DRAINAGE REPORT - The Grove Lot 1

HWY 47 & Merrill Road

Sugar Grove, Illinois

Prepared by: Kimley-Horn and Associates, Inc. 570 Lake Cook Road, Suite 200 Deerfield, IL 60015 Contact: Eric Tracy, P.E. ERIC J. TRACY 062-067482

Date of Expiration: 11-30-25

Prepared on: July 1, 2025

TABLE OF CONTENTS

1.	PROJECT DESCRIPTION	2
2.	POST-DEVELOPMENT CONDITIONS ANALYSIS	3
3.	CRITICAL DURATION & EMERGENCY OVERFLOW WEIR DESIGN	5
4.	STORM SEWER DESIGN SUMMARY	5
5.	CONCLUSION	6

EXHIBITS

Exhibit 1 – Maps

Exhibit 2 – Existing & Proposed Conditions Exhibits & Models

Exhibit 3 – Storm Sewer Sizing

1. PROJECT DESCRIPTION

Kimley-Horn and Associates, Inc., serves as the engineering consultant for Crown Community Development, who is proposing to develop approximately 77 acres of existing land used for agricultural purposes into a 214-unit single family residential community. The sitework includes minor demolition, grading, stormwater management facilities, water, sanitary sewer, paving, landscaping, and construction of single-family homes.

This report evaluates the pre and post development runoff characteristics of the development and addresses the stormwater requirements of Kane County and the Village Sugar Grove.

1.1. Pre-Development Conditions

The existing site is currently undeveloped farmland with a single homestead located at the south west corner of the site. It is bound by ComEd right-of-way to the north, existing farmland to the east, a residential neighborhood to the south, and Merrill Road to the west. The site is split by a high point located near the existing residential housing that pushes drainage east towards a low point where drainage is capture within a 2' inlet and conveyed to an existing stormwater system along the southern boundary and to the west where flow is captured at a culvert crossing Merrill Road conveying drainage offsite to the south. In existing conditions, the 30" Merrill Road culvert will take flows from the proposed site as well as offsite flows from farmland to the east and to the north. Large flows from these areas will result in overtopping of Merrill Road at roughly 45 CFS with the existing 100-year 24 hour storm resulting in roughly 222 CFS. Calculations for the existing conditions as well as the existing culvert are provided in **Exhibit 2**.

A wetland map has been provided by Hey and Associates, Inc. (see **Exhibit 1**). A potential farmed wetland (PFW) is provided on the subject property. The portion of the isolated wetland located outside the footprint of the pond is to be mitigated for separately. The off-site stormwater facility (within 100 feet of the property boundary) not depicted in the provided wetland map, does not require a wetland delineation under Subsection 9-169.B.3 of the Kane County Stormwater Management Ordinance.

No portion of the site is located within the FEMA Floodplain per FEMA map number 17089C0315J dated July 17, 2012 (see **Exhibit 1**). A soils survey was obtained from the Natural Resources Conservation Service (NRCS), which shows that the site is underlain with soils consisting of HSG group B, C, and D. HSG "D" will be utilized for post-development conditions due to compaction associated with development. See **Exhibit 1** for a detailed breakdown of the soil groups. An drain tile survey was done for the proposed property. See **Exhibit 1** for the referenced survey.

1.2. Post-Development Conditions

The proposed development will generally maintain the existing west outfall location, but at a runoff rate in accordance with County codes. Two stormwater detention basins will capture runoff from the eastern and western portions of the site while also capturing offsite flow from the east and north. All drainage will be routed to the basins via storm sewer or overland flow. After being collected in the detention basins, drainage will be released below the maximum allowable release rate to the existing culvert and ultimately continue flow south of the property. Volume equal to the required BMP volume will be provided below the outlet pipe elevation to facilitate infiltration and provide BMPs/volume reduction.

The stormwater detention basins were designed per the following:

- 100-year rainfall events per Illinois State Water Survey Bulletin 75
- Allowable release rate of 0.10 cfs/acre for the 100-year, 24-hour, rainfall event

Calculations for the proposed ponds, tributary basins, and existing culvert are provided in Exhibit 2.

2. POST-DEVELOPMENT CONDITIONS ANALYSIS

2.1. Runoff Rate and Detention Basin Information

In order to accommodate the development of the site, two detention ponds are proposed. The ponds will split the site into an eastern and western detention pond, mimicking the existing drainage patterns of the site. The two ponds are connected in series with the eastern pond draining to the western pond where it will outfall to the existing drainage culvert crossing, discharging to the south side of Merrill Road.

Of the total site area, 79.70 acres are proposed to be disturbed with 1.57 acres being undetained resulting in a site allowable release rate of 6.70 cfs. 61.02 acres, which include both the proposed site as well as the Denny Road expansion are to be tributary to the eastern pond. The eastern pond will also accommodate 34.35 acres of offsite flow from the agricultural field to the east. Depressional storage compensation of 2.81 ac-ft will be located within the eastern pond.

18.68 acres of the remaining development will be tributary to western detention basin. Of the 18.68 acres, 1.57 acres are undetained. Due to the ponds in series the western pond's release rate will be for the full site. The western detention pond will also accommodate approximately 244.82 acres of offsite flow from the north. A detailed breakdown of the pond calculations is provided in Table 1 below.

Table 1 : Detention Basin Information								
	East Basin	West Basin						
Detention Service Area	61.02 ac	18.68 ac						
Allowable Release	6.10 cfs	1.87 cfs						
Undetained Area	0.00 ac	1.57 ac						
Undetained Release	0.00 cfs	1.27 cfs						
Adjusted Allowable Release	6.10 cfs	0.60 cfs						
Total Allowable Release	6.70	0 cfs						
Impervious Area (65% Lot Coverage)	33.69 ac	8.79 ac						
Volume Reduction Required	2.81 ac-ft	0.73 ac-ft						
Bottom of Pond	709.30'	700.00'						
Normal Water Level (NWL)	710.00'	700.34'						
Volume Reduction Provided	3.22 ac-ft	0.82 ac-ft						
Actual Release Rate (100yr-24hr)	1.65 cfs	6.66 cfs						
High Water Level (HWL)	716.33'	702.59'						
Detention Volume Provided	34.38 ac-ft	5.83 ac-ft						
Depressional Compensatory Storage Required	2.81 ac-ft	-						
Depressional Compensatory Storage Provided	3.11 ac-ft	-						
Depressional Compensatory Storage Elevation	716.80'	-						
Overflow Weir Elevation	716.80'	702.60'						
Overflow Weir Length	175.00'	120.00'						
Top of Pond	718.00'	704.30'						
Overflow Weir Capacity	598.11 cfs	691.56 cfs						
Overflow Weir Capacity Required	51.10 cfs	184.78 cfs						
Overflow Weir HWL	716.99'	703.19'						
Freeboard	1.01'	1.11'						
Offsite Tributary Area	34.35 ac	244.82 ac						
Desiltation Volume Required	3.78 ac-ft	1.16 ac-ft						
Desiltation Volume Provided	4.07 ac-ft	1.25 ac-ft						

2.2. Volume Reduction Summary

According to article V section 9-107 of The Kane County Stormwater Ordinance, category II BMPs shall provide Volume Reduction and water quality treatment of the required volume reduction. The required volume reduction shall be calculated as the product of new impervious area and a one-inch (1.0") rainfall event with no abstractions. Per the site entitlements, the maximum lot coverage for this property is 65%, and impervious area calculations were done using this criteria.

In accordance with this requirement, volume reduction has been provided below the elevation of the primary gravity outlet of the site runoff storage facility. The bottom of the ponds will consist of naturalized plantings to treat the dead storage volume during larger storm events. The calculations below outline the total new impervious area and total volume reduction required. Also included is the stage storage table for the provided volume reduction.

Impervious Area Calculations

Surface type	East B	asin	West Basin				
Tributary Lot Area	48.79	AC	13.52	AC			
Impervious Area*	31.71	AC	8.79	AC			
Denny Road Impervious Area	1.98	AC	-	AC			
Volume Reduction Required 2.81 Ac-ft 0.73 Ac-ft							
*Impervious area assumed at maximum lot coverage of 65%							

East Basin - Volume Reduction Provided

	Area		Average	Incremental	Cumulative
Elevation			Area	Storage	Storage
(ft)	(ft²) (acre)		(acre)	(acre-ft)	(acre-ft)
709.30	197,545 4.54				0.00
			4.60	3.22	
710.00	203,346 4.67				3.22

West Basin - Volume Reduction Provided

	Area		Average	Incremental	Cumulative
Elevation			Area	Storage	Storage
(ft)	(ft²) (acre)		(acre)	(acre-ft)	(acre-ft)
700.00	104,179 2.39				0.00
			2.42	0.82	
700.34	106,223 2.44				0.82

2.3. Downstream Capacity Analysis

Downstream of the West Pond discharge, flow is conveyed south across Merrill Road by a 30" culvert and discharged into an existing channel where it is conveyed further south to Blackberry Creek. An analysis of both the existing culvert and channel has been completed in order to evaluate capacity for site discharge. **Exhibit 2** provides Channel Cross sections as well as calculations overland flow calculations for both the culvert and the channel.

3. CRITICAL DURATION & EMERGENCY OVERFLOW WEIR DESIGN

As there are two proposed basins on-site, there will be two proposed emergency overflow weirs. The overflow weirs are sized to convey the onsite flow and offsite flow while maintaining 1-foot of freeboard. The eastern basin emergency overflow weir is sized to convey offsite flow from the east and the onsite area tributary to the eastern pond for the critical duration storm. Limited flow will flow to the restrictor for the east pond and be conveyed directly to the west pond. A majority of the flow will be conveyed via an emergency overflow weir to the north. The flow will enter into a depressional area and route through the adjacent north property. The flow was modeled through a reach by using the average side slopes and channel width. Ultimately the flow is tributary to the west pond along with additional offsite area from the northern parcel. The west pond overflow is sized to convey the flow from the eastern pond, the offsite area to the east, the offsite area to the north, and the area tributary to the west basin. The western pond will discharge south into the existing storm culvert crossing at Merrill Road. The emergency overflow weirs have been sized appropriately utilizing HydroCAD and designed in accordance with the Kane County Stormwater Technical Manual. See Basin Overflow Weir Sizing and Emergency Overflow Weir Design, Exhibit 3.

4. STORM SEWER DESIGN SUMMARY

The proposed storm sewer system was designed using Hydraflow Storm Sewer Extensions, Version 10. Runoff rates were calculated using Bulletin 75 data and rational method and the storm sewer was designed to meet the capacity of the 5-year storm event, unless otherwise noted. The velocities and hydraulic grade lines for 5-year storm events have also been evaluated in design. A runoff coefficient of 0.4 was used for pervious areas and 0.96 for impervious areas. A minimum time of concentration of 10 minutes was used for each sub-catchment drainage area.

The eastern tributary area will be conveyed to the eastern pond, where flow will be restricted and then discharge through the 100-year pipe system into the western pond. The western pond will restrict its flow to the allowable release rate, discharge, and be conveyed through the existing roadway culvert at Merrill Road. A flow analysis has been conducted to understand the capacity of the existing culvert and illustrate the reduced flow in the proposed condition due to the restricted flows from the pond. This results in a lower flow through the existing culvert in comparison to the existing conditions.

The storm sewers have been designed to convey the 5-year storm event and convey the bypass southernly as previously exhibited. See **Exhibit 3** for details. All other storm events exceeding the 5-year event will inundate storm sewer infrastructure and be routed to the proposed detention basin via overland flood routes. A portion of the site will flow directly into the outfall pipe for the western pond. The flow will flow towards the restrictor and the flow will backup into the proposed pond. The storm runs have been designed for the 100-year event. See **Exhibit 3** for calculations. Additionally, the storm sewer downstream of the east pond restrictor has been sized to convey the restricted flow from the east pond and additional flow from the inlets. See **Exhibit 3** for calculations. The outlet pipe for the east basin was not modeled due to the flow being restricted by a 5" orifice and the pipe being 18".

Ponding within rear yards has been designed to be 1' or less. In the occurrence of clogging or larger rainfall events, overland flood routes are provided within the paved areas and through strategically located side and rear yards to convey stormwater to the proposed basin with at least 2' of freeboard between the lowest opening of any building and the 100-year high water level. Calculations for the overland flow routes are depicted in **Exhibit 3.**

Storm Sewer has been designed in accordance with the Village of Sugar Grove and Kane County Stormwater Ordinance. See **Exhibit 3** for Drainage Area Map, 5-Yr, and 100-Yr storm sewer sizing.

5. CONCLUSION

In conclusion, the proposed Crown Communities development has been designed in accordance with the criteria set forth in the Kane County Stormwater Technical Manual. There are no anticipated adverse impacts to the existing downstream drainage system as a result of the proposed improvements. Stormwater management easements and maintenance agreements will be provided under separate cover as applicable.

Exhibit 1 — Maps USFWS WETLANDS MAP

USFWS WETLANDS MAP
FEMA FLOODPLAIN MAP
NRCS SOILS MAP
SOILS REPORT
DRAIN TILE SURVEY

Prepared by:

Hey and Associates, Inc. Engineering, Ecology and Landscape Architecture Project Number: 18-0082

Orientation:

Date: 9/21/2018

Project Name:

Sugar Grove South

2018

Prepared For:

Sugar Grove, LLC

Exhibit Title:

Wetland Boundary

Exhibit:

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or flood plain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or flood plain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this

In the State of Illinois, any portion of a stream or watercourse that lies within the floodway fringe of a studied (AE) stream may have a state regulated floodway. The FIRM may not depict these state regulated floodways.

Floodways restricted by anthropogenic features such as bridges and culverts are drawn to reflect natural conditions and may not agree with the model computed widths listed in the Floodway Data table in the Flood Insurance Study report.

Multiple topographic sources may have been used in the delineation of Special Flood Hazard Areas. See Flood Insurance Study report for details on source resolution and geographic extent.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 16. The horizontal datum was NAD 83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same **vertical datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988. visit the National Geodetic Survey website at www.ngs.noaa.gov or contact the National Geodetic Survey at the following address:

NGS Information Services, NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282

To obtain current elevation, description, and/or location for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at www.ngs.noaa.gov.

Base map information shown on this FIRM was provided in digital format by Kane County GIS Technologies of Kane County, Illinois. Color digital orthophotos with a 6 inch pixel resolution were photogrammatically compiled from aerial photography obtained during the spring of 2008.

This map reflects more detailed and up-to-date stream channel configurations than those shown on the previous FIRM for this jurisdiction. The Special Flood Hazard Areas and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

For information on available products associated with this FIRM visit the Map Service Center (MSC) website at http://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the MSC

If you have questions about this map, how to order products or the National Flood Insurance Program in general, please call the FEMA Map Information eXchange (FMIX) at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

PANEL INDEX

LEGEND

SPECIAL FLOOD HAZARD AREAS (SFHAs) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood.

ZONE A No Base Flood Elevations determined. **ZONE AE**

Base Flood Elevations determined. Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations **ZONE AH ZONE AO** Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average

depths determined. For areas of alluvial fan flooding, velocities also

ZONE AR Special Flood Hazard Areas formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.

ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations determined. **ZONE V** Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined. **ZONE VE**

Coastal flood zone with velocity hazard (wave action); Base Flood Elevations

FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

OTHER FLOOD AREAS

ZONE X

Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square

mile; and areas protected by levees from 1% annual chance flood. OTHER AREAS

ZONE X Areas determined to be outside the 0.2% annual chance floodplain. ZONE D Areas in which flood hazards are undetermined, but possible.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas.

1% annual chance floodplain boundary 0.2% annual chance floodplain boundary

Floodway boundary _ ____ Zone D boundary

• • • • • • • • • • • • CBRS and OPA boundary Boundary dividing Special Flood Hazard Areas of different Base

Flood Elevations, flood depths or flood velocities. **~~**513**~~** Base Flood Elevation line and value; elevation in feet*

(EL 987) Base Flood Elevation value where uniform within zone; elevation in

*Referenced to the North American Vertical Datum of 1988

23)-----(23)

45° 02' 08", 93° 02' 12" Geographic coordinates referenced to the North American Datum of 1983 (NAD 83) - 4989^{000M} N 1000-meter Universal Transverse Mercator grid values, zone 16

1565000 FT 5000-foot grid tick: Illinois State Plane East Coordinate System, 3776 zone (FIPSZONE 1201) Transverse Mercator DX5510× Bench mark (see explanation in Notes to Users section of this FIRM

MAP REPOSITORIES Refer to Map Repositories list on Map Index

EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP

DECEMBER 20, 2002 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL August 3, 2009 - to reflect updated topographic information, to incorporate previously issued Letters of Map Revision, to change Base Flood Elevations, to add Special Flood Hazard Areas and Base Flood Elevations,

July 17, 2012 - to add Base Flood Elevations, and to change Special Flood Hazard Areas.

For community map revision history prior to countywide mapping, refer to the Community Map History table located in the Flood Insurance Study report for this jurisdiction.

To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

MAP SCALE 1" = 1000'

PANEL 0315J

FIRM

KANE COUNTY,

FLOOD INSURANCE RATE MAP

ILLINOIS

AND INCORPORATED AREAS

PANEL 315 OF 410

(SEE MAP INDEX FOR FIRM PANEL LAYOUT)

COMMUNITY BIG ROCK, VILLAGE OF 171081 0315 J KANE COUNTY 170896 0315 J

SUGAR GROVE, VILLAGE OF 170333 0315 J

Notice to User: The **Map Number** shown below should be used when placing map orders; the **Community Number** shown above should be used on insurance applications for the subject community.

