S. EPA)/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791) or epa.gov/safewater.

Source Water Assessment

A Source Water Assessment Plan (SWAP) is now available at our office, or you may search for "Elk River" at health. state.mn.us/communities/environment/water/swp/swa.html. This plan is an assessment of the delineated area around our listed sources through which contaminants, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area and a determination of the water supply's susceptibility to contamination by the identified potential sources.

Approximately 90 percent of our drinking water supply management area is considered nonvulnerable, while less than 10 percent is vulnerable. Our Wellhead Protection Plan includes measures to mitigate or prevent potential contamination.

It is important to seal unused wells and update records with the city and county. Unsealed wells act as direct pathways for contaminants to enter drinking water sources. Similarly, substances applied to the ground or in water can eventually percolate into drinking water sources in variable timelines, impacting its quality. Please handle chemicals and waste responsibly to protect our water supply.

If you are not using a well, or you discover an old, abandoned well, have it sealed. Open wells can impact an entire community's water supply if left unprotected. Please call our office if you have questions.

Conservation

Check your irrigation system regularly and monitor your irrigation use. Overwatering is the biggest culprit for high water bills and the top use of water in Elk River. Using less water more often is the key. Water for 15 minutes per zone and then repeat

as needed later in the day for 5 to 15 minutes. Roots need to absorb the water to help your lawn grow lush and green. Too much watering at one time forces water to move past the roots belowground or run into the road or a neighboring drain aboveground.

Should I be Concerned About What I'm Pouring Down My Drain?

If your home is served by a sewage system, your drain is an entrance to your wastewater disposal system and eventually to a drinking water source. Consider purchasing environmentally friendly home products whenever possible, and never pour hazardous materials (e.g., car engine oil) down the drain. Check with your health department for more information on proper disposal methods.

QUESTIONS? For more information about this report or any questions relating to your drinking water, please call Elk River Municipal Utilities (ERMU) at (763) 441-2020 (Dave Ninow, Water Superintendent) To view this report online, visit ermumn. com/services/water/water-quality-report.

Reduced Water Pressure Culprits in Your Plumbing

Here is a list of potential causes of low water pressure. Please be sure to use caution and consult with a licensed plumbing professional when resolving any of these issues.

- **1. Water softener issue:** Bypass the water softener to test via valves.
- 2. Pressure reducer: In higher-pressure areas (80+ pounds per square inch), these devices are required so appliances and in-home connections are less likely to leak. They can be adjusted to control pressure from the water system into your home plumbing. These devices can be a point of failure and close off water flow from time to time. Replacement requires a plumber.
- **3. Faulty or partially closed valve:** A valve in your system may have failed or isn't fully open.
- **4. Service line or curb stop valve issue:** There may be a service line leak or a problem with the outdoor curb stop valve.

Pressure Issue Culprit 2

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic Contaminants, such as salts and metals, which can occur naturally in the soil or groundwater or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive Contaminants, which can occur naturally or be the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, U.S. EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily mean that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Safe Drinking Water Hotline (800-426-4791) or visiting epa.gov/safewater.

Lead in Home Plumbing

Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. ERMU is responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, or doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute-accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water, resources are available through the Minnesota Department of Health (MDH), or contact ERMU at (763) 441-2020. For detailed information about lead in drinking water, including testing methods and steps you can take to minimize exposure, visit epa. gov/safewater/lead. You can also access the MDH's "Lead In Drinking Water" fact sheet at health.state.mn.us/communities/environment/water/docs/contaminants/leadfactsht.pdf.

To address lead in drinking water, public water systems were required to develop and maintain an inventory of service line materials by October 16, 2024. Developing an inventory and identifying the location of lead service lines (LSL) is the first step for beginning LSL replacement and protecting public health. The lead service inventory may be found at https://maps.umn.edu/LSL/. Please contact us if you would like more information about the inventory or any lead sampling that has been done.

Monitoring Results - Unregulated Substances/Emerging Contaminants

In addition to testing drinking water for contaminants regulated under the Safe Drinking Water Act, we sometimes also monitor for contaminants that are not regulated. Unregulated contaminants do not have legal limits for drinking water. MDH, U.S. EPA, and other health agencies may have developed comparison values for some of these compounds. Some of these comparison values are based solely on potential health impacts and do not consider our ability to measure contaminants at very low concentrations or the cost and technology of prevention and treatment. These values may be set at levels that are costly, challenging, or impractical for a water system to meet (for example, large-scale treatment technology may not exist for a given contaminant). Sample data is listed in the test results table.