MAP NUMBER 17089C0315J **MAP REVISED JULY 17, 2012**

Federal Emergency Management Agency

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:12.000. Area of Interest (AOI) C/D Please rely on the bar scale on each map sheet for map Soils D measurements. Soil Rating Polygons Not rated or not available Α Source of Map: Natural Resources Conservation Service Web Soil Survey URL: **Water Features** A/D Coordinate System: Web Mercator (EPSG:3857) Streams and Canals В Maps from the Web Soil Survey are based on the Web Mercator Transportation projection, which preserves direction and shape but distorts B/D Rails --distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more Interstate Highways accurate calculations of distance or area are required. C/D **US Routes** This product is generated from the USDA-NRCS certified data as D Major Roads of the version date(s) listed below. Not rated or not available -Local Roads Soil Survey Area: Kane County, Illinois Soil Rating Lines Survey Area Data: Version 18, Aug 21, 2024 Background Aerial Photography Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Date(s) aerial images were photographed: Jun 13, 2020—Jul 6, 2020 B/D The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor C/D shifting of map unit boundaries may be evident. D Not rated or not available **Soil Rating Points** A/D B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
59A	Lisbon silt loam, 0 to 2 percent slopes	C/D	2.2	0.5%
62A	Herbert silt loam, 0 to 2 percent slopes	C/D	2.1	0.5%
149A	Brenton silt loam, 0 to 2 percent slopes	B/D	12.1	2.7%
152A	Drummer silty clay loam, 0 to 2 percent slopes	B/D	167.9	37.5%
171A	Catlin silt loam, 0 to 2 percent slopes	С	1.5	0.3%
193B	Mayville silt loam, 2 to 5 percent slopes	С	20.9	4.7%
198A	Elburn silt loam, 0 to 2 percent slopes	B/D	11.3	2.5%
206A	Thorp silt loam, 0 to 2 percent slopes	C/D	8.4	1.9%
219A	Millbrook silt loam, 0 to 2 percent slopes	C/D	4.1	0.9%
344C2	Harvard silt loam, 5 to 10 percent slopes, eroded	В	2.7	0.6%
348B	Wingate silt loam, cool mesic, 2 to 5 percent slopes	С	109.6	24.5%
348C2	Wingate silt loam, 5 to 10 percent slopes, eroded	С	29.5	6.6%
527C2	Kidami loam, 4 to 6 percent slopes, eroded	С	1.6	0.4%
618E	Senachwine silt loam, 12 to 20 percent slopes	С	13.2	2.9%
656B	Octagon silt loam, 2 to 4 percent slopes	С	5.1	1.1%
656C2	Octagon silt loam, 4 to 6 percent slopes, eroded	С	14.7	3.3%
662B	Barony silt loam, 2 to 5 percent slopes	С	19.3	4.3%
663A	Clare silt loam, 0 to 2 percent slopes	С	4.0	0.9%
668B	Somonauk silt loam, 2 to 5 percent slopes	С	4.9	1.1%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI					
802B	Orthents, loamy, 1 to 6 percent slopes	С	6.4	1.4%					
969E2	Casco-Rodman complex, 12 to 20 percent slopes, eroded	В	6.0	1.3%					
Totals for Area of Inter	est	447.3	100.0%						

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Corporate Office

360 S. Main Place, Carol Stream, IL 60188-2404 630.462.2600 • Fax 630.653.2988

Local Offices:

1701 W. Market Street, Suite B, Bloomington, IL 61701-2641 309.821.0430 • Fax 309.821.1242

457 E. Gundersen Drive, Carol Stream, IL 60188-2492 630.653.3920 • Fax 630.653.2726

209 Cleveland Street, Suite C, Cary, IL 60013-2978 847.516.0505 • Fax 847.516.0527

650 Peace Road, Suite D, DeKalb, IL 60115 815.748.2100 • Fax 815.748.2110

401 Riverside Drive, Suite 24, Gurnee, IL 60031-5906 847.249.6040 • Fax 847.249.6042

203 Earl Road, Suite A, Shorewood, IL 60431-9408 815.744.1510 • Fax 815.744.1728

8201 W. 183RD Street, Suite C, Tinley Park, IL 60477-9249 708.429.2080 • Fax 708.429.2144

Geotechnical & Environmental Engineering

Construction Materials Engineering & Testing

.

Laboratory Testing of Soils, Concrete & Asphalt

Geo-Environmental Drilling & Sampling

Report of Soils **Exploration**

South Nickels Property

Merrill Road

Sugar Grove, Illinois

Crown Community Development

December 3, 2004 L - 61,021A

PRELIMINARY SOILS EXPLORATION
SOUTH NICKELS PROPERTY
MERRILL ROAD
SUGAR GROVE, ILLINOIS

PREPARED FOR:
CROWN COMMUNITY DEVELOPMENT
3600 THAYER COURT, SUITE 100
AURORA, ILLINOIS 60504

PREPARED BY
TESTING SERVICE CORPORATION
457 EAST GUNDERSEN DRIVE
CAROL STREAM, ILLINOIS 60188
630-653-3920

TESTING SERVICE CORPORATION

TABLE OF CONTENTS

Section	n		F	⊃age
1.	TEXT			
	1.0	Introd	luction	2
	2.0	Field	Investigation and Laboratory Testing	3
	3.0	Discu	ssion of Test Data	4
	4.0	Analy	sis and Recommendations	5
		4.1	Bearing Table	5
		4.2	Building Foundations	7
		4.3	Mass-Grading	. , 9
		4.4	Pavement Design and Construction	. 11
		4.5	Groundwater Management	. 13
	5.0	Closu	ıre	. 13
II.	APPE	NDIX		

TESTING SERVICE CORPORATION

December 3, 2004 L - 61,021A

PRELIMINARY SOILS EXPLORATION SOUTH NICKELS PROPERTY MERRILL ROAD SUGAR GROVE, ILLINOIS

1.0 INTRODUCTION

This report presents results of the preliminary soils exploration performed for the South Nickels Property in Sugar Grove, Illinois. These geotechnical services have been provided in accordance with the attached General Conditions, incorporated herein by reference. Previous reports were prepared in connection with adjoining properties which lie to the north in the Sugar Grove Assemblage (L-53,904 dated December 21, 2001, L-53,904A dated March 5, 2002 and L-61,021 dated August 13, 2004).

The project site is located on the northeast side of Merrill Road, approximately one-half mile southeast of its intersection with Illinois Route 47. It comprises approximately 82 acres of rolling farmland. A farmstead with associated buildings was noted in the southwest corner of the site. Ground surface elevations at the boring locations varied by approximately 35 feet, with the site generally sloping down from the center.

It is understood that residential development is planned for the subject parcel. Associated buildings would most likely consist of 1 to 2-story wood-frame structures, with and without basements. Other site improvements would presumably include paved streets and driveways, underground utilities and on-site detention.

Results of field and laboratory testing and preliminary recommendations based upon these data are included in this report. Specifically addressed are building foundations, mass-grading, pavement design and construction as well as groundwater management. No building or grading plans were available at the time this report was prepared.

2.0 FIELD INVESTIGATION AND LABORATORY TESTING

A total of thirty-four (34) soil borings (Nos. 701, 711, 712, 801-809 and 811-832) were performed as a part of this preliminary soils exploration. Boring 810 was not drilled due to the presence of a new building foundation. Borings 701, 711 and 712 were located on the Nickels Property to the north and were previously unable to be drilled. The borings fell on an approximate 400' grid pattern, with an attempt being made to hit low-lying or otherwise suspect areas. Boring locations were staked and ground surface elevations at them provided by Cemcon, Ltd. Ground surface elevations were not referenced to a specific datum, but are relative to elevations given in previous reports. A Boring Location Plan is included in the Appendix.

The borings were extended between 15 and 20 feet below existing grade. They were drilled and samples tested in accordance with currently recommended American Society for Testing and Materials specifications. Soil sampling was performed at $2\frac{1}{2}$ -foot intervals in conjunction with the Standard Penetration Test, for which driving resistance to a $2^{"}$ split-spoon sampler (N-value in blows per foot) provides an indication of the relative density of granular materials and consistency of cohesive soils. Water level readings were taken during and following completion of drilling operations.

Soil samples were examined in the laboratory to verify field descriptions and to classify them in accordance with the Unified Soil Classification System. Laboratory testing included moisture content determinations for all cohesive and intermediate (silt or loamy) soil types. An estimate of unconfined compressive strength was obtained for all cohesive samples using a calibrated pocket penetrometer, with actual measurements of unconfined compressive strength performed on native clay soils.

Reference is made to the boring logs in the Appendix which indicate subsurface stratigraphy and soil descriptions, results of field and laboratory tests, as well as water

level observations. Definitions of descriptive terminology are also included. While strata changes are shown as a definite line on the logs, the actual transition between soil layers will probably be more gradual.

3.0 DISCUSSION OF TEST DATA

Surficial topsoil was between 10 and 18 inches thick at the majority of the boring locations, up to 3 feet deep at Borings 805, 811, 820 and 825-827. These deeper clayey topsoil deposits exhibited moisture contents of 25 to 40 percent. Relatively soft silty clay and sandy clay soils were found directly underlying the topsoil layer at Boring 827, as well as at greater depths in Borings 712, 808, 811, 812, 818 and 826. These low to moderate strength clays had unconfined compressive strengths of 0.75 tons per square foot (tsf) or less at moisture contents ranging from 12 to 34 percent.

Uppermost clay soils in approximately two-thirds of the borings consisted of medium to high plasticity silty clay, generally extending about 3 to 6 feet below existing grade. These tough to very tough CL/CH materials (Unified classification) had unconfined strengths ranging from 1.0 to 3.5 tsf at relatively high moisture contents of 25 to 32 percent.

Tough to hard silty clay, very silty clay and sandy clay soils of low to medium plasticity were encountered underlying the topsoil layer in the majority of the remaining borings, generally extending between 3 and 8 feet below existing grade. They had unconfined strengths typically ranging from 1.5 to 4.5+ tons per square foot (tsf), occasionally lower at Borings 805, 808, 811, 818, 829 and 830. Moisture contents generally varied from 10 to 24 percent. Loose to dense sand, gravel, clayey/silty sand, silt and clayey/sandy silt deposits otherwise predominated, extending to boring completion depths in most cases. These granular/intermediate materials had typical Standard Penetration Test (N) values of 4 to 48 blows per foot (bpf), being as low as 2 to 3 bpf at Boring 825.

Free water was initially revealed between 3 and 13 feet below existing grade in the majority of the borings. Upon completion of drilling operations, the water levels had generally remained within 3 feet of initial readings, rising by as much as 6 feet at Boring 825. Wet to saturated granular deposits were encountered within 6 to 8 feet of ground surface at approximately half of the borings, typically located in the eastern and western

portions of the site. Borings 712, 803, 804, 814, 815, 822 and 824 (7 total) were "dry" both during and upon completion of drilling operations.

4.0 ANALYSIS AND RECOMMENDATIONS

4.1 Bearing Table

Summarized in the following table is the shallowest depth at which in-situ soils considered capable of supporting a net allowable soil bearing pressure of 3000 pounds per square foot (psf) were encountered at each boring location. The 3000 psf bearing value is typical and generally satisfactory for residential construction as is proposed.

The ground surface elevation and depth of topsoil at the borings are also indicated in the bearing table. Added notes relate to the presence of relatively low strength or loose soil deposits underlying bearing elevations shown (L), marginal bearing soils for fill placement and foundation support (M), undercut depth for mass-grading (U) and wet to saturated sand and gravel materials encountered within 6 to 8 feet of ground surface (W). These conditions are discussed in greater detail in the text that follows.

		Depth of Topsoil	3000 psf Bearing*		
Boring No.	Existing Grade	(Feet)	Depth (Feet)	Elevation	
		North Nickels Prope	erty (L-61,021)		
701	698.7	1.0	1.0 MLW	697.5	
711	701.8	1.0	1.0 M	700.5	
712	704.7	1.0	1.0 ML	703.5	
		South Nickels Prope	rty (L-61,021A)		
801	693.0	1.1	1.0 W	692.0	
802	700.3	1.1	1.0 MW	699.0	
803	715.1	1.1	1.0	714.0	
804	711.7	1.0	1.0	710.5	
805	707.1	3.0	3.0 ML	704.0	
806	705.5	1.1	1.0 MLW	704.5	

		Depth of Topsoil	3000 psf	Bearing*
Boring No.	Existing Grade	(Feet)	Depth (Feet)	Bearing* Elevation 704.0 704.0 705.0 688.5 694.0 706.5 722.5 721.0 710.0 705.0 704.0 705.0 696.0 707.0 727.0 719.0 712.0 695.5 691.5 701.0 714.0 709.0
807	705.5	1.5	1.5 LW	704.0
808	705.4	1.0	1.0 LW	704.0
809	705.8	0.8	1.0 MLW	705.0
810		Not Drilled		
811	691.8	3.0	3.0 L	688.5
812	694.9	0.8	1.0 MLVV	694.0
813	707.4	0.8	1.0 MVV	706,5
814	723.8	1.1	1.0	722.5
815	722.2	0.8	1.0 M	721.0
816	711.0	1.0	1.0 M	710.0
817	705.9	0.8	1.0 ML	705.0
818	705.0	1.0	1.0 L	704.0
819	706.1	1.0	1.0 MLVV	705.0
820	699.2	3.0	3.0 MVV	696.0
821	708.1	1.0	1.0 MW	707.0
822	728.2	1.0	1.0 M	727.0
823	720.2	1.2	1.5 M	719.0
824	713.2	1.2	1.5 L	712.0
825	706.3	3.0	10.5 UML	695.5
826	704.8	3.0	13.0 UM	691.5
827	706.7	3.0	5.5 UMLW	701.0
828	715.7	1.5	1.5 M	714.0
829	710.9	1.5	1.5 L	709.0
830	707.8	0.8	1.0 ML	707.0
831	707.0	1.1	1.0 MLVV	706.0
832	709.9	1.1	1.0 MLW	708.5

Depth/elevation of 3000 psf bearing soils rounded to the nearest 0.5 foot.

- L Relatively low strength or loose deposits found underlying bearing elevation shown.
- M Marginal bearing soils for fill placement and foundation support.
- U Undercut depth for mass-grading.
- Wet to saturated granular/intermediate materials encountered within 6 to 8 feet of ground surface.

4.2 Building Foundations

At the majority of the boring locations, native soils encountered at relatively shallow depths below the topsoil layer are considered suitable (or marginally suitable) for support of 3000 psf bearing. These are for the most part indicated by bearing depths ranging from 1.0 to 3.0 feet in the above table. They typically consist of cohesive soils exhibiting unconfined compressive strengths of 1.5 tsf or greater, 1.0 to 1.5 tsf in the case of marginal bearing soils. Loose to firm sand, silty sand and silt deposits also represent marginal bearing at Borings 822 and 825-827.

In these areas of satisfactory (or marginally satisfactory) bearing, footings may also be constructed on engineered fill that is placed as part of mass-grading. Assuming that all surficial topsoil is stripped and new fill placed and compacted in accordance with mass-grading recommendations given below, footings constructed on engineered fill may also be sized for 3000 psf bearing. However, in areas underlain by low to marginal strength or relatively high moisture content soils, as well as anywhere that the height of new fill is to exceed about 10 feet, it is recommended that settlement considerations related to fill placement be further evaluated.

Unsuitable soil types, i.e. soft clay soils and/or very loose granular deposits, extended approximately 5 to 13 feet below existing grade at Borings 825-827. These borings were drilled in a low-lying area found in the east-central portion of the site. If the unsuitable/compressible soil types are left in-place under building pads, consolidation of them could lead to settlement and cracking of floor slabs and foundations constructed thereupon. Close-out borings are recommended to delineate the lateral extent of the unsuitable materials.

At over half of the borings, we have recommended that clay soils having unconfined compressive strengths of less than 1.5 tsf or relatively loose silt and granular soil types be left in-place beneath recommended footing elevations. Although they would not normally be considered suitable for direct support of foundation elements, lateral distribution of footing loads in overlying native materials should reduce actual stresses on these layers to acceptable levels. However, the thickness of stiffer overlying materials should be verified at the time of construction. In this regard, deeper foundation excavations may require undercutting.

Marginal bearing soils were encountered directly underlying the topsoil layer in approximately three-quarters of the borings. They include silty clays having unconfined compressive strengths of 1.5 tsf or less and/or moisture contents in excess of about 25 percent. Clayey/silty sand, silt and clayey/sandy silt deposits were also encountered at relatively shallow depths in approximately half of the borings. These granular/intermediate materials are considered moisture sensitive, i.e. can experience a loss of stability when subjected to moderate or heavy rainfall. They are also easily disturbed due to excavation operations or construction traffic, including foot traffic in the bottom of the foundation trenches.

If relatively low strength or unstable soils are exposed at footing grade, they should be removed and replaced with structural backfill. Undercuts of 1 to 2 feet are typically required based on field observations. Foundation overexcavations are then backfilled and footings constructed at design elevations in accordance with the following recommended procedures.

The base of the overexcavations should exceed footing dimensions by at least 12 inches along each side, 6 inches for every foot of overdig where the undercut exceeds 2.0 feet in depth. Replacement materials should consist of crushed stone or crushed gravel between ½ to 3 inches in size and containing no fines; IDOT gradations CA-1 and CA-7 meet these criteria. This "structural" fill should be spread in 12-inch layers loose thickness, each lift to be densified using vibratory compaction equipment or by tamping with a backhoe bucket. Footings constructed on the crushed stone or crushed gravel backfill may also be proportioned for 3000 psf bearing.

The need for foundation undercuts may be further evaluated when grading plans are available, i.e. whether marginal bearing soils are likely to be exposed in deeper excavations or cut areas. Undercutting is likely to be widespread across the majority of the site, where relatively low strength or loose soils were revealed in the borings. In order to minimize foundation undercuts, consideration may be given to using a reduced bearing pressure of around 2000 psf.

It is recommended that all continuous wall footings be made at least 18 inches wide, trench footings at least 10 inches wide and isolated foundations at least 2.5 feet square, regardless of calculated dimensions. For frost considerations, all exterior footings should be constructed at least 3.5 feet below outside finished grade and 4.0 feet for foundations located outside of heated building limits. Interior footings may be constructed at higher elevations as long as they are protected against frost heave in the event of winter construction.

Foundation wall reinforcement is typically added in undercut areas and where relatively low-strength soils underlie a stiffer crust on which footings will bear. This recommendation is often based on field observations during mass-grading. It is also made when total fill heights exceed 10 feet or foundation undercuts and crushed stone backfill are 2 feet or greater. Foundation reinforcement typically consists of two #5 rebars placed at both the top and bottom of foundation walls.

4.3 Mass-Grading

It is recommended that building and pavement areas be cleared of vegetation prior to mass-grading. Stripping operations should also include the removal of all surficial topsoil and other decomposable plant matter. The building and pavement areas should then be proof-rolled, in order to detect the presence of unsuitable soil types. The proof-roll should be performed using a loaded dump truck or other approved piece of heavy construction equipment. All soft or unstable materials determined by proof-rolling should be reworked and recompacted or, if that does not substantially improve subgrade stability, removed and replaced. In this regard, clayey subgrade soils will likely need to be reduced in moisture content prior to recompaction.

Removal and replacement of soft clay soils and very loose granular materials is specifically recommended for Borings 825-827, drilled in a low-lying area in the east-central portion of the site. Undercut depths are estimated to be on the order of 5 to 13 feet. Undercutting of compressible soil types will require that building pads be enlarged to permit the horizontal distribution of footing loads. It is recommended that the base of the undercut, or zone of stripping where only topsoil is to be removed, extend a minimum of 5 feet outside the outer edge of the structure plus 0.5 feet for every foot of fill to be placed.

Marginal subgrade stability and/or water problems, common conditions especially in deep undercuts, often mean that clay fill cannot be initially compacted. Where this condition occurs, it is recommended that coarse aggregate be placed in the bottom of the excavation until a stable base for compaction of clay fill is achieved, 12 to 24 inches typically being required. The coarse aggregate may consist of crushed stone or gravel between about ¼ to 4 inches in size and containing no fines; IDOT gradations CA-1, CA-5 and CA-7 meet these criteria.

Marginal subgrade stability, represented by unconfined compressive strengths of 1.5 tsf or less and/or moisture contents in excess of about 25 percent, was encountered in approximately three-quarters of the borings. These soils may need to be reduced in moisture content and recompacted in order to provide a stable base. Lime stabilization can achieve similar results and has the advantage of allowing work to proceed under adverse weather conditions. In any event, the need for subgrade reworking or additional undercutting should be evaluated on the basis of proof-rolling.

The traffic of heavy construction equipment frequently causes clayey/silty sand, silt and clayey/sandy silt deposits encountered in some borings to experience a short-term decrease in stability. The associated soft and spongy condition of exposed soils is commonly referred to as "pumping" in this area. It is recommended that heavy construction equipment be detoured around any areas where pumping conditions are found to be developing. Depending upon grading requirements and specific site conditions, solutions to a persistent pumping problem may include use of geotextile stabilization fabric or geogrid product, removal of unstable soils and replacement with granular backfill, construction of trench drains or a combination thereof.

New fill should consist of approved granular materials or inorganic silty clays of medium plasticity. It is recommended that compaction for building pad and pavement areas be to a minimum of 95 and 90 percent of maximum dry density, respectively, as determined by the Modified Proctor test (ASTM D 1557). The upper 2 feet of roadway subgrade should also be compacted to the 95 percent criterion. The fill should be placed in approximate 9 inch lifts loose measure for cohesive soils and up to 12 inches for granular materials, each lift to be compacted to the specified density prior to the placement of additional fill.

Moisture control is important in the compaction of most soil types, and it is recommended that the water content of new fill be within 3 percentage points of optimum moisture as established by its laboratory compaction curve. If the soil is compacted too dry, it will have an apparent stability which will be lost if it later becomes saturated. If the soil is too wet, the Contractor will not be able to achieve proper compaction.

In regard to use of on-site borrow, shallow silty clay soils were often relatively moist - having water contents of between 23 and 32 percent. It is estimated their use as engineered fill will require that the in-situ moisture be reduced by about 5 to 10+ percentage points. This reduction in moisture content is typically achieved by spreading the material in a single lift and aerating with a continuous discing operation. For obvious reasons it will work best in hot, dry and windy weather. Lime modification can also be used and has the advantage of working in less ideal weather conditions.

Clayey/silty sand, silt and clayey/sandy silt deposits were often encountered in the borings. As previously discussed for footings, these intermediate materials are moisture sensitive, i.e. can experience loss of stability when subjected to rainfall or groundwater seepage. They are also prone to instability under the traffic of heavy construction equipment. While none of these properties makes them unsuitable as engineered fill, they may point to difficulties in handling and compaction of them.

4.4 Pavement Design and Construction

Pavement subgrade preparation may be in general accordance with previous recommendations for mass-grading. Cohesive soil types were encountered at shallow depths in the majority of the borings. It is anticipated that existing subgrade in these areas

will have to be recompacted prior to paving; compaction to at least 90 percent Modified Proctor density is recommended.

If roadways are to be built in the areas where soft clay soils and very loose granular deposits were encountered, complete removal of these unsuitable/compressible materials is recommended. In this regard, undercuts of up to 13 feet would be required in the area of Boring 826. Additional fill typically required to raise roadway grades would only increase the risk of long-term settlement. These conditions should be further evaluated when more detailed information is available, i.e. preliminary grading plans.

Clayey/silty sand, silt and clayey/sandy silt deposits were encountered at relatively shallow depths in approximately half of the borings. These intermediate soil types are often classified as frost susceptible per IDOT guidelines on gradation and plasticity. In areas of high groundwater, they should ideally be removed and replaced to a depth of about 3 feet below top of pavement.

Pumping of silt and loamy soil types, as discussed under mass-grading, is typically more of a problem in pavement areas than for building pads. This condition is likely to require undercuts and the use of geotextile stabilization fabric or geogrid products and coarse aggregate backfill for a portion of pavement areas. Subgrade stability will also be affected by weather conditions at the time of paving.

A nominal Illinois Bearing Ratio (IBR) value of 3.0 is typically used for the design of asphalt pavements in this area, reflecting the clay subgrade which is prevalent. Use of this value assumes that any soft or unstable areas will be remediated, i.e. subgrade stabilized until passing a proof-roll.

Base course materials for anticipated asphalt pavements should conform to IDOT gradation CA-6 and be compacted to 95 percent Modified Proctor density or 100 percent of the Standard Proctor (ASTM D 698) maximum density value. Bituminous materials should conform to IDOT Class I, Type 3 requirements, Standard Specifications for Road and Bridge Construction, Section 406. They should be compacted to between 93 and 97 percent of their theoretical maximum density, the "Big D" as determined by IDOT.

4.5 Groundwater Management

Groundwater was encountered between 3 and 13 feet below existing grade at the majority of the boring locations, typically falling in the range of Elevations 691 to 702. Wet to saturated granular deposits were encountered within 6 to 8 feet of ground surface at Borings 801, 802, 806-809, 812, 813, 819-821, 827, 831 and 832, generally located in relatively low-lying areas found in the eastern and western portions of the site. The shallow groundwater in these areas is expected to impact basement construction as well as subgrade stability in pavement and building pad areas. It is also likely to be a problem for deeper utility lines. If these layers are penetrated during foundation, basement or utility trench construction, normal pumping procedures may not be able to keep up with the rate of groundwater inflow.

Groundwater should be further evaluated when additional information is available (preliminary site and grading plans). Consideration may also be given to the installation of groundwater monitoring wells, to better evaluate overall groundwater conditions across the site. Seasonal fluctuations of the groundwater table would also ideally be monitored.

Basements should not be constructed below the groundwater table. Lower levels should ideally be located at least 3 feet above the groundwater table, 2 feet as a minimum. All basement and below grade structures should otherwise be provided with a perimeter drain tile tied in to a sump pit with automatic pumping system. This is a standard requirement in the project area, the effectiveness of which will be dependent on groundwater at the site being controllable. If associated problems are encountered when excavating test pits or at any time during construction, i.e. continuous and/or high rates of groundwater seepage, the design engineer and geotechnical consultant should be notified so that the condition can be further evaluated.

5.0 CLOSURE

It is recommended that full-time inspection be provided by Testing Service Corporation personnel during foundation construction, so that the soils at undercut and foundation levels can be observed and tested. In addition, adequacy of building materials, stripping and undercutting, fill placement and compaction as well as slab-on-grade and pavement

construction should be monitored for compliance with the recommended procedures and specifications.

This report has been prepared without the benefit of building or grading plans. It is therefore suggested that Testing Service Corporation review these plans when available, to check the accuracy of this report as it may be affected, to verify the correct interpretation of recommendations contained herein and to modify the findings accordingly. Additional borings will be required for specific building structures as site development plans go forward. Close-out borings will also be needed to delineate unsuitable soil types identified in low-lying areas. Consideration may also be given to the installation of monitoring wells in areas of high groundwater.

The analysis and recommendations submitted in this report are based upon the data obtained from the thirty-four (34) soil borings, performed at the locations indicated on the Boring Location Plan. This report does not reflect any variations which may occur between these borings, the nature and extent of which may not become evident until during the course of construction.

We are available to review this report with you at your convenience.

Prepared by, Michael V. Machalinski Project Manager Vice President Registered Professional Englineer Illinois No. 062-038559

Pam Manz, E.I.

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL ENGINEERING REPORT

As the client of a consulting geotechnical engineer, you should know that site subsurface conditions cause more construction problems than any other factor. ASFE/The Association of Engineering Firms Practicing in the Geosciences offers the following suggestions and observations to help you manage your risks.

A GEOTECHNICAL ENGINEERING REPORT IS BASED ON A UNIQUE SET OF PROJECT-SPECIFIC FACTORS

Your geotechnical engineering report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. These factors typically include: the general nature of the structure involved, its size, and configuration; the location of the structure on the site; other improvements, such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask your geotechnical engineer to evaluate how factors that change subsequent to the date of the report may affect the report's recommendations.

Unless your geotechnical engineer indicates otherwise, do not use your geotechnical engineering report:

- when the nature of the proposed structure is changed, for example, if an office building will be erected instead of a parking garage, or a refrigerated warehouse will be built instead of an unrefrigerated one:
- when the size, elevation, or configuration of the proposed structure is altered;
- when the location or orientation of the proposed structure is modified;
- · when there is a change of ownership; or
- for application to an adjacent site.

Geotechnical engineers cannot accept responsibility for problems that may occur if they are not consulted after factors considered in their report's development have changed.

SUBSURFACE CONDITIONS CAN CHANGE

A geotechnical engineering report is based on conditions that existed at the time of subsurface exploration. Do not base construction decisions on a geotechnical engineering report whose adequacy may have been affected by time. Speak with your geotechnical consultant to learn if additional tests are advisable before construction starts. Note, too, that additional tests may be required when subsurface conditions are affected by construction operations at or adjacent to the site, or by natural events such as floods, earthquakes, or ground water fluctuations. Keep your geotechnical consultant apprised of any such events.

MOST GEOTECHNICAL FINDINGS ARE PROFESSIONAL JUDGMENTS

Site exploration identifies actual subsurface conditions only at those points where samples are taken. The data were extrapolated by your geotechnical engineer who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your geotechnical engineer can work together to help minimize their impact. Retaining your geotechnical engineer to observe construction can be particularly beneficial in this respect.

A REPORT'S RECOMMENDATIONS CAN ONLY BE PRELIMINARY

The construction recommendations included in your geotechnical engineer's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Because actual subsurface conditions can be discerned only during earthwork, you should retain your geotechnical engineer to observe actual conditions and to finalize recommendations. Only the geotechnical engineer who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations are valid and whether or not the contractor is abiding by applicable recommendations. The geotechnical engineer who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

GEOTECHNICAL SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND PERSONS

Consulting geotechnical engineers prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your geotechnical engineer prepared your report expressly for you and expressly for purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the geotechnical engineer. No party should apply this report for any purpose other than that originally contemplated without first conferring with the geotechnical engineer.

GEOENVIRONMENTAL CONCERNS ARE NOT AT ISSUE

Your geotechnical engineering report is not likely to relate any findings, conclusions, or recommendations

and these General Conditions.

TESTING SERVICE CORPORATION

1. PARTIES AND SCOPE OF WORK: "This Agreement" consists of Testing Service Corporation's ("TSC") proposal, TSC's Schedule of Fees and Services, Client's written acceptance thereof, if accepted by TSC, and these General Conditions. The terms contained in these General Conditions are intended to prevail over any conflicting terms in this Agreement. "Client" refers to the person or entity ordering the work to be done or professional services to be rendered by TSC (except where distinction is necessary, either work or professional services are referred to as "services" herein). If Client is ordering the services on behalf of another, Client represents and warrants that Client is the duly authorized agent of said party for the purpose of ordering and directing said services, and in such case the term "Client" shall also include the principal for whom the services are being performed. Prices quoted and charged by TSC for its services are predicated on the conditions and the allocations of risks and obligations expressed in these General Conditions. Unless otherwise stated in writing, Client assumes sole responsibility for determining whether the quantity and the nature of the services ordered by Client are adequate and sufficient for Client's intended purpose. Client shall communicate these General Conditions to each and every third party to whom the Client transmits any report prepared by TSC. Unless otherwise

2. SCHEDULING OF SERVICES: The services set forth in this Agreement will be accomplished in a timely and workmanlike manner. If TSC is required to delay any part of its services to accommodate the requests or requirements of Client, regulatory agencies, or third parties, or due to any cause beyond its reasonable control, Client agrees to pay such additional charges, if any, as may be applicable.

expressly assumed in writing, TSC shall have no duty to any third party, and in no event shall

TSC have any duty or obligation other than those duties and obligations expressly set forth

in this Agreement. Ordering services from TSC shall constitute acceptance of TSC's proposal

- 3. ACCESS TO SITE: Client will arrange and provide such access to the site as is necessary for TSC to perform its services. TSC shall take reasonable measures and precautions to minimize damage to the site and any improvements located thereon as a result of its services or the use of its equipment; however, TSC has not included in its fee the cost of restoration of damage which may occur. If Client desires or requires TSC to restore the site to its former condition, TSC will, upon written request, perform such additional work as is necessary to do so and Client agrees to pay to TSC the cost thereof plus TSC's normal markup for overhead and profit.
- 4. CLIENT'S DUTY TO NOTIFY ENGINEER: Client represents and warrants that Client has advised TSC of any known or suspected hazardous materials, utility lines and underground structures at any site at which TSC is to perform services under this Agreement.
- 5. DISCOVERY OF POLLUTANTS: TSC's services shall not include investigation for hazardous materials as defined by the Resource Conservation Recovery Act, 42 U.S.C.§ 6901, et, seq., as amended ("RCRA") or by any state or Federal statute or regulation. In the event that hazardous materials are discovered and identified by TSC, TSC's sole duty shall be to notify Client.
- 6. MONITORING: If this Agreement includes testing construction materials or observing any aspect of construction of improvements, TSC will report its test results and observations as more specifically set forth eisewhere in this Agreement. Client shall cause all tests and inspections of the site, materials and work to be timely and properly performed in accordance with the plans, specifications, contract documents, and TSC's recommendations. No claims for loss, damage or injury shall be brought against TSC unless all tests and inspections have been so performed and unless TSC's recommendations have been followed.

TSC's services shall not include determining or implementing the means, methods, techniques or procedures of work done by the contractor(s) being monitored or whose work is being tested. TSC's services shall not include the authority to accept or reject work or to in any manner supervise the work of any contractor. TSC's services or failure to perform same shall not in any way operate or excuse any contractor from the performance of its work in accordance with its contract. "Contractor" as used herein shall include subcontractors, suppliers, architects, engineers and construction managers.

- 7. RDOF INVESTIGATIONS: Should it be necessary to make roof cuts, Client agrees to provide a roofing contractor of Client's choice to make such cuts, to remove samples as directed by TSC personnel and to promptly make necessary patches or repairs. In the event that a roof contractor is not so provided by Client, Client agrees that TSC may make and remove such cuts as TSC deems necessary in the course of the investigation and Client assumes all risks of damage to the roof system and the building which may arise as a result thereof.
- 8. LIMITATIONS OF PROCEDURES, EQUIPMENT AND TESTS: Information obtained from borings, observations and analyses of sample materials shall be reported in formats considered appropriate by TSC unless directed otherwise by Client. Such information is considered evidence, but any inference or conclusion based thereon is, necessarily, an opinion also based on engineering judgment and shall not be construed as a representation of fact. Subsurface conditions may not be uniform throughout an entire site and ground water levels may fluctuate due to climatic and other variations. Construction materials may vary from the samples taken. Unless otherwise agreed in writing, the procedures employed by TSC are not designed to detect intentional concealment or misrepresentation of facts by others.

GENERAL CONDITIONS

Geotechnical and Construction Services

- 9. SAMPLE DISPOSAL: Unless otherwise agreed in writing, test specimens or samples will be disposed immediately upon completion of the test. All drilling samples or specimens will be disposed sixty (60) days after submission of TSC's report.
- 10. TERMINATION: This Agreement may be terminated by either party upon seven days prior written notice. In the event of termination, TSC shall be compensated by Client for all services performed up to and including the termination date, including reimbursable expenses.
- 11. PAYMENT: Client shall be invoiced periodically for services performed. Client agrees to pay each invoice within thirty (30) days of its receipt. Client further agrees to pay interest on all amounts invoiced and not paid or objected to in writing for valid cause within sixty (60) days at the rate of twelve (12%) per annum (or the maximum interest rate permitted by applicable law, whichever is the lesser) until paid and TSC's costs of collection of such accounts, including court costs and reasonable attorney's fees.
- 12. WARRANTY: TSC's professional services will be performed, its findings obtained and its reports prepared in accordance with this Agreement and with generally accepted principles and practices. In performing its professional services, TSC will use that degree of care and skill ordinarily exercised under similar circumstances by members of its profession. In performing physical work in pursuit of its professional services, TSC will use that degree of care and skill ordinarily used under similar circumstances. This warranty is in lieu of all other warranties or representations, either express or implied. Statements made in TSC reports are opinions based upon engineering judgment and are not to be construed as representations of fact.

Should TSC or any of its employees be found to have been negligent in performing professional services or to have made and breached any express or implied warranty, representation or contract, Client, all parties claiming through Client and all parties claiming to have in any way relied upon TSC's services or work agree that the maximum aggregate amount of damages for which TSC, its officers, employees and agents shall be liable is limited to \$50,000 or the total amount of the fee paid to TSC for its services performed with respect to the project, whichever amount is greater.

In the event Client is unwilling or unable to limit the damages for which TSC may be liable in accordance with the provisions set forth in the preceding paragraph, upon written request of Client received within five days of Client's acceptance of TSC's proposal together with payment of an additional fee in the amount of 5% of TSC's estimated cost for its services (to be adjusted to 5% of the amount actually billed by TSC for its services on the project at time of completion), the limit damages shall be increased to \$500,000 or the amount of TSC's fee, whichever is the greater. This charge is not to be construed as being a charge for insurance of any type, but is increased consideration for the exposure to an award of greater damages.