PFAS and lithium are two contaminants of concern due to their potential adverse health effects. PFAS, or per- and polyfluoroalkyl substances, are a group of man-made chemicals that can accumulate in the environment and human body, leading to health issues. Lithium, while a naturally occurring element, can also pose risks when present at elevated levels. The results of UCMR 5 sample collection and testing in 2024 showed no detection of PFAS or lithium contaminants in Elk River's drinking water system. Elk River Municipal Utilities (ERMU) also conducted an independent round of testing for per- and polyfluoroalkyl substances (PFAS) in addition to the UCMR 5 testing. ERMU's independent testing also resulted in no detection of PFAS contaminants, further affirming the high standards of water quality in Elk River.

Detection of a regulated or unregulated contaminant should not cause concern. The significance of a detection should be determined considering current health effects information. We are often still learning about the health effects, so this information can change over time. A person drinking water with a contaminant at or below the comparison value would be at little to no risk for harmful health effects. If the level of a contaminant is above the comparison value, people of a certain age or with special health conditions—infants, children, elderly, and people who are pregnant or have impaired immunity—may need to take extra precautions. We are notifying you of the unregulated or emerging contaminants we have detected as a public education opportunity.

Unregulated contaminant monitoring helps U.S. EPA to determine where certain contaminants occur and whether the agency should consider regulating those contaminants in the future.

For more information, visit:

- MDH's A-Z List of Contaminants in Water: health.state.mn.us/communities/environment/water/contaminants/index.html
- Fourth Unregulated Contaminant Monitoring Rule (UCMR 4): health.state.mn.us/communities/environment/water/com/ucmr4.html
- Fifth Unregulated Contaminant Monitoring Rule: epa.gov/dwucmr/fifth-unregulated-contaminant-monitoring-rule
- UCMR5 Program Overview Fact Sheet: epa.gov/system/files/documents/2022-02/ucmr5-factsheet.pdf

In the past year, your drinking water may have been tested for additional unregulated contaminants as part of the Fifth Unregulated Contaminant Monitoring Rule; results are still being processed. The Unregulated Contaminant Monitoring Rule 5 (UCMR5) Data finder (epa.gov/dwucmr/fifth-unregulated-contaminant-monitoring-rule-data-finder) allows people to easily search for, summarize, and download the available analytical results.

Public Meetings

The Elk River Municipal Utilities (ERMU) Commission meets on the second Tuesday of every month at 3:30 p.m. The meetings are held in the ERMU Conference Room, 13069 Orono Parkway.

Test Results

We are pleased to report that your drinking water meets or exceeds all federal and state requirements. Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data is included, along with the year in which the sample was taken.

REGULATED SUBSTANCES							
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Barium (ppm)	2024	2	2	0.03	NA	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Chlorine (ppm)	2024	[4]	[4]	0.72	0.54-0.91	No	Water additive used to control microbes
Fluoride (ppm)	2024	4	4	0.71	0.65-0.73	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Gross Alpha Particle Activity (pCi/L)	2020	15.4	0	3.6	ND-3.6	No	Erosion of natural deposits
Haloacetic Acids [HAAs] (ppb)	2024	60	NA	8.3	4.40-8.30	No	By-product of drinking water disinfection
Nitrate (ppm)	2024	10	10	1.30	ND-1.30	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
TTHMs [total trihalomethanes] (ppb)	2024	80	NA	16.3	12.50–16.30	No	By-product of drinking water disinfection
Xylenes (ppm)	2023	10	10	ND	NA	No	Discharge from petroleum factories; Discharge from chemical factories
Tap water samples were collected for lead and copper analyses from sample sites throughout the community							
SUBSTANCE YEAR AMOUNT DETECTED RANGE SITES ABOVE (UNIT OF MEASURE) SAMPLED AL MCLG (90TH %ILE) LOW-HIGH AL/TOTAL SITES VIOLATION TYPICAL SOURCE							

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH %ILE)	RANGE LOW-HIGH	SITES ABOVE AL/TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2022	1.3	1.3	0.23	NA	1/30	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)	2022	15	0	1.37	NA	0/30	No	Lead service lines; Corrosion of household plumbing systems, including fittings and fixtures; Erosion of natural deposits

UNREGULATED SUBSTANCES							
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE			
Perfluorobutanoic Acid [PFBA] (ppt)	2024	ND	ND	NA			
Sodium ¹ (ppm)	2024	3.32	3.16-3.32	NA			
Sulfate (ppm)	2024	8.34	2.89-8.34	NA			

¹In-home water softening can increase the level of sodium in your water.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

pCi/L (**picocuries per liter**): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

ppt (parts per trillion): One part substance per trillion parts water (or nanograms per liter).