- 13. INDEMNITY: Subject to the provisions set forth herein, TSC and Client hereby agree to indemnify and hold harmless each other and their respective shareholders, directors, officers, partners, employees, agents, subsidiaries and division (and each of their heirs, successors, and assigns) from any and all claims, demands, liabilities, suites, causes of action, judgments, costs and expenses, including reasonable attorneys' fees, arising, or allegedly arising, from personal injury, including death, property damage, including loss of use thereof, due in any manner to the negligence of either of them or their agents or employees. In the event both are negligent or at fault, then any liability shall be apportioned between them pursuant to their pro rata share of negligence or fault. TSC and Client further agree that their liability to any third party shall, to the extent permitted by law, be several and not joint. The indemnities provided hereunder shall not terminate upon the termination or expiration of this Agreement.
- 14. SUBPOENAS: TSC's employees shall not be retained as expert witnesses except by separate, written agreement. Client agrees to pay TSC pursuant to TSC's then current fee schedule for any TSC employee(s) subpoenaed by any party as an occurrence witness as a result of TSC's services.
- 15. OTHER AGREEMENTS: TSC shall not be bound by any provision or agreement (i) requiring or providing for arbitration of disputes or controversies arising out of this Agreement, (ii) wherein TSC waives any rights to a mechanics lien or (iii) that conditions TSC's right to receive payment for its services upon payment to Client by any third party. These General Conditions are notice, where required, that TSC shall file a lien whenever necessary to collect past due amounts. This Agreement contains the entire understanding between the parties. Unless expressly accepted by TSC in writing prior to delivery of TSC's services, Client shall not add any conditions or impose conditions which are in conflict with those contained herein, and no such additional or conflicting terms shall be binding upon TSC. The unenforceability or invalidity of any provision or provisions shall not render any other provision or provisions unenforceable or invalid. This Agreement shall be construed and enforced in accordance with the laws of the State of Illinois. In the event of a dispute arising out of or relating to the performance of this Agreement, the breach thereof or TSC's services, the parties agree to try in good faith to settle the dispute by mediation under the Construction industry Mediation Rules of the American Arbitration Association as a condition precedent to filing any demand for arbitration, or any petition or complaint with any court. Should litigation be necessary, the parties consent to jurisdiction and venue in an appropriate Illinois State Court in and for the County of DuPage, Wheaton, Illinois or the Federal District Court for the Northern District of Illinois. Paragraph headings are for convenience only and shall not be construed as limiting the meaning of the provisions contained in these General Conditions

TESTING SERVICE CORPORATION UNIFIED CLASSIFICATION CHART

	CRITERIA FOR ASSIGNING GROUP SYMBOLS AND GROUP NAMES USING LABORATORY TESTS ^d		S	OIL CLASSIFICATION		
	GROUP	NAMES U	ISING LABO	PRATORY TESTS ^d	GROUP SYMBOL	GROUP NAME b
200	GRAVELS Mare than 50%	o/ CLEAN GRAVELS		^C u_≥ 4 and 1 ≤ ^C c ≤ 3 ^e	GW	Well graded gravel ^f
-	of coarse fraction retained on	Less the		$C_{\rm U}$ <4 and/or $l>C_{\rm C}>3^{\rm e}$	GP	Poorly graded gravel f
SRAINED S retained sieve	No. 4 sieve	GRAVEL		Fines clossify as ML or MH	GM	Silty gravel f.g.h
		FINES A	Nore than les ^c	Fines classify as CL or CH	GC	Clayey grovel f,g,h
% rel	SANDS	CLEAN		C _u <u>> 6</u> and l <u><</u> C _c ≤3 ^e	sw	Well-graded sand
20 %	50 % or more of coarse	2000 1,1011 5 70	Cu < 6 and/or (> Cc > 3 e	SP	Poorly graded sond i	
ore than	fraction passes No. 4 sieve	SANDS WITH FINES More than 12 %	Fines classify as ML or MH	SM	Silty sand g,h,f	
Ē		finesd		Fines classify as CL or CH	sc	Clayey sand g,h,f
200	SILTS & CLAYS Liquid limit less than 50%			>7 and plats an or obove "A" line j	CL	Lean clay kil,m
No. 20		inorganic PI <	PI~	4 or plots below "A" line j	M L.	Silt k,l,m
possed the sieve		Organic	<u>Liqui</u> Liqui	d limit — oven dried	OL	Organic clay k,1,m,n Organic silt k,1,m,o
	SILTS & CLAYS	Inorganic	P T p!	ots on or obove "A" line	c T	Fot cloy ^{k,l,m}
% ar mare	Liquid limit 50 % or more	1 - 1		ots below "A" line	мн	Elastic silt ^k ,(,m
20		Organic	<u>Liqui</u> Liqui	d limit−oven dried d limit−not dried <0.75	он	Organic clay k ₁ l,m,p Organic silt k,1,m,q
ghly c	organic soils	Primarily	organic matt	er,dark in color, and organic odor	PT	Peat

), If Atterberg Limits plot in hatched area, soil is a CL-ML, silty clay.

k. If soil contains is to 29 % plus No. 200, add "with sand" or "with gravel" whichever is predominant.

l. If soil contains ≥ 30 % plus No. 200, predominantly sand, add "sandy" to group name.

m. if soil contains ≥ 30 % plus No. 200, predominantly gravel, add "gravelly" to group name.

n. PI ≥ 4 and plots on or above "A" line.

p. PI plots on or above "A" line.

q. PI plots below "A" line.

q. PI plots below "A" line.

TESTING SERVICE CORPORATION

LEGEND FOR BORING LOGS

FILL

TOPSOIL

PEAT

GRAVEL

SAND

SILT

CLAY

DOLOMITE

SAMPLE TYPE:

SS = Split Spoon

ST = Thin-Walled Tube

A = Auger

FIELD AND LABORATORY TEST DATA:

V = Standard Penetration Resistance in Blows per Foot

Wc = In-Situ Water Content

Qu = Unconfined Compressive Strength in Tons per Square Foot

* Pocket Penetrometer Measurement; Maximum Reading = 4.5 tsf

yD = Dry Unit Weight in Pounds per Cubic Foot

WATER LEVELS:

 \mathbf{V}

While Drilling

V

End of Boring

¥

24 Hours

SOIL DESCRIPTION:

3	M	٨	т	c	D	ı	Λ	1
- 1	V	м	. 1	ᆮ	n	ŧ,	-	L

BOULDER

COBBLE

Coarse GRAVEL Small GRAVEL Coarse SAND

Medium SAND Fine SAND

SILT and CLAY

PARTICLE SIZE RANGE

Over 12 inches

12 inches to 3 inches

3 inches to ¾ inch

34 inch to No. 4 Sieve

No. 4 Sieve to No. 10 Sieve

No. 10 Sieve to No. 40 Sieve

No. 40 Sieve to No. 200 Sieve

Passing No. 200 Sieve

COHESIVE SOILS

CONSISTENCY	<u> </u>
Very Soft	Less than 0.3
Soft	0.3 to 0.6
Stiff	0.6 to 1.0
Tough	1.0 to 2.0
Very Tough	2.0 to 4.0
Hard	4.0 and over

COHESIONLESS SOILS

RELATIVE DENSITY	<u> N</u>
Very Loose	0 - 4
Loose	4 - 10
Firm	10 - 30
Dense	30 - 50
Very Dense	50 and over

MODIFYING TERM

PERCENT BY WEIGHT

Trace	1 - 10
Little	10 - 20
Some	20 - 35

PROJECT Nickels Property, Illinois Route 47 & Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois CLIENT BORING 701 DATE STARTED DATE COMPLETED 11-8-04 JOB L-61,021 **ELEVATIONS** WATER LEVEL OBSERVATIONS GROUND SURFACE 698.7 WHILE DRILLING 8.5 ' END OF BORING 683.7 8,0 ' AT END OF BORING 24 HOURS SAMPLE γ_{DRY} DEPTH ELEV. WC Ν Qu SOIL DESCRIPTIONS NO. TYPE Black clayey TOPSOIL (OL) 1.0 697.7 SS 3.5* 12 25.1 Very tough brown and gray silty CLAY, trace to little sand, moist (CL) 3.0 695.7 7 SS Loose gray SAND, trace silt, moist (SP-SM) 693.2 5.5 SS 5 ∇ SS 13 10 Loose to firm gray SAND, trace gravel, moist to saturated (SP) SS 14 SS 11 15 End of Boring at 15.0' * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 25 Division lines between deposits represent approximate boundaries between soil types DRILL RIG NO. 256 in-situ, the transition may be gradual

FEET

SURFACE IN

DISTANCE BELOW

61021.GPJ TSC_ALL.GDT 11/29/04

PROJECT Nickels Property, Illinois Route 47 & Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois CLIENT **BORING** 711 DATE STARTED 11-8-04 11-8-04 DATE COMPLETED **ELEVATIONS** WATER LEVEL OBSERVATIONS **GROUND SURFACE** 701.8 ▼ WHILE DRILLING 10.5' 10.0 ' END OF BORING 686.8 AT END OF BORING BALL ON ECOVERY 24 HOURS WC $\gamma_{\text{DRY}}|_{\text{DEPTH}}|_{\text{ELEV}}$ Ν Qu SOIL DESCRIPTIONS Black clayey TOPSOIL (OL) 1.0 700.8 SS 10 24.8 2.75* Very tough brown silty CLAY, trace to little sand, moist (CL) 3.0 698.8 Loose brown clayey SAND, trace gravel, moist SS 8 14.3 (SC) 5,5 696.3 SS 9 Loose to firm brown SAND, trace gravel, moist to very moist (SP) SS 12 10 10.5 691.3 SS 15 Firm brown SAND and GRAVEL, saturated (SP/GP) SS 18 15 End of Boring at 15.0' * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 25 Division lines between deposits represent approximate boundaries between soil types:

DRILL RIG NO. 256

FEET

SURFACE IN

DISTANCE BELOW

81021.GPJ TSC_ALL.GDT 11/29/04

m-situ, the transition may be gradual,

	PROJECT	Nic	kels P	ropei	ty, Illi	nois R	toute 4	7 & Me	rrill Ro	ad, Sugar Grove, Illinois
	CLIENT	Cro	wn Co	omme	unity l	Develo	pmen	t, Auror	a, Illino	ois LSC
	BORING	712	2		DATE	E STAR	TED	11-8-0	14	DATE COMPLETED 11-8-04 JOB L-61,021
	GROUND S	פו וסב		704	ATION: 1-7	S				WATER LEVEL OBSERVATIONS ▼ WHILE DRILLING Dry
	END OF BO		_	689						✓ AT END OF BORING Dry
	H H H		,							▼ 24 HOURS
	LENGTH RECOVERY	<u> </u>	IPLE TYPE	N	wc	Qu	γ_{DRY}	DEPTH	ELEV.	SOIL DESCRIPTIONS
0								4.0	7007	Black clayey TOPSOIL (OL)
-		1	SS	7	25.6	1.42 1.5*		1.0	703.7	Tough brown silty CLAY, trace to little sand, very moist (CL)
-								3.0	701.7	
5 -		2	SS	10	12.3	4.5+*				Hard brown sandy CLAY, trace gravel, occasional sand seams, very moist (CL-ML)
_			,					5.5	699.2	
-	_	3	SS	10		-				Loose to firm brown SAND, moist (SP)
-								8.0	696.7	
10-		4	ss	30						Firm to dense brown SAND and GRAVEL, occasional Cobbles and Boulders, moist (SP/GP)
								10.5	694.2	
		5	SS	12	11.6	1.95 2.0*				Tough to very tough brown sandy CLAY, trace gravel, moist (CL-ML)
;								13.0	691.7	
15 –		6	ss	6	10.8	0.5*				Soft brown sandy CLAY, trace gravel, very moist (CL-ML)
13										End of Boring at 15.0'
										* Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer.
20 -										
	-									
				-						
25 -				_L				posits repri between so		1

DRILL RIG NO. 256

DISTANCE BELOW SURFACE IN FEET

TSC 61021 GPJ TSC_ALL.GDT 11/29/04

in-situ, the transition may be gradual

	PROJECT	Sou	uth Nic	ckels	Prop	erty, M	errill F	Road, S	ugar Gi	rove, Illinois
	CLIENT	Cro	wn C	ommı	unity	Develo	pmen	t, Auror	a, Illino	ois LSC
	BORING	80	1		DAT	E STAR	TED _	10-27-	04	DATE COMPLETED 10-27-04 JOB L-61,021A
	GROUND	SHRE	FACE	ELEV.	ATION R O	S				WATER LEVEL OBSERVATIONS ▼ WHILE DRILLING 5.5 '
	END OF B			678						
	r R									▼ 24 HOURS
	LENGTE	SAN	MPLE TYPE	N	wc	Qu	γ _{DRY}	DEPTH	ELEV.	SOIL DESCRIPTIONS
0										Black clayey TOPSOIL (OL)
-		1	SS	6	21.0	1.75 2.0*		1.1	691.9	Tough to very tough brown and gray very silty CLAY, little sand, occasional silt seams, moist (CL-ML)
-								3.0	690.0	, , ,
5 -		2	SS	1 0	14.3					Loose to firm gray silty SAND, trace gravel, moist to very moist (SM)
								5.5	687.5	V
		3	SS	10	13.1					Loose to firm gray SAND, trace gravel, trace silt, saturated (SP-SM)
		4	SS	17						
10 –	\bot \triangle									
, -								10.5	682.5	
		5	SS	17						Firm gray SAND and GRAVEL, saturated (SP/GP)
								13.0	680.0	
15-		6	ss	11	9.9	3.25*				Very tough gray sandy CLAY, trace to little gravel, moist (CL-ML)
										End of Boring at 15.0'
					And the state of t					* Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer.
						ĺ				
	-									
20 –	-									·
	-									·
25 - DRILI	_ RIG NO.	256	4		approx	imate bou	ındaries t	posits repre etween soi be gradual		

ISC 61021A.GPJ TSC_ALL.GDT 11/29/04

DISTANCE BELOW SURFACE IN FEET

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois CLIENT Crown Community Development, Aurora, Illinois 802 **BORING** DATE STARTED 10-27-04 DATE COMPLETED 10-27-04 JOB L-61,021A **ELEVATIONS** WATER LEVEL OBSERVATIONS 700.3 $oldsymbol{
abla}$ WHILE DRILLING 5.5 ' **GROUND SURFACE** END OF BORING 685.3 AT END OF BORING 24 HOURS LENGTH RECOVERY SAMPLE γ_{DRY} DEPTH ELEV. WC Ν Qu SOIL DESCRIPTIONS NO. TYPE Black clayey TOPSOIL (OL) 1.1 699.2 Tough to very tough brown and gray silty SS 5 27.8 2.0* CLAY, trace sand, trace organic, moist (CL/CH) 3.0 697.3 SS 12 ∇ SS 22 Firm gray SAND and GRAVEL, occasional Cobbles and Boulders, moist to saturated SS 20 (SP/GP) 10 SS 19 SS 22 15 End of Boring at 15.0' Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 25 Division lines between deposits represent approximate boundaries between soil types: DRILL RIG NO. 256 in-situ, the transition may be gradual

FEET

SURFACE

BELOW

DISTANCE

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois CLIENT 803 **BORING** DATE STARTED 10-22-04 DATE COMPLETED 10-22-04 L-61,021A **ELEVATIONS** WATER LEVEL OBSERVATIONS **GROUND SURFACE** 715.1 WHILE DRILLING Dry END OF BORING 700.1 AT END OF BORING 24 HOURS SAMPLE $\gamma_{\mathsf{DRY}}|_{\mathsf{DEPTH}}|_{\mathsf{ELEV}}$ WC Ν Qu SOIL DESCRIPTIONS NO. TYPE Dark brown clayey TOPSOIL (OL) 714.0 1.1 SS 5 14.0 2.75* Very tough brown silty CLAY, little sand and gravel, moist (CL) 3.0 712.1 SS 14 SS 15 Firm brown SAND, trace gravel, trace to little SS silt, moist (SP-SM) 17 10 SS 18 SS 20 15 End of Boring at 15.0' * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20-25 Division lines between deposits represent approximate boundaries between soil types;

282 DRILL RIG NO

FERT

SURFACE IN

BELOW

DISTANCE

61021A.GPJ TSC_ALL.GDT 11/29/04

in-situ, the transition may be gradual.

	PROJE	СТ	Sou	ith Ni	ckels	Prop	erty, N	lerrill F	Road, S	ugar G	rove, Illinois
	CLIEN	Т	Cro	wn C	omm	unity	Develo	pmen	t, Auroi	ra, Illino	ois LSC
	BORIN	G	80	4		DAT	E STAF	RTED	10-22-	04	DATE COMPLETED 10-22-04 JOB L-61,021A
	GROU:	NID (SUIDE	ACE	71	ATION	S				WATER LEVEL OBSERVATIONS ▼ WHILE DRILLING Dry
	END 0			_	696						✓ AT END OF BORING Dry
				_							▼ 24 HOURS
	7 to 12 to 1	RECOVE	SAN	IPLE TYPE	N	wc	Qu	γ _{DRY}	DEPTH	ELEV.	SOIL DESCRIPTIONS
0 —				,,,,							Black clayey TOPSOIL (OL)
-			1	SS	12	18.9	4.5*		1.0	710.7	Hard brown silty CLAY, little sand and gravel, moist (CL)
-									3.0	708.7	
5-			2	SS	14	10.3					
-		\langle	3	SS	16	11.0			· · · · · · · · · · · · · · · · · · ·		
-											Firm brown silty SAND, trace gravel, moist
10-		X	4	SS	17	12.9					(SM)
-			5	SS	20	17.4					
			6	SS	25	20.2					
15-	P : 4										End of Boring at 15.0'
											* Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer.
20-											
-											
	-										
25 –						Divisio	n lines be	tween dep	osils repre	esent	6
DRILL	. RIG NO) :	282						elween soi		

rsc 61021A,GPJ TSC_ALL.GDT 11/29/04

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois CLIENT 805 **BORING** DATE STARTED 10-27-04 10-27-04 DATE COMPLETED L-61,021A JOB **ELEVATIONS** WATER LEVEL OBSERVATIONS GROUND SURFACE _ 707.1 f V WHILE DRILLING 10.5 ' abla AT END OF BORING END OF BORING 692.1 24 HOURS SAMPLE YDRY DEPTH ELEV. N WC Qu SOIL DESCRIPTIONS NO. TYPE Black clayey TOPSOIL, very moist (OL) SS 26.0 6 704.1 3.0 Stiff to tough brown and gray silty CLAY, little SS 6 1.0* 15.9 sand and gravel, very moist (CL) 5.5 701.6 SS 7 15.5 Loose to firm brown silty SAND, trace gravel, moist to very moist (SM) SS 12 11.7 696.6 10.5 SS 20 Firm brown SAND, saturated (SP) 13.0 694.1 Firm gray SAND, saturated (SP) SS 14 15 End of Boring at 15.0' Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 25 Division lines between deposits represent approximate boundaries between soil types: DRILL RIG NO. 256 in-situ, the transition may be gradual

FEET

SURFACE IN

BELOW

DISTANCE

	PROJECT	Sou	ıth Nic	kels	Prop	erty, N	lerrill F	Road, S	ugar G	rove, Illinois
	CLIENT	Cro	wn Co	ommı	ınity	Develo	pmen	t, Auror	a, Illino	ois LEST
	BORING	80	6		DAT	E STAR	TED _	10-27-	04	DATE COMPLETED 10-27-04 JOB L-61,021A
	GROUND	ei ibt		ELEV/	ATION	S				WATER LEVEL OBSERVATIONS ▼ WHILE DRILLING 8.0 '
	END OF B		-	690						✓ AT END OF BORING 8.0 '
	K K K									▼ 24 HOURS
0	LENGTI	SAN	MPLE TYPE	N	wc	Qu	γ _{DRY}	DEPTH	ELEV.	SOIL DESCRIPTIONS
0										Black clayey TOPSOIL (OL)
		1	ss	10	26.5	2.15 2.0*		1.1	704.4	Very tough brown and gray silty CLAY, trace to little sand, trace organic, moist (CL)
								3.0	702.5	
5		2	SS	6	16.8		3		1100	
		3	SS	13						Loose to firm brown silty SAND, trace gravel, moist to wet (SP-SM)
										▼
10-		4	SS	13						
10								10.5	695.0	
		5	ss	10	22.4	ļ.				
				Ì.						Loose to firm gray clayey SILT, trace to little sand, wet (ML)
4.5		6	SS	20	17.6					
15 -										End of Boring at 15.0'
										 * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer.
	-									
	-									
20-										
	_									
				ŀ						
25 -					Divisio	n lines h	physen de	posits repr	eseni	
	L RIG NO	256			approx	kimate bo	undar es 1	pesiis repr petween so be gradua	il types:	

TSC 61021A GPJ TSC_ALL.GDT 11/29/04

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois CLIENT BORING 807 10-27-04 DATE STARTED DATE COMPLETED 10-27-04 JOB L-61,021A **ELEVATIONS** WATER LEVEL OBSERVATIONS 705.5 **GROUND SURFACE** $oldsymbol{
abla}$ WHILE DRILLING 8.0' END OF BORING 690.5 6.0' AT END OF BORING NO. TYPE 24 HOURS γ_{DRY} DEPTH ELEV. WC Qu Ν SOIL DESCRIPTIONS Black clayey TOPSOIL, moist (OL) 1.5 704.0 1.62 1.5* SS 10 24.2 Tough brown and gray silty CLAY, trace to little sand, moist (CL) 3.0 702.5 Firm brown clayey SAND, trace gravel, moist SS 14 14.8 (SC) 5.5 700.0 $\overline{\nabla}$ SS 11 ▼ Firm brown SAND, trace gravel, trace to little silt, moist to saturated (SP-SM) SS 14 10 10.5 695.0 SS 7 Loose to firm gray SAND, trace gravel, saturated (SP) SS 11 15 End of Boring at 15.0' * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 25 Division lines between deposits represent approximate boundaries between soil types: DRILL RIG NO in-situ, the transition may be gradual

FEET

SURFACE IN

DISTANCE BELOW

		_				-				rove, Illinois
	CLIENT			omm				t, Auroi		
	BORING	80	08		_ DAT /ATION		TED	10-28-	04	DATE COMPLETED 10-28-04 JOB L-61,021A
	GROUNE	SUF	RFACE		5.4					WATER LEVEL OBSERVATIONS ▼ WHILE DRILLING 8.0 '
	END OF		NG .	69	0.4			•		AT END OF BORING 7.0 '
	H (건 기 > ㅡㅡ								▼ 24 HOURS
0 –	7. (MPLE TYPE	N	wc	Qu	γ_{DRY}	DEPTH	ELEV.	SOIL DESCRIPTIONS
_								1.0	704.4	Black clayey TOPSOIL (OL)
		1	SS	7	23.5	2.5*		1.0	704.4	Very tough brown and gray silty CLAY, trace to little sand, moist (CL)
								3.0	702.4	
5-		2	ss	9	21.3					Loose brown clayey SAND, trace gravel, moist (SC)
								5.5	699.9	
		3	SS	9	15.9	1.25*	marantar de partir de la constanta de la const			Tough gray silty CLAY, little sand and gravel, very moist (CL)
								8.0	697.4	<u> </u>
10-		4	SS	16						Firm gray SAND, saturated (SP)
.0								10.5	694.9	
		5	SS	6	21.3	0.75*				Stiff gray silty CLAY, little sand, occasional silt seams, very moist (CL)
								13.0	692.4	
15-		6	ss	12	12.5	1.42 1.75*				Tough gray sandy CLAY, trace gravel, moist (CL-ML)
13										End of Boring at 15.0'
										Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer.
										,
20-	_									
25-		256	_l	1				osits repres etween soil		

TSC 61021A.GPJ TSC_ALL.GDT 11/29/04

	PROJECT	Sou	ıth Nic	ckels	Prope	erty, M	errill F	Road, S	ugar Gi	rove, Illinois	
	CLIENT	Cro	wn Co	ommı	ınity l	Develo	pmen	t, Auror	a, Illino	ois	
	BORING	809	9		DAT	E STAR	TED _	10-28-	04	DATE COMPLETED 10-28-04	JOB L-61,021A
					ATION	S					VEL OBSERVATIONS
	GROUND END OF B		_	705 690						▼ WHILE DRILLING AT END OF BORING	8.0 ' 7.0 '
			_	030	7.0					▼ 24 HOURS	1.0
	TH VER		r					1			
0 —	LENGTH	SAN NO.	IPLE TYPE	N	wc	Qu	Υ _{DRY}	DEPTH	ELEV.	SOIL DESCRIPTION	NS
O								0.8	705.0	Black clayey TOPSOIL (OL)	
-		Α			25.7	1.42 2.0*		1.3	704.5	Tough to very tough dark brown CLAY, trace to little sand, trace	and gray silty organic, moist
-		1 B	SS	7	22.8	1.5*				\(CL) Tough brown and gray silty CL/	AY little sand
					12.0	1.0		3.0	702.8	moist to very moist (CL)	Tr, mac darrar
								0.0	1 02		
-		2	ss	4	19.9					Loose brown and gray silty SAN gravel, moist (SM)	ND, trace to little
5 —										grator, motor (om)	
_								5.5	700.3		
	$\parallel \parallel $	3	SS	7	25.3					$ \nabla$	
		Ĭ		,	20.0						
-									ļ	lacksquare	
,			<u> </u>							Loose to firm brown and gray c	layey SILT,
		4	SS	5	21.0					trace to little sand, occasional of moist to wet (ML)	lay seams,
10 –										,	
	-										
	_	5	SS	10	21.2						
•		_						13.0	692.8		
	-	6	SS	14						Firm gray SAND, trace gravel,	saturated (SP)
15-	·::/\				ļ						
										End of Boring at 15.0'	
										* Approximate unconfined con	npressive
	-									strength based on measurem calibrated pocket penetrome	ients with a ter.
										, ,	
20 -								İ			
	_										
	-										
25											
	RIG NO.	256			approx	imate bou	indaries b	osils repre	types:	•	
					ni-SIU.	me gans	each may	be gradual.			

FSC 61021A.GPJ TSC_ALL.GDT 11/29/04

	BORI	NG	81	1		DAT	E STAR	TED _	10-25-	04	DATE COMPLETED 10-25-04 JOB L-61,02
					ELEV	- 'ATION	S				WATER LEVEL OBSERVATION
	GRO			_		1.8					▼ WHILE DRILLING 3.0 '
	END	OF B	ORIN	IG _	670	6.8					AT END OF BORING 5.0 '
		H ERY									▼ 24 HOURS
		NGT	SAN	MPLE TYPE	N	wc	Qu	Yppy	DEPTH	ELEV.	CON PECCEPITIONS
0 –		크문	NO.	TYPE		VVC	Qu	PORT	DEPTH	ELEV.	SOIL DESCRIPTIONS
J											Plack dayou TORSOIL maint (OL)
			1	SS	7	29.8					Black clayey TOPSOIL, moist (OL)
									3.0	688.8	<u> </u>
		$\langle \rangle $	2	ss	4	11.0					
5 -		7					1.5*				∇
		$\left\{ \right\}$	3	ss	8	12.5	1.0*				
											Touch to stiff a control of the cont
	-///	\mathbb{N}	4	ss	6	13.1	1.5*				Tough to stiff gray sandy CLAY, trace gravel, occasional Cobbles and Boulders, moist to ver
10 –		\triangle			Ŭ		1.0				moist (CL-ML)
		\bigvee	5	SS	n	40.0	4.5*				
			5	00	8	12.2	1.5*	, and the same			
								THE REAL PROPERTY AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE P			
	-///			6.5		,	a ·				
1 &		$\mathbb{N}^{\blacksquare}$	6	SS	11	13.0	0.75*				
15-											End of Boring at 15.0'
											* Approximate unconfined compressive
	\dashv										strength based on measurements with a calibrated pocket penetrometer.
	4										
_											
20 –											
	-										
	_			,							
	-										

TSC 61021A GPJ TSC_ALL.GDT 11/29/04

	BOR	ING	8	12		DAT	E STAR	TED	10-25-	04	DATE COMPLETED 10-25-04 JOB L-	61,0
	DON	.,,0	_	· 	El F\	_ /ATION					WATER LEVEL OBSERV	
	GRO	UND	SU	RFACE		4.9					▼ WHILE DRILLING 3.0 '	.,
	END	OF I	BOR	ING	67	9.9					√ AT END OF BORING 1.5 '	
		> D	4								▼ 24 HOURS	
		GTH	3 ? [s	AMPLE				T ₀ ,				
Λ		LENGT	g No	D. TYPI	N E	wc	Qu	DRY	DEPTH	ELEV.	SOIL DESCRIPTIONS	
0 —									0.0	CO 4 4	Black clayey TOPSOIL (OL)	
-									8,0	694.1	abla Stiff to tough brown and gray silty CLAY, tr	are
			1	SS	4	32.2	1.0*	ŀ			sand, occasional sand seams, little organic	цос С,
									3.0	691.9	very moist (CL/CH) ▼	
•									3.0	091.9		
•			2	s	10							
5 –									***************************************			
		\bigvee		s ss	19							
•											Logge to firm gray SAND and CDAYEL	
	-	-									Loose to firm gray SAND and GRAVEL, occasional Cobbles and Boulders, saturate	ed
											(SP/GP)	
		$\left \right $	4	s ss	22							
10 –											·	
			4	5 ss	20							
		7							13.0	681.9		
	-///			s ss	7	12.0	0.75*				Stiff gray sandy CLAY, trace gravel, occas sand seams, very moist (CL-ML)	iona
15-											,	
=							•				End of Boring at 15.0'	
											* Approximate unconfined compressive	
	-										strength based on measurements with a calibrated pocket penetrometer.	l
	-											
20 –												
	1											
	_		1									

TSC 61021A GPJ TSC_ALL.GDT 11/29/04

in-situ, the transition may be gradual.

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois CLIENT **BORING** 813 DATE STARTED 10-25-04 DATE COMPLETED 10-25-04 **ELEVATIONS** WATER LEVEL OBSERVATIONS GROUND SURFACE 707.4 WHILE DRILLING 8.0' END OF BORING 692.4 10.0 AT END OF BORING RECOVERY
ALL
ON TABLE

ACOVERY

ACOVERY

ACOVERY 24 HOURS γ_{DRY} DEPTH ELEV. Ν WC Qu SOIL DESCRIPTIONS Black clayey TOPSOIL (OL) 0.8 706.6 Very tough brown silty CLAY, trace to little SS 25.2 2.25* sand, moist (CL) 3.0 704.4 Loose to firm brown silty SAND, trace gravel, SS 10 moist (SM) 5.5 701.9 SS 16 \mathbf{V} THEL SS 9 BELOW SURFACE IN 10 Loose to firm brown SAND, trace gravel, trace silt, moist to saturated (SP-SM) SS 10 DISTANCE SS 12 End of Boring at 15.0' * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 61021A.GPJ TSC_ALL.GDT 11/29/04 25 Division lines between deposits represent approximate boundaries between soil types; DRILL RIG NO. 256 in-situ, the transdion may be gradual.

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois CLIENT L-61,021A 10-22-04 814 10-22-04 DATE COMPLETED DATE STARTED **BORING** WATER LEVEL OBSERVATIONS **ELEVATIONS** WHILE DRILLING Dry GROUND SURFACE 723.8 708.8 ∇ AT END OF BORING END OF BORING 24 HOURS SAMPLE YDRY DEPTH ELEV. SOIL DESCRIPTIONS WC Qu NO. TYPE Black clayey TOPSOIL (OL) 722.7 1.1 17.2 4.5+* Hard dark brown silty CLAY, little sand and SS 10 gravel, moist (CL) 3.0 720.8 SS 11.9 Firm brown clayey SAND, trace gravel, moist 10.9 SS 15 (SC) SS 11.5 18 10 10.5 713.3 SS 22 Firm brown SAND, trace gravel, trace silt, moist (SP-SM) SS 18 15 End of Boring at 15.0' Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 Division lines between deposits represent approximate boundaries between soil types: DRILL RIG NO. 282 in-situ, the transition may be gradual

SURFACE IN

DISTANCE

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois 815 **BORING** DATE STARTED 10-28-04 DATE COMPLETED L-61,021A 10-28-04 **ELEVATIONS** WATER LEVEL OBSERVATIONS GROUND SURFACE 722.2 WHILE DRILLING Dry END OF BORING 707.2 AT END OF BORING Dry RECOVERY
NO. TYPE 24 HOURS WC YDRY DEPTH ELEV. Ν Qu SOIL DESCRIPTIONS Black clayey TOPSOIL (OL) 8,0 721.4 SS 25.2 1.5* Tough dark brown silty CLAY, trace to little 13 sand, trace organic, moist to very moist (CL) 3.0 719.2 SS 9 Loose to firm brown SAND, trace gravel, trace silt, moist (SP-SM) SS 11 8.0 714.2 SS 16 10 Firm brown silty SAND, trace gravel, moist SS 19 (SM) SS 18 End of Boring at 15.0' * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 Division lines between deposits represent

DRILL RIG NO

FEET

SURFACE IN

BELOW

DISTANCE

61021A.GPJ TSC_ALL.GDT 11/29/04

approximate boundaries between soil types in-situ, the transition may be gradual,

CL	ENT		JVVII C	OIIIIII	unity	Deveic	phuien	t, Auroi	ra, Illino	
ВО	RING	81	6		-	E STAR	TED	10-28-	04	DATE COMPLETED 10-28-04 JOB L-61,021
GR	.OUND	SURI	FACE		'ATION 1.0	S				WATER LEVEL OBSERVATIONS ▼ WHILE DRILLING 13.0 '
	D OF B		_		6.0					✓ AT END OF BORING 12.0 '
	RY									▼ 24 HOURS
	LENGTH RECOVE	SAI NO.	MPLE TYPE	N	wc	Qu	γ _{DRY}	DEPTH	ELEV.	SOIL DESCRIPTIONS
								1.0	710.0	Black clayey TOPSOIL (OL)
-		1	SS	10	25.4	2.25*				Very tough brown silty CLAY, trace to little sand, moist (CL)
								3.0	708.0	
5—	X	2	SS	11	11.8			and the second s		Firm brown clayey SILT, trace to little sand, moist (ML)
- // - //							-	5.5	705.5	
		3	ss	11	11.3	3.0*				Very tough brown sandy CLAY, trace gravel, moist (CL-ML)
							and the state of t	8.0	703.0	
		4	SS	15						
0								BASSAC AND		
_		5	SS	20						Firm brown SAND, trace gravel, trace silt, moist \bigvee to saturated (SP-SM)
			The state of the s							$oldsymbol{ abla}$
	\bigvee	6	SS	13						
5	/\									End of Boring at 15.0'
										* Approximate unconfined compressive
										strength based on measurements with a calibrated pocket penetrometer.
0—										
-										
-										
-										
\dashv										

escentification -

TSC 61021A.GPJ TSC_ALL.GDT 11/29/04

	BOR	ING	8	317	,		DATE	E STAR	TED	10-28-	04	DATE COMPLETED 10-28-04 JOB L-61,
			_			ELEV	ATIONS					WATER LEVEL OBSERVAT
	GRO	UNE) St	JRF/	ACE _	705	5.9					▼ WHILE DRILLING 13.5 '
	END	OF				690).9					
		H :	년 년									▼ 24 HOURS
		NGTI		SAM	PLE TYPE	N	wc	Qu	γ _{DRY}	DEPTH	ELEV.	SOIL DESCRIPTIONS
0 –	- - - - - -	15 15	\ \ \	10.	TYPE		,,,		-			
										0.8	705.1	Black clayey TOPSOIL (OL)
				1	SS	5	25,1	1.75*		3		Tough brown and gray silty CLAY, trace to litt sand, trace organic, moist (CL)
	+									3.0	702.9	
	-	$ \cdot $		2	SS	6	15.5					Loose brown and gray silty SAND, trace to little gravel, occasional clay pieces, moist (SM)
5 -												graver, occasional clay pieces, moist (SIVI)
	: 5				•					5.5	700.4	
		M		3	SS	10		ļ			An and a second	
	-	\mathbb{N}		٦	33	10						
	-											
				Ì								Loose to firm brown silty SAND, trace gravel,
		$ \rangle$		4	SS	17						moist (SM)
0-	-											
	-											
	1	$\ \cdot\ $		5	SS	15	11.1					
		1								12.0	692.9	∇
										13.0	092.8	V
	-			6	SS	17						Firm gray SAND, trace gravel, saturated (SF
15-		:.: /										End of Boring at 15.0'
	-											* Approximate unconfined compressive
												strength based on measurements with a calibrated pocket penetrometer.
	7											
20												
	_											
				•								
	7											
	-]							

ISC 61021A.GPJ TSC_ALL.GDT 11/29/04

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois CLIENT **BORING** 818 10-28-04 DATE STARTED DATE COMPLETED 10-28-04 L-61,021A **ELEVATIONS** WATER LEVEL OBSERVATIONS WHILE DRILLING **GROUND SURFACE** 705.0 13.0 ' END OF BORING 690.0 13.0' AT END OF BORING 24 HOURS SAMPLE γ_{DRY} Depth | ELEV. WC Ν Qu SOIL DESCRIPTIONS NO. TYPE Black clayey TOPSOIL (OL) 1.0 704.0 3.25* SS 12 17.7 Very tough to tough brown and black silty CLÁY, little sand and gravel, moist (CL) 3.0 702.0 Soft dark brown and gray silty CLAY, trace to 23.6 SS 4 0.50 little sand, very moist (CL) 0.5* 5.5 699,5 Firm gray clayey SILT, trace to little sand, moist SS 15.0 15 (ML) 697.0 8.0 Stiff to tough gray sandy CLAY, trace gravel, SS 11.7 1.0* 9 very moist (CL-ML) 694.5 10.5 5 SS 13 15.7 Firm gray SAND, trace gravel, occasional clay pieces, moist to saturated (SP) SS 11 15 End of Boring at 15.0' * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 25 Division lines between deposits represent approximate boundaries between soil types. DRILL RIG NO 256 in-situ, the transition may be gradual

PEET

SURFACE

BELOW

DISTANCE

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois CLIENT **BORING** 819 DATE STARTED 10-28-04 DATE COMPLETED 10-28-04 L-61,021A **ELEVATIONS** WATER LEVEL OBSERVATIONS f V WHILE DRILLING **GROUND SURFACE** 706.1 8.0 ' END OF BORING 691.1 6.0 ' AT END OF BORING 24 HOURS LENGTH RECOVERS SAMPLE $\gamma_{\mathsf{DRY}}|_{\mathsf{DEPTH}}|_{\mathsf{ELEV}}$ WC N Qu SOIL DESCRIPTIONS NO. TYPE Black clayey TOPSOIL (OL) 1.0 705.1 SS 8 25.3 1.29 Tough brown and gray silty CLAY, trace to little 1.25* sand, very moist (CL) 3.0 703.1 Tough brown silty CLAY, little sand and gravel, SS 4 17.9 1.5* moist to very moist (CL) 700.6 5.5 ∇ Hard brown silty CLAY, little sand and gravel, SS 12 17.0 4.5* occasional to numerous silt seams, moist (CL) 698.1 8.0 SS 14 14.8 10 Firm to loose gray clayey SAND, trace gravel, wet (SC) SS 5 18.5 13.0 693.1 Loose gray sandy SILT, trace gravel, wet (ML) SS 5 15 End of Boring at 15.0' * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 25 Division lines between deposits represent approximate boundaries between soil types DRILL RIG NO. in-situ, the transition may be gradual

FEET

SURFACE

BELOW

DISTANCE

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois CLIENT 820 **BORING** DATE STARTED 10-28-04 DATE COMPLETED 10-28-04 **ELEVATIONS** WATER LEVEL OBSERVATIONS **GROUND SURFACE** 699.2 f V WHILE DRILLING 8.0 ' END OF BORING 684.2 AT END OF BORING 24 HOURS LENGTH RECOVERY SAMPLE PDRY DEPTH ELEV. WC SOIL DESCRIPTIONS NO. TYPE Black clayey TOPSOIL, moist (OL) SS 7 26.6 3.0 696.2 Tough brown and gray silty CLAY, trace to little SS 5 25.9 1.5* sand, moist to very moist (CL) 5.5 693.7 Very tough brown and gray silty CLAY, trace to SS 4 20.9 2.25* little sand and gravel, moist (CL) 8.0 691.2 SS 14 10 Firm brown and gray SAND, trace gravel, trace silt, saturated (SP-SM) SS 16 13.0 686.2 Firm gray SAND, saturated (SP) SS 16 15 End of Boring at 15.0' * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 25 Division lines between deposits represent approximate boundaries between soil types. DRILL RIG NO. 256 in-situ, the transition may be gradual

FEET

SURFACE

BELOW

DISTANCE

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois CLIENT 821 **BORING** DATE STARTED 10-29-04 DATE COMPLETED 10-29-04 **ELEVATIONS** WATER LEVEL OBSERVATIONS **GROUND SURFACE** 708.1 $oldsymbol{
abla}$ WHILE DRILLING 8.0 ' END OF BORING 693.1 13.0 ' AT END OF BORING 24 HOURS LENGTH RECOVER) SAMPLE YDRY DEPTH ELEV. WC Qu SOIL DESCRIPTIONS NO. TYPE Black clayey TOPSOIL (OL) 707.1 1.0 SS 10 27.0 3.25* Very tough brown silty CLAY, trace sand, trace organic, moist (CL/CH) 3.0 705.1 SS 12 19.3 4.0* Hard to very tough brown very silty CLAY, trace to little sand, occasional silt seams, moist (CL-ML) SS 12 21.5 2.02 700.1 8.0 SS Firm brown SILT, trace to little sand, wet (ML) 14 20.3 697.6 10.5 SS 12 SS 14 15 End of Boring at 15.0' * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 25 Division lines between deposits represent

DRILL RIG NO. 256

FEET

SURFACE

BELOW

DISTANCE

61021A.GPJ TSC_ALL.GDT 11/29/04

approximate boundaries between soil types. in-situ, the transition may be gradual

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois CLIENT 822 BORING DATE STARTED 10-22-04 DATE COMPLETED 10-22-04 **ELEVATIONS** WATER LEVEL OBSERVATIONS **GROUND SURFACE** 728.2 f V WHILE DRILLING Dry END OF BORING 713.2 AT END OF BORING Dry 24 HOURS RECOVERY
NO. TYPE $\gamma_{ extsf{DRY}}$ | DEPTH | ELEV. WC Qu SOIL DESCRIPTIONS Dark brown clayey TOPSOIL (OL) 1.0 727.2 SS 11 Firm brown silty SAND, trace gravel, moist (SM) 3.0 725.2 SS 15 SS 14 Firm brown SAND, trace gravel, trace to little silt, moist (SP-SM) SS 19 10 SS 24 13.0 715.2 Dense brown sandy SILT, trace gravel, very SS 32 moist (ML) 15 End of Boring at 15.0' 20 .25 Division lines between deposits represent approximate boundaries between soil types. DRILL RIG NO 282 in-situ, the transition may be gradual,

FEET

SURFACE IN

BELOW

DISTANCE

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois CLIENT Crown Community Development, Aurora, Illinois 823 L-61,021A BORING DATE STARTED 10-29-04 DATE COMPLETED 10-29-04 JOB **ELEVATIONS** WATER LEVEL OBSERVATIONS **GROUND SURFACE** 720.8 WHILE DRILLING END OF BORING 705.8 AT END OF BORING 13.0' 24 HOURS LENGTH RECOVERY SAMPLE γ_{DRY} DEPTH ELEV. WC Qu SOIL DESCRIPTIONS NO. TYPE Black clayey TOPSOIL (OL) 1.2 719.6 SS 9 25.5 3.0* Very tough brown silty CLAY, trace to little sand, moist (CL) 3.0 717.8 Hard brown silty CLAY, little sand and gravel, SS 6 14.7 4.25* moist (CL) 715.3 5.5 3 SS 16 SS 20 Firm brown SAND, trace gravel, moist (SP) 10 SS 22 707.8 13.0 Firm brown clayey SAND, trace gravel, wet SS 16 14.1 15 End of Boring at 15.0' * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 25 Division lines between deposits represent

61021A.GPJ TSC_ALL.GDT 11/29/04

FEET

SURFACE

BELOW

DISTANCE

DRILL RIG NO. 256

approximate boundaries between soil types in-situ the transition may be gradual.

	PROJECT	Sou	ıth Nic	ckels	Prope	erty, M	errill F	Road, S	ugar Gi	rove, Illinois
	CLIENT	Cro	wn Co	ommı	unity l	Develo	pmen	t, Auror	a, Illino	ois LSC
	BORING	824	4		DATE	E STAR	TED	10-29-	04	DATE COMPLETED 10-29-04 JOB L-61,021A
	GROUND S END OF BO		ACE _	713 698		5				WATER LEVEL OBSERVATIONS ▼ WHILE DRILLING
0	LENGTH RECOVERY		IPLE TYPE	N	wc	Qu	γ_{DRY}	DEPTH	ELEV.	SOIL DESCRIPTIONS
0-								1.2	712.0	Black clayey TOPSOIL (OL)
_		1	SS	11	20.6	4.5+*				Hard brown silty CLAY, trace to little sand and gravel, moist (CL)
5-		2	ss	16	25.8	1.23 1.0*		3.0	710.2	Tough brown and gray silty CLAY, trace to little sand, very moist (CL)
-							- Saituste	5.5	707.7	
-		3	SS	18	11.5					
10-		4	ss	22	10.2					Firm brown clayey SAND, trace gravel, occasional silt pockets, moist (SC)
		5	SS	23	9.6			48.0	700.0	
		6	SS	24	and the second s			13.0	700.2	Firm brown SAND, trace silt, moist (SP-SM)
15 –	S. T. V. T. V.									End of Boring at 15.0'
							The state of the s			* Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer.
20-										

25-								1		
	RIG NO	256			approx	imate bou	indaries b	posits repre etween soi be gradual	esent il types:	

TSC 61021A.GPJ TSC_ALL.GDT 11/29/04

	PROJEC	T <u>S</u>	outh	Nickel	s Prope	erty, M	lerrill F	Road, S	ugar G	rove, Illinois
	CLIENT	<u>c</u>	rown	Comn	nunity	Develo	pmen	t, Auror	ra, Illino	ois LSC
	BORING	8	25		_ DATI	E STAR	TED _	10-29-	04	DATE COMPLETED 10-29-04 JOB L-61,021A
	GROUNI	ווופ ח	REACE		vation: <mark>)6.3</mark>	S				f V while drilling water level observations 13.0 '
	END OF				36.3					✓ AT END OF BORING 7.0 '
	_ !	R K								▼ 24 HOURS
	LENGTH	S,	AMPLE	: N	wc	Qu	γρον	DEPTH	ELEV.	CON DESCRIPTIONS
0-		Ж И	D. TYF	E	VVC	Qu	, DK	DEFIN	ELEV.	SOIL DESCRIPTIONS
-	Z= Z	1	SS	s 9	25.5		The state of the s			Black clayey TOPSOIL, moist to very moist (OL)
-								3.0	703.3	
5-		2	s s	6	17.5					
-		3	8 88	3	27.6				i i i i i i i i i i i i i i i i i i i	
- - - 10		_	ı ss	3	15.3					
10-								10.5	695.8	
-			5 58	5 5	12.5					Loose gray silty SAND, trace gravel, moist to very moist (SM)
•								13.0	693.3	V
15 –		6	s s	3					***************************************	Very loose gray SAND, saturated (SP)
-	-							15.5	690.8	
-	 	- -	7 S	3 13					į	Firm gray SAND, trace gravel, saturated (SP)
		8	3 S	5 16						
20 –										End of Boring at 20.0'
-	_									
-										
, 25 –										
	. RIG NO.	256	3		approxi	mate bou	ndaries b	oosits repre elween soil be gradual		

TSC 51021A.GPJ TSC_ALL.GDT 11/29/04

	PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois								rove, Illinois	
	CLIENT	Cro	wn Co	mmı	ınity [Develo	pment	, Auror	a, Illino	is LSC
	BORING 826				DATE	E STAR	TED _	11-1-0	14	DATE COMPLETED 11-1-04 JOB L-61,021A
					LEVATIONS					WATER LEVEL OBSERVATIONS
	GROUND :			704 689		 -				W WHILE DRILLING✓ AT END OF BORING13.0 '
		· · · · · ·	_							▼ 24 HOURS
	LENGTH RECOVERY	\vdash	IPLE TYPE	N	wc	Qu	γ_{DRY}	DEPTH	ELEV.	SOIL DESCRIPTIONS
0 		Amen	ss	6	40.1				704.0	Black clayey TOPSOIL, moist (OL)
5—		2	SS	6	30.0	2.0*	3	3.0 5.5		Tough to very tough brown and gray silty CLAY, trace sand, little organic, moist (CL/CH)
-		3	SS	4	32.3	0.50 0.25*		3.3		
10-		4	SS	4	34.3	0.5*	\$			Very soft to soft gray silty CLAY, trace sand, little organic, very moist (CL)
-		5	SS	4	33.9	0.25*		13.0	691.8	▼
- 15 —		6	SS	10	16.5		- Transmitted in the second se			Loose to firm gray SILT and SAND layers, occasional clay seams, wet (ML/SP)
										End of Boring at 15.0' * Approximate unconfined compressive strength based on measurements with a
										calibrated pocket penetrometer.
20-										
05										
25-	DIO NO	250		-,				osits repre etween soi		

DRILL RIG NO. 256

DISTANCE BELOW SURFACE IN FEET

TSC 61021A.GPJ TSC_ALLGDT 11/29/04

in-situ, the transition may be gradual.

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois CLIENT BORING 827 DATE STARTED 11-8-04 11-8-04 DATE COMPLETED **ELEVATIONS** WATER LEVEL OBSERVATIONS 706.7 W WHILE DRILLING **GROUND SURFACE** 8.0 ' 8.0' END OF BORING 686.7 AT END OF BORING 24 HOURS LENGTH RECOVERY SAMPLE γ_{DRY} Depth | ELEV. WC Ν Qu SOIL DESCRIPTIONS NO. TYPE Black clayey TOPSOIL, moist to very moist SS 5 25.3 (OL) 3.0 703.7 Soft brown and gray silty CLAY, trace to little SS 5 25.9 0.57 sand, very moisť (ĆL) 0.5* 5.5 701.2 SS 4 ▼ Loose to firm brown and gray silty SAND, trace gravel, moist to wet (SM) SS 14 10 10.5 696.2 SS 15 Firm to loose gray silty SAND, trace to little gravel, wet (SM) SS 5 11.7 15 15.5 691.2 SS 10 Firm gray SAND, trace gravel, saturated (SP) SS 12 20 End of Boring at 20.0' * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 25 Division lines between deposits represent approximate boundaries between soil types;

DRILL RIG NO. 256

FEET

SURFACE

BELOW

DISTANCE

61021A.GPJ TSC_ALL.GDT 11/29/04

in-situ, the transition may be gradual

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois Crown Community Development, Aurora, Illinois CLIENT 828 BORING DATE STARTED 11-3-04 11-3-04 DATE COMPLETED JOB **ELEVATIONS** WATER LEVEL OBSERVATIONS **GROUND SURFACE** 715.7 11.0 ' ▼ WHILE DRILLING END OF BORING 700.7 AT END OF BORING Dry 24 HOURS LENGTH RECOVER: SAMPLE $\gamma_{\mathsf{DRY}}|_{\mathsf{DEPTH}}$ WC ELEV. SOIL DESCRIPTIONS NO. TYPE Dark brown clayey TOPSOIL, very moist (OL) 28.2 1.5 714.2 SS 8 Tough brown silty CLAY, trace sand, very moist В 27.3 1.25* 3.0 712.7 SS 10 12.3 Loose to firm brown silty SAND, trace gravel, moist (SM) SS 19 11.3 707.7 SS 28 Firm brown SAND, trace gravel, moist (SP) 10 10.5 705.2 Dense brown silty SAND, trace gravel, wet 19.3 (SM) SS 48 12.0 703.7 Dense brown SAND, little gravel, saturated 13.0 702.7 Very tough brown very silty CLAY, little sand, 3.74 3.75* 21.1 moist (CL-ML) SS 40 14.5 701.2 Dense brown SAND, trace to little silt, moist 5.2 15 (SP-SM) End of Boring at 15.0' * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 25 Division lines between deposits represent approximate boundaries between soil types. DRILL RIG NO. 256 in-situ, the transition may be gradual,

FEFT

SURFACE

BELOW

DISTANCE

	PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois										3
	CLIENT	LIENT Crown Community Development							a, Illinc	ois LST	2)
	BORING	82	9		DAT	E STAR	TED	11-3-0)4	DATE COMPLETED 11-3-04 JOB L-61,02	
					ATION	S				WATER LEVEL OBSERVATIO ▼ WHILE DRILLING 10.5 '	NS
	GROUND END OF B		_	710 698						WHILE DRILLING 10.5 '✓ AT END OF BORING 13.0 '	
	는 건									▼ 24 HOURS	
	STH OVERY		ADI E		I		T				
0	LENG	NO.	MPLE TYPE	N	wc	Qu	γ_{DRY}	DEPTH	ELEV.	SOIL DESCRIPTIONS	
0		А			24.3			1.5	709.4	Dark brown clayey TOPSOIL, very moist (OL)	
-		1 B	SS	5	24.0	2.25*		1.0	705.4	No. 1 and 1 december 200 and 100 and 1	
-		2	SS	7	25.2	2.0*		F-10-1		Very tough to tough brown silty CLAY, trace to little sand, occasional silt seams, trace organic, moist (CL)	
5								5.5	705.4		
		3	SS	3	16.3	1.09 1.0*				Tough brown silty CLAY, little sand and gravel, very moist (CL)	
-								8.0	702.9		
10-		4	SS	4						▼ Loose brown SAND, trace to little gravel, moist	
										to saturated (SP)	
	<u> </u>	5	SS	8				13.0	697.9	∇	
		A 6	ss	11	24.1					Firm brown SILT, trace to little sand, wet (ML)	
15~		В				_		14.5	696.4	Firm brown SAND, trace gravel, saturated (SP)	
										End of Boring at 15.0'	
	_									* Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer.	
20-											
	-										
25 - DRIU	L RIG NO	256			approx	rimate bo	undaries I	posits repro between so be gradual	il types:	NAME OF THE PERSON OF THE PERS	

TSC 31021A.GPJ TSC_ALL.GDT 11/29/04

	PROJECT	So	uth Ni	ckels	Prop	erty, M	lerrill F	Road, S	ugar G	rove, Illinois
	CLIENT			omm					ra, Illino	
	BORING 830				-	E STAR	TED _	11-8-0	04	DATE COMPLETED 11-8-04 JOB L-61,021A
	GROUND	SURI	FACE	707	ATION 7.8	S				
	END OF B			692						
	H ERY									▼ 24 HOURS
	ENGTE	SAI	MPLE TYPE	N	wc	Qu	γ _{DRY}	DEPTH	ELEV.	SOIL DESCRIPTIONS
0 —		IVO.	ITE						:	Black clayey TOPSOIL (OL)
								0.8	707.0	
		1	SS	12	26.6	2.25*				Very tough brown and gray silty CLAY, trace to little sand, trace organic, moist (CL)
						,		3.0	704.8	
-		2	SS	12	15.0	2.25*				
5 –					ļ					Very tough to tough brown and gray silty CLAY,
										little sand and gravel, moist (CL)
		3	SS	18	15.0	1.82 2.0*				
								8.0	699.8	V
40		4	SS	8	11.6	1.5*				
10 –										∇ Tough to stiff gray sandy CLAY, trace gravel, moist to very moist (CL-ML)
		5	SS	8	11.1	1.0*				
						,.0				
								13.0	694.8	
	-	6	SS	12						Firm gray SAND, saturated (SP)
15 –	1.11.1V									End of Boring at 15.0'
	-									* Approximate unconfined compressive
	-									strength based on measurements with a calibrated pocket penetrometer.
	-									,
20-										
25 -			<u> </u>	<u> </u>				posits repre		
DRILL	L RIG NO.	256						etween soi be gradual	I lypes:	

TSC 61021A.GPJ TSC_ALL.GDT 11/29/04

PROJECT South Nickels Property, Merrill Road, Sugar Grove, Illinois CLIENT Crown Community Development, Aurora, Illinois 831 **BORING** 11-8-04 DATE STARTED DATE COMPLETED 11-8-04 JOB L-61.021A **ELEVATIONS** WATER LEVEL OBSERVATIONS **GROUND SURFACE** 707.0 8.0 ' f V WHILE DRILLING 9.0 ' END OF BORING 692.0 AT END OF BORING RECOVERY NO. TABLE 24 HOURS WC γ_{DRY} | DEPTH | ELEV. Qu SOIL DESCRIPTIONS Black clayey TOPSOIL (OL) 1.1 705.9 SS 7 25.5 3.75* Very tough brown and gray silty CLAY, trace to little sand, moist (CL) 704.0 3.0 SS 7 14.3 Loose brown and gray sandy SiLT, trace gravel, moist to very moist (ML) SS 7 17.5 ${f V}$ 699.0 8.0 ∇ SS 10 10.9 Loose to firm gray sandy SILT, trace gravel, SS 10 10.4 wet (ML) SS 11 9.3 15 End of Boring at 15.0' * Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer. 20 Division lines between deposits represent approximate boundaries between soil types.

DRILL RIG NO. 256

FEET

ΝH

SURFACE

BELOW

DISTANCE

51021A.GPJ TSC_ALL.GDT 11/29/04

in-situ. The transition may be gradual

	PROJECT	Sou	ıth Nic	kels	Prope	erty, M	errill F	Road, Si	ıgar Gı	rove, Illinois
	CLIENT	Cro	wn Co	omm	unity I	Develo	pmen	t, Auror	a, Illino	
	BORING	83			-	E STAR	TED _	11-8-0	14	DATE COMPLETED 11-8-04 JOB L-61,021A
	GROUND S	SHRE		709	ATION:	S				WATER LEVEL OBSERVATIONS ▼ WHILE DRILLING 8.0 '
	END OF B		_	694						√ AT END OF BORING 11.0 '
	H ERY									▼ 24 HOURS
0	LENGT	SAN	MPLE TYPE	N	wc	Qu	γ_{DRY}	DEPTH	ELEV.	SOIL DESCRIPTIONS
0										Black clayey TOPSOIL (OL)
-		1	SS	8	26.6	2.75*		1.1	708.8	Very tough brown silty CLAY, trace to little sand, moist (CL)
								3.0	706.9	
5-		2	ss	12	16.9	2.75*				Very tough brown silty CLAY, little sand and gravel, moist (CL)
								5.5	704.4	
		3	SS	9	16.5				7040	Loose brown silty SAND, trace gravel, occasional clay pieces, moist to very moist (SM)
								8.0	701.9	
		4	SS	7	12.2					
10-										Loose brown clayey SAND, trace to little gravel,
	-//	5	SS	6	14.7					
								13.0	696.9	
		6	SS	13						Firm brown SAND, saturated (SP)
15-										End of Boring at 15.0'
										* Approximate unconfined compressive strength based on measurements with a calibrated pocket penetrometer.
20 -										
25 - DRII	L RIG NO.	256	1		approx	rimate bo	undaries l	posits repre between so	il types	

DISTANCE BELOW SURFACE IN FEET

18C MARTIN GPJ TSC_ALL.GDT 11/29/04

· · ·

Special State of the Special State of the Special State of the Special Special State of the Special Sp

300 600 CALE: 1" = 300'

Hey and Associates, Inc.

Revision/Issue

Water Resources, Wetlands and Ecology

26575 WEST COMMERCE DRIVE, SUITE 601

VOLO, ILLINOIS 60073

OFFICE (847) 740-0888

FAX (847) 740-2888

VOLO@HEYASSOC.COM

CROWN COMMUNITY
DEVELOPMENT

SUGAR GROVE ASSEMBLAGE

DRAIN TILE INVESTIGATION PLAN

Southern Portion

IELDWORK BY	KGK	04/05/05	
RAWN BY	KGK	05/20/05	1
CHECKED BY	KGK	05/20/05	
PPROVED BY			

SHEET 1 OF 2

Crown - Sugar Grove\Final\Reports\04249-DrainTile-Base-ISP.dwg

Exhibit 2 – Existing & Proposed Conditions Exhibits & Models

EXISTING DEPRESSIONAL STORAGE & DRAINAGE AREA MAP

EXISTING CONDITIONS HYDROCAD MODEL

PROPOSED DRAINAGE AREA MAP

PERVIOUS/IMPERVIOUS AREA EXHIBIT

PROPOSED CONDITIONS HYDROCAD MODEL

BASIN OVERFLOW WEIR SIZING - HYDROCAD MODEL OUTPUT (PEAK EVENT)

EMERGENCY OVERFLOW WEIR DESIGN

EXISTING CULVERT ANALYSIS

EXISTING CHANNEL ANALYSIS

You Dig

CONTOUR ELEVATIONS DEPRESSIONAL STORAGE FILL AREA

REMAINING DEPRESSIONAL STORAGE AREA

→ SHEET FLOW

EAST OFFSITE DRAINAGE STRAIGHT ROW CROPS, GOOD CON, HSG C CN = 85 <u>WEST OFFSITE DRAINAGE</u> STRAIGHT ROW CROPS, GOOD CON, HSG C CN = 85

SHALLOW CONCENTRATED FLOW

Shallow Concentrated Flow,

Cultivated Straight Rows Kv= 9.0 fps

WEST OFFSITE TC

(min) (feet) (ft/ft) (ft/sec)

290.4 7,013 0.0020 0.40

Tc Length Slope Velocity Capacity Description

EAST OFFSITE TC

(min) (feet) (ft/ft) (ft/sec)

33.2 100 0.0124 0.05

28.0 1,434 0.0090

61.2 1,534 Total

Tc Length Slope Velocity Capacity Description

Sheet Flow, East Sheet Flow

Cultivated Straight Rows Kv= 9.0 fps

Cultivated: Residue>20% n= 0.170 P2= 0.50"

Shallow Concentrated Flow, East Shallow Concentrated

Kimley » Horn

ORIGINAL ISSUE: 1/31/2025 KHA PROJECT NO. 168740009 SHEET NUMBER

EXH

Existing Condition

Prepared by Kimley-Horn & Associates

Printed 6/10/2025

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Page 2

Summary for Subcatchment 1C: East Offsite

Runoff = 109.40 cfs @ 16.26 hrs, Volume= 72

72.508 af, Depth= 6.76"

Routed to Pond 1P: Depressional Storage

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57"

	Area	(ac) C	N Des	cription		
Ī	128.	.630 8	35 Row	crops, str	aight row, 0	Good, HSG C
-	128.	630	100.	00% Pervi	ous Area	
	Tc Lengt (min) (fee				Capacity (cfs)	Description
-	33.2	100	0.0124	0.05	, ,	Sheet Flow, East Sheet Flow
	28.0	1,434	0.0090	0.85		Cultivated: Residue>20% n= 0.170 P2= 0.50" Shallow Concentrated Flow, East Shallow Concentrated Cultivated Straight Rows Kv= 9.0 fps
	61.2	1,534	Total	·	·	

Subcatchment 1C: East Offsite

Sugar Grove Lot 1 - Copy Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57"

Prepared by Kimley-Horn & Associates

Printed 6/10/2025

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Page 5

Summary for Pond 1P: Depressional Storage

Inflow Area = 128.630 ac, 0.00% Impervious, Inflow Depth = 6.76" for 100YR-024.00HR event

Inflow = 109.40 cfs @ 16.26 hrs, Volume= 72.508 af

Outflow = 107.33 cfs @ 16.58 hrs, Volume= 68.870 af, Atten= 2%, Lag= 19.2 min

Primary = 107.33 cfs @ 16.58 hrs, Volume= 68.870 af

Routed to Reach 1R: Travel Time

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Peak Elev= 716.86' @ 16.58 hrs Surf.Area= 21.076 ac Storage= 9.541 af

Plug-Flow detention time= 123.6 min calculated for 68.842 af (95% of inflow)

Center-of-Mass det. time= 99.0 min (1,037.6 - 938.5)

Volume	Invert	Avail.Storage	Storage Description	
#1	716.00'	12.665 a	Custom Stage Data	(Prismatic)Listed below (Recalc)
Elevation (feet		_		
716.00	0 2.82	.0 (0.000	
716.50	0 11.60	0 3	05 3.605	
717.00	0 24.64	.0	60 12.665	
Device	Routing	Invert C	let Devices	
#1 Primary		F	stom Weir/Orifice, C ad (feet) 0.00 0.50 th (feet) 6.00 500.0	,

Primary OutFlow Max=107.28 cfs @ 16.58 hrs HW=716.86' (Free Discharge)
1=Custom Weir/Orifice (Weir Controls 107.28 cfs @ 1.59 fps)

Page 6

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Pond 1P: Depressional Storage

Inflow

Outflow

Page 4

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Summary for Reach 1R: Travel Time

Inflow Area = 128.630 ac, 0.00% Impervious, Inflow Depth = 6.42" for 100YR-024.00HR event

Inflow = 107.33 cfs @ 16.58 hrs, Volume= 68.870 af

Outflow = 68.54 cfs @ 23.37 hrs, Volume= 68.659 af, Atten= 36%, Lag= 407.6 min

Routed to Link 1L: Existing Conditions Link

Routing by Stor-Ind+Trans method, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs

Max. Velocity= 0.42 fps, Min. Travel Time= 279.5 min

Avg. Velocity = 0.13 fps, Avg. Travel Time= 868.3 min

Peak Storage= 1,149,394 cf @ 18.71 hrs

Average Depth at Peak Storage= 1.67', Surface Width= 153.24'

Bank-Full Depth= 4.00' Flow Area= 700.0 sf, Capacity= 484.85 cfs

43.00' x 4.00' deep channel, n= 0.170

Side Slope Z-value= 30.3 35.7 '/' Top Width= 307.00'

Length= 7,013.0' Slope= 0.0021 '/'

Inlet Invert= 716.50', Outlet Invert= 701.82'

Reach 1R: Travel Time

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Page 3

Summary for Subcatchment 2C: West Offsite

Runoff = 149.94 cfs @ 19.07 hrs, Volume=

129.785 af, Depth= 6.76"

Routed to Link 1L: Existing Conditions Link

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57"

Area	(ac) C	N Desc	cription		
230.	.240 8	85 Row	crops, str	aight row, (Good, HSG C
230.	.240	100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
290.4	7,013	0.0020	0.40		Shallow Concentrated Flow, Cultivated Straight Rows Kv= 9.0 fps

Subcatchment 2C: West Offsite

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Page 7

Summary for Link 1L: Existing Conditions Link

Inflow Area = 358.870 ac, 0.00% Impervious, Inflow Depth > 6.64" for 100YR-024.00HR event

Inflow = 178.70 cfs @ 20.31 hrs, Volume= 198.444 af

Primary = 178.70 cfs @ 20.31 hrs, Volume= 198.444 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs

Link 1L: Existing Conditions Link

Sugar Grove Lot 1 - Co *Huff 0-10sm 4Q scaled to 120.00 hrs 100YR-120.00HR Rainfall=10.66*" Prepared by Kimley-Horn & Associates Printed 6/10/2025 HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Events for Link 1L: Existing Conditions Link

Event	Inflow	Primary	Elevation
	(cfs)	(cfs)	(feet)
002YR-024.00HR	45.65	45.65	0.00
100YR-001.00HR	132.54	132.54	0.00
100YR-002.00HR	172.08	172.08	0.00
100YR-003.00HR	184.76	184.76	0.00
100YR-006.00HR	184.49	184.49	0.00
100YR-012.00HR	183.25	183.25	0.00
100YR-018.00HR	189.64	189.64	0.00
100YR-024.00HR	178.70	178.70	0.00
100YR-048.00HR	135.36	135.36	0.00
100YR-072.00HR	105.35	105.35	0.00
100YR-120.00HR	74.40	74.40	0.00

Proposed Condition

West Undetained

Prepared by Kimley-Horn & Associates, Printed 5/29/2025 HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC Sugar Grove Lot 1

Prepared by Kimley-Horn & Associates

Printed 5/29/2025

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Page 2

Summary for Subcatchment 3C: East

Runoff = 52.29 cfs @ 16.50 hrs, Volume= 36.236 af, Depth= 7.13"

Routed to Pond 2P: East Pond

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57"

	Area	(ac)	CN	Desc	cription								
	48.	790	90	1/8 a	SG C								
	8.	310	74	>759	5% Grass cover, Good, HSG C								
*	1.	980	98	Deni	nny Rd Impervious								
*	1.	940	80	Deni	ny Rd Perv	/ious							
	61.	020	88	Weig	hted Aver	age							
	27.	326		44.7	8% Pervio	us Area							
	33.	694		55.2	2% Imperv	ious Area							
	Тс	Leng	gth	Slope	Velocity	Capacity	Description						
_	(min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)							
	78.7						Direct Entry, See line 1 in 5 Yr Hydroflow Report						

Subcatchment 3C: East

Hydrograph Runoff 55-52.29 cfs Huff 0-10sm 3Q scaled to 24.00 hrs 50-100YR-024.00HR Rainfall=8.57" Runoff Area=61.020 ac 45-Runoff Volume=36.236 af 40 Runoff Depth=7.13" Tc=78.7 min 35-CN=88 30-<u>No</u> <u>25</u> 20-15 10-5-15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 Time (hours)

Prepared by Kimley-Horn & Associates

Printed 5/29/2025

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Page 5

Summary for Pond 2P: East Pond

Inflow Area = 61.020 ac, 55.22% Impervious, Inflow Depth = 7.13" for 100YR-024.00HR event

Inflow 52.29 cfs @ 16.50 hrs, Volume= 36.236 af

1.65 cfs @ 25.79 hrs, Volume= Outflow 13.591 af, Atten= 97%, Lag= 557.2 min 1.65 cfs @ 25.79 hrs, Volume=

Primary = 13.591 af

Routed to Pond 3P: West Pond

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Peak Elev= 716.33' @ 25.79 hrs Surf.Area= 6.553 ac Storage= 34.375 af

Plug-Flow detention time= 3,206.6 min calculated for 13.591 af (38% of inflow)

Center-of-Mass det. time= 2,926.7 min (3,866.8 - 940.2)

Volume	Invert	Av	ail.Stora	ge S	Storage D	escription					
#1	710.00'		45.860	af (Custom S	tage Data	(Prismatio	Listed b	elow (R	ecalc)	
- ·	0 (0.	0	01					
Elevation		Area	_	c.Stor		ım.Store					
(feet) (ad	cres)	(acr	<u>e-fee</u>	t) (a	<u>cre-feet)</u>					
710.00) 4	.670		0.00	00	0.000					
711.00) 4	.870		4.77	' 0	4.770					
712.00	5 5	5.060		4.96	55	9.735					
713.00	5 5	.280		5.17	' 0	14.905					
714.00	5 5	.460		5.37	' 0	20.275					
715.00) 6	5.010		5.73	35	26.010					
716.00) 6	.420		6.21	5	32.225					
716.80) 6	5.740		5.26	64	37.489					
717.00) 6	3.820		1.35	6	38.845					
718.00	7	'.210		7.01	5	45.860					
Device	Routing		Invert	Outle	et Devices	i					
#1	Primary	7	710.00'	5.0"	Vert. Orif	ice/Grate	C= 0.610	Limited	to weir	flow at lov	v heads
#2	Primary	7	716.80'	Cust	tom Weir/	Orifice, C	v= 2.62 (C=	= 3.28)			
	,				d (feet) 0.		•	,			
				Widt	h (feet) 1	75.00 175	.00				

Primary OutFlow Max=1.65 cfs @ 25.79 hrs HW=716.33' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 1.65 cfs @ 12.11 fps)

-2=Custom Weir/Orifice (Controls 0.00 cfs)

Printed 5/29/2025

Page 6

Prepared by Kimley-Horn & Associates
HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Pond 2P: East Pond

Prepared by Kimley-Horn & Associates

Printed 5/29/2025

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Page 3

Summary for Subcatchment 4C: West

15.28 cfs @ 15.79 hrs, Volume= Runoff 9.989 af, Depth= 7.01"

Routed to Pond 3P: West Pond

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57"

 Area (ac)	CN	Desc	ription		
13.	520	90	1/8 a	cre lots, 6	5% imp, H	SG C
 3.5	590	74	>75%	√ Grass co	over, Good	, HSG C
 17.	110	87	Weig	hted Aver	age	
8.322 48.64% Pervious Area						
8.7	788		51.36	6% Imperv	ious Area	
_					• "	—
	Lengi		Slope	Velocity	Capacity	Description
 (min)	(fee	<u>:t)</u>	(ft/ft)	(ft/sec)	(cfs)	
18.1						Direct Entry, See line 19 in 5 Yr Hydroflow report

Direct Entry, See line 19 in 5 Yr Hydroflow report

Subcatchment 4C: West

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Page 4

Summary for Subcatchment 7C: West Undetained

Runoff = 1.27 cfs @ 15.71 hrs, Volume= 0.759 af, Depth= 5.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57"

	Area (a	ac)	CN	Desc	ription									
	1.0	50 74 >75% Grass cover, Good, HSG C												
*	0.02	20	98	Onsi	nsite paved area, HSG C									
*	0.10	60	98	Offsi	ffsite asphalt trail, HSG C									
*	0.34	40	0 74 Offsite trail >75% Grass cover, Good, HSG C											
	1.5	1.570 77 Weighted Average												
	1.39	90		88.5	4% Pervio	us Area								
	0.18	80		11.40	6% Imperv	rious Area								
		Leng	th	Slope	Velocity	Capacity	Description							
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)								
	10.0						Direct Entry,							

Subcatchment 7C: West Undetained

Prepared by Kimley-Horn & Associates

Printed 5/29/2025

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Page 7

Summary for Pond 3P: West Pond

Inflow Area = 78.130 ac, 54.37% Impervious, Inflow Depth > 3.62" for 100YR-024.00HR event

Inflow = 16.45 cfs @ 15.79 hrs, Volume= 23.580 af

Outflow = 6.66 cfs @ 19.34 hrs, Volume= 22.141 af, Atten= 60%, Lag= 212.8 min

Primary = 6.66 cfs @ 19.34 hrs, Volume= 22.141 af

Routed to Link 2L: Sugar Grove Lot 1

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Peak Elev= 702.59' @ 19.34 hrs Surf.Area= 2.752 ac Storage= 5.830 af

Plug-Flow detention time= 627.2 min calculated for 22.131 af (94% of inflow)

Center-of-Mass det. time= 353.1 min (2,958.4 - 2,605.3)

Volume	Invert	: Av	ail.Storag	je Sto	orage Description			
#1	700.34	1	10.759	af Cu	istom Stage Data (Prismatic)L	_isted below	(Recalc)
□ 1 4 ;	Ot	Δ	l	04	O Ot			
Elevation		Area		.Store	Cum.Store			
(feet)	(ad	cres)	(acre	e-feet)	(acre-feet)			
700.34	2	2.440		0.000	0.000			
701.00	2	2.530		1.640	1.640			
702.00	2	2.670		2.600	4.240			
703.00	2	2.810		2.740	6.980			
704.00	2	2.960		2.885	9.865			
704.30	3	3.000		0.894	10.759			
Device F	Routing		Invert	Outlet	Devices			
#1 F	Primary	-	700.34'	13.9" \	Vert. Orifice/Grate	C= 0.610	Limited to w	eir flow at low heads
#2 F	Primary	7	702.60'	Custo	m Weir/Orifice, Cv	= 2.62 (C= 3	3.28)	
				Head (feet) 0.00 1.00	•	•	
				,	(feet) 120.00 120.0	00		

Primary OutFlow Max=6.66 cfs @ 19.34 hrs HW=702.59' (Free Discharge)

1=Orifice/Grate (Orifice Controls 6.66 cfs @ 6.32 fps)

—2=Custom Weir/Orifice (Controls 0.00 cfs)

Printed 5/29/2025

Prepared by Kimley-Horn & Associates
HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Page 8

Pond 3P: West Pond

Prepared by Kimley-Horn & Associates

Printed 5/29/2025

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Page 9

Summary for Link 2L: Sugar Grove Lot 1

Inflow Area = 78.130 ac, 54.37% Impervious, Inflow Depth > 3.40" for 100YR-024.00HR event

Inflow = 6.66 cfs @ 19.34 hrs, Volume= 22.141 af

Primary = 6.66 cfs @ 19.34 hrs, Volume= 22.141 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs

Link 2L: Sugar Grove Lot 1

Proposed Critical Condition

Routing Diagram for Sugar Grove Lot 1 - Copy
Prepared by Kimley-Horn & Associates, Printed 6/10/2025
HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Summary for Subcatchment 3C: East

Runoff = 52.29 cfs @ 16.50 hrs, Volume= 36.236 af, Depth= 7.13"

Routed to Pond 2P: East Pond

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57"

	Area	(ac)	CN	Desc	cription										
	48.	790	90	1/8 a	acre lots, 6	5% imp, H	SG C								
	8.	310	74	>759	% Grass co	over, Good	, HSG C								
*	1.	980	98	Deni	ny Rd Impe	ervious									
*	1.	940													
	61.	020	88	Weig	ghted Aver	age									
	27.	326		44.7	44.78% Pervious Area										
	33.	694		55.2	2% Imperv	ious Area									
	Tc Length Slope Velocity Capacity				Description										
_	(min) (feet) (ft/ft) (ft/sec) (cfs)														
								_				 	_		

78.7

Direct Entry, See line 1 in 5 Yr Hydroflow Report

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Summary for Subcatchment 5C: East Offsite

Runoff = 29.21 cfs @ 16.26 hrs, Volume= 19.363 af, Depth= 6.76"

Routed to Pond 2P: East Pond

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57"

_	Area	(ac) C	N Des	cription		
_	34.	.350 8	85 Row	crops, str	aight row, 0	Good, HSG C
	34.	.350	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	33.2	100	0.0124	0.05		Sheet Flow,
	28.0	1,434	0.0090	0.85		Cultivated: Residue>20% n= 0.170 P2= 0.50" Shallow Concentrated Flow, Cultivated Straight Rows Kv= 9.0 fps
	61.2	1,534	Total			

Events for Pond 2P: East Pond

Event	Inflow	Outflow	Primary	Secondary	Elevation	Storage
	(cfs)	(cfs)	(cfs)	(cfs)	(feet)	(acre-feet)
002YR-024.00HR	26.37	1.12	1.12	0.00	713.04	15.132
100YR-001.00HR	193.02	1.32	1.32	0.00	714.09	20.774
100YR-002.00HR	200.27	1.50	1.50	0.00	715.27	27.618
100YR-003.00HR	189.76	1.59	1.59	0.00	715.87	31.423
100YR-006.00HR	154.25	9.36	1.72	7.64	716.85	37.807
100YR-012.00HR	117.48	34.91	1.73	33.18	716.95	38.492
100YR-018.00HR	98.64	49.83	1.74	48.09	716.99	38.786
100YR-024.00HR	81.37	51.10	1.74	49.36	716.99	38.809
100YR-048.00HR	46.98	45.96	1.74	44.22	716.98	38.713
100YR-072.00HR	33.70	33.29	1.73	31.55	716.94	38.455
100YR-120.00HR	22.15	22.08	1.73	20.35	716.90	38.198

Summary for Subcatchment 15S: Depressional Storage Offsite

Runoff = 32.09 cfs @ 16.41 hrs, Volume= 21.550 af, Depth= 6.76" Routed to Pond 14P : Depressional Storage Remainder

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57"

	Area	(ac) C	N Desc	cription		
	38.	230 8	85 Row	crops, str	aight row, (Good, HSG C
	38.	230	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
•	44.6	100	0.0059	0.04	, ,	Sheet Flow,
	29.5	1,379	0.0075	0.78		Cultivated: Residue>20% n= 0.170 P2= 0.50" Shallow Concentrated Flow, Cultivated Straight Rows Kv= 9.0 fps
	74 1	1 479	Total			

Events for Pond 14P: Depressional Storage Remainder

Event	Inflow	Primary	Elevation	Storage
	(cfs)	(cfs)	(feet)	(acre-feet)
002YR-024.00HR	9.97	9.79	716.64	1.295
100YR-001.00HR	72.86	67.28	716.80	2.252
100YR-002.00HR	76.18	71.95	716.81	2.311
100YR-003.00HR	72.04	68.90	716.80	2.272
100YR-006.00HR	58.41	56.96	716.78	2.116
100YR-012.00HR	47.31	46.08	716.76	1.963
100YR-018.00HR	68.38	66.21	716.80	2.238
100YR-024.00HR	70.03	68.27	716.80	2.264
100YR-048.00HR	62.50	62.29	716.79	2.187
100YR-072.00HR	44.79	44.70	716.75	1.943
100YR-120.00HR	29.13	29.09	716.71	1.695

Prepared by Kimley-Horn & Associates

Printed 6/10/2025

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Summary for Reach 2R: Travel Time

[81] Warning: Exceeded Pond 14P by 1.00' @ 21.55 hrs

Inflow Area = 38.230 ac, 0.00% Impervious, Inflow Depth = 11.50" for 100YR-024.00HR event

Inflow = 68.27 cfs @ 18.64 hrs, Volume= 36.634 af

Outflow = 34.92 cfs @ 26.21 hrs, Volume= 36.505 af, Atten= 49%, Lag= 454.2 min

Routed to Pond 3P: West Pond

Routing by Stor-Ind+Trans method, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs

Max. Velocity= 0.34 fps, Min. Travel Time= 311.1 min Avg. Velocity = 0.11 fps, Avg. Travel Time= 943.9 min

Peak Storage= 651,789 cf @ 21.02 hrs

Average Depth at Peak Storage= 1.23', Surface Width= 123.95' Bank-Full Depth= 4.00' Flow Area= 700.0 sf, Capacity= 469.62 cfs

43.00' x 4.00' deep channel, n= 0.170

Side Slope Z-value= 30.3 35.7 '/' Top Width= 307.00'

Length= 6,365.0' Slope= 0.0020 '/'

Inlet Invert= 716.50', Outlet Invert= 704.00'

Sugar Grove Lot 1 - Copy Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57" Prepared by Kimley-Horn & Associates Printed 6/10/2025

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Summary for Subcatchment 4C: West

15.28 cfs @ 15.79 hrs, Volume= 9.989 af, Depth= 7.01" Runoff

Routed to Pond 3P: West Pond

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57"

 Area	(ac)	CN	Desc	cription					
 13.	520	90	1/8 a	1/8 acre lots, 65% imp, HSG C					
 3.	590	74	>759	% Grass co	over, Good	, HSG C			
17.	110	87	Weig	ghted Aver	age				
8.322 48.64% Pervious Area				4% Pervio	us Area				
8.788 51.36% Impervious Area		ious Area							
_			01						
Tc	Leng	,	Slope	Velocity	Capacity	Description			
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)				
18.1						Direct Entry, See line 19 in 5 Yr Hydroflow report			

Sugar Grove Lot 1 - Copy *Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57*" Prepared by Kimley-Horn & Associates Printed 6/10/2025

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Summary for Subcatchment 6C: West Offsite

Runoff = 138.61 cfs @ 18.99 hrs, Volume= 116.454 af, Depth= 6.76"

Routed to Pond 3P: West Pond

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57"

Area	(ac) C	N Desc	cription		
206.	.590 8	85 Row	crops, str	aight row, (Good, HSG C
206.	.590	100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
263.6	6,365	0.0020	0.40		Shallow Concentrated Flow, Cultivated Straight Rows Ky= 9.0 fps

Events for Pond 3P: West Pond

Event	Inflow	Primary	Elevation	Storage
	(cfs)	(cfs)	(feet)	(acre-feet)
002YR-024.00HR	45.33	45.25	702.81	6.451
100YR-001.00HR	132.37	132.12	703.06	7.162
100YR-002.00HR	168.99	168.73	703.15	7.408
100YR-003.00HR	180.56	180.12	703.18	7.480
100YR-006.00HR	185.11	184.78	703.19	7.510
100YR-012.00HR	178.94	178.90	703.17	7.472
100YR-018.00HR	166.88	166.64	703.15	7.394
100YR-024.00HR	151.14	151.11	703.11	7.292
100YR-048.00HR	107.62	107.58	703.00	6.985
100YR-072.00HR	85.99	85.98	702.94	6.817
100YR-120.00HR	65.67	65.65	702.88	6.645

Sugar Grove Lot 1 - Copy *Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57*" Prepared by Kimley-Horn & Associates Printed 6/10/2025

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Summary for Subcatchment 7C: West Undetained

Runoff = 1.27 cfs @ 15.71 hrs, Volume= 0.759 af, Depth= 5.80"

Routed to Link 2L: Sugar Grove Lot 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57"

	Area	(ac)	CN	Desc	cription		
	1.	050	74	>759	% Grass co	over, Good	, HSG C
*	0.	020	98	Onsi	te paved a	area, HSG	C
*	0.	160	98	Offsi	te asphalt	trail, HSG	C
*	0.	340	74	Offsi	te trail >75	5% Grass c	over, Good, HSG C
	1.	570	77	Weig	ghted Aver	age	
	1.	390		88.5	4% Pervio	us Area	
	0.	180		11.4	6% Imperv	∕ious Area	
	Tc	Leng	jth	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	10.0						Direct Entry,

Events for Link 2L: Sugar Grove Lot 1

Event	Inflow	Primary	Elevation
	(cfs)	(cfs)	(feet)
002YR-024.00HR	45.38	45.38	0.00
100YR-001.00HR	132.12	132.12	0.00
100YR-002.00HR	168.73	168.73	0.00
100YR-003.00HR	180.12	180.12	0.00
100YR-006.00HR	185.38	185.38	0.00
100YR-012.00HR	179.43	179.43	0.00
100YR-018.00HR	167.11	167.11	0.00
100YR-024.00HR	151.58	151.58	0.00
100YR-048.00HR	108.07	108.07	0.00
100YR-072.00HR	86.32	86.32	0.00
100YR-120.00HR	65.89	65.89	0.00

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, May 27 2025

EAST POND OVERFLOW WEIR

Rectangular Weir

Crest = Broad Bottom Length (ft) = 175.00

Total Depth (ft) = 1.20

Calculations

Weir Coeff. Cw = 2.60

Compute by: Known Depth

Known Depth (ft) = 1.20

Highlighted

Depth (ft) = 1.20 Q (cfs) = 598.11 Area (sqft) = 210.00 Velocity (ft/s) = 2.85 Top Width (ft) = 175.00

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, May 27 2025

WEST POND OVERFLOW WEIR

Rectangular Weir

Crest = Broad Bottom Length (ft) = 120.00 Total Depth (ft) = 1.69

Calculations

Weir Coeff. Cw = 2.60

Compute by: Known Depth

Known Depth (ft) = 1.69

Highlighted

Depth (ft) = 1.69 Q (cfs) = 685.46 Area (sqft) = 202.80 Velocity (ft/s) = 3.38 Top Width (ft) = 120.00

Tuesday, Jun 10 2025

Merrill Rd Culvert - Existing Critical Storm

= 699.32	Calculations	
= 50.00	Qmin (cfs)	= 189.64
= 1.68	Qmax (cfs)	= 189.64
= 700.16	Tailwater Elev (ft)	= (dc+D)/2
= 30.0	. ,	, ,
= Circular	Highlighted	
= 30.0	Qtotal (cfs)	= 189.64
= 1	Qpipe (cfs)	= 48.18
= 0.012	Qovertop (cfs)	= 141.46
= Circular Concrete	Veloc Dn (ft/s)	= 9.98
Square edge w/headwall (C)	Veloc Up (ft/s)	= 10.28
= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 701.71
	HGL Up (ft)	= 702.43
	Hw Elev (ft)	= 705.65
= 705.00	Hw/D (ft)	= 2.20
= 25.00	Flow Regime	= Inlet Control
= 100.00		
	= 50.00 = 1.68 = 700.16 = 30.0 = Circular = 30.0 = 1 = 0.012 = Circular Concrete = Square edge w/headwall (C) = 0.0098, 2, 0.0398, 0.67, 0.5 = 705.00 = 25.00	= 50.00 Qmin (cfs) = 1.68 Qmax (cfs) = 700.16 Tailwater Elev (ft) = 30.0 = Circular Highlighted = 30.0 Qtotal (cfs) = 1 Qpipe (cfs) = 0.012 Qovertop (cfs) = Circular Concrete Veloc Dn (ft/s) = Square edge w/headwall (C) Veloc Up (ft/s) = 0.0098, 2, 0.0398, 0.67, 0.5 HGL Dn (ft) HGL Up (ft) HW Elev (ft) = 705.00 Hw/D (ft) = 10.0098, 2, 0.0098, 0.67, 0.5 HW/D (ft) HW/D (ft) Flow Regime

Tuesday, Jun 10 2025

Merrill Rd Culvert - Existing Critical Storm + 12 Inch Drain Tile

Invert Elev Dn (ft)	= 699.32	Calculations	
Pipe Length (ft)	= 50.00	Qmin (cfs)	= 187.62
Slope (%)	= 1.68	Qmax (cfs)	= 189.64
Invert Elev Up (ft)	= 700.16	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 30.0		
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 187.62
No. Barrels	= 1	Qpipe (cfs)	= 47.94
n-Value	= 0.012	Qovertop (cfs)	= 139.68
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 9.93
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 10.24
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 701.71
		HGL Up (ft)	= 702.43
Embankment		Hw Elev (ft)	= 705.61
Top Elevation (ft)	= 705.00	Hw/D (ft)	= 2.18
Top Width (ft)	= 25.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00	Drain tile max canacity	
		THAID THE MAX CADACITY	しい ロスノ% ニフロンした

12" Drain tile max capacity @ 0.32% = 2.02 CFS

Tuesday, Jun 10 2025

Merrill Rd Culvert - Proposed Critical Storm

Invert Elev Dn (ft)	= 699.32	Calculations	
Pipe Length (ft)	= 50.00	Qmin (cfs)	= 185.38
Slope (%)	= 1.68	Qmax (cfs)	= 189.64
Invert Elev Up (ft)	= 700.16	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 30.0		
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 185.38
No. Barrels	= 1	Qpipe (cfs)	= 47.83
n-Value	= 0.012	Qovertop (cfs)	= 137.55
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 9.91
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 10.22
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 701.70
		HGL Up (ft)	= 702.43
Embankment		Hw Elev (ft)	= 705.59
Top Elevation (ft)	= 705.00	Hw/D (ft)	= 2.17
Top Width (ft)	= 25.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Feb 6 2025

Channel - 01

Trapezoidal

Bottom Width (ft) = 41.20 Side Slopes (z:1) = 3.92, 3.77 Total Depth (ft) = 11.00 Invert Elev (ft) = 700.00 Slope (%) = 0.25 N-Value = 0.300

Calculations

Compute by: Known Q Known Q (cfs) = 110.09 Highlighted

Depth (ft) = 3.83Q (cfs) = 110.09Area (sqft) = 214.20Velocity (ft/s) = 0.51Wetted Perim (ft) = 71.63 Crit Depth, Yc (ft) = 0.60Top Width (ft) = 70.65EGL (ft) = 3.83

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Feb 6 2025

Channel - 02

Trapezoidal

Bottom Width (ft) = 73.40 Side Slopes (z:1) = 3.64, 4.11 Total Depth (ft) = 11.00 Invert Elev (ft) = 700.00 Slope (%) = 0.25 N-Value = 0.300

Calculations

Compute by: Known Q Known Q (cfs) = 110.09 Highlighted

= 2.86Depth (ft) Q (cfs) = 110.09Area (sqft) = 241.62Velocity (ft/s) = 0.46Wetted Perim (ft) = 96.29Crit Depth, Yc (ft) = 0.41Top Width (ft) = 95.56EGL (ft) = 2.86

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Feb 6 2025

Channel - 04

Triangular

Side Slopes (z:1) = 3.69, 4.30Total Depth (ft) = 11.10

Invert Elev (ft) = 700.00 Slope (%) = 0.25 N-Value = 0.300

Calculations

Compute by: Known Q Known Q (cfs) = 110.90 Highlighted

= 7.04Depth (ft) Q (cfs) = 110.90Area (sqft) = 198.00Velocity (ft/s) = 0.56Wetted Perim (ft) = 58.00 Crit Depth, Yc (ft) = 2.17Top Width (ft) = 56.25EGL (ft) = 7.04

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Feb 6 2025

Channel - 04

Trapezoidal

Bottom Width (ft) = 85.20 Side Slopes (z:1) = 3.83, 3.42 Total Depth (ft) = 7.50 Invert Elev (ft) = 700.00 Slope (%) = 0.25 N-Value = 0.300

Calculations

Compute by: Known Q Known Q (cfs) = 110.09 Highlighted

= 2.64Depth (ft) Q (cfs) = 110.09Area (sqft) = 250.19Velocity (ft/s) = 0.44Wetted Perim (ft) = 105.06Crit Depth, Yc (ft) = 0.38Top Width (ft) = 104.34EGL (ft) = 2.64

Reach (ft)

Exhibit 3 – Storm Sewer Sizing

DRAINAGE AREA MAP / STORM SEWER CATCHMENT EXHIBIT

HYDRAFLOW OUTPUTS – 5-YR STORM SEWER SIZING

PROPOSED CULVERT ANALYSIS

OVERLAND FLOW CALCULATIONS

											Propo	sed 5-Year Hydra	flow Report -	The Grove, Su	gar Grove										
Line	InletID	DnStrmLine No.	LineLength	DrainageArea	TotalArea	RunoffCoeff	IncrCxA	TotalCxA	InletTime	Tc	iSys	TotalRunoff	KnownQ	FlowRate	CapacityFull	VelAve	LineSize	LineSlope	InvertDn	InvertUp	HGLDn	HGLUp	Grnd/RimElev Dn	Grnd/RimElev Up	LineID
			(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
2	DL2 DL24	Outfall 1	117.789 30.353	0	9.97	0	0	7.69 7.69	0	78.7 78.6	1.65 1.65	12.69 12.71	0	12.69 12.71	44.53 44.55	4.39 3.68	42 42	0.2	710 710.23	710.23 710.29	711.08 711.6	711.57 711.64	713.96 719.68	719.68 720.42	DL2 TO DL1 DL24 TO DL2
3		2	21.52	0	9.97	0	0	7.69	0	78.5	1.65	12.71	0	12.71	44.53	3.63	42	0.2	710.23	710.23	711.67	711.04	720.42	720.42	DL3 TO DL24
4		3	132.27	0	0.52	0	0	0.4	0	71.3	1.78	0.71	0	0.71	36.11	1.64	30	0.78	711.33	712.36	711.9	712.63 j	720.76	721.41	DM1 TO DL3
5	DM2 DM3	4 5	163.086 153.783	0	0.52 0.52	0	0	0.4	0	62.6 54.6	1.96 2.16	0.78 0.86	0	0.78 0.86	18.34 18.34	1.85	30	0.2	712.36 712.69	712.69 712.99	712.71 713.08	713.04 713.35	721.41 721.99	721.99 721.95	DM2 TO DM1 DM3 TO DM2
7	DM4	6	125.823	0	0.52	0	0	0.4	0	48.2	2.36	0.94	0	0.94	18.34	1.92	30	0.2	712.99	713.24	713.4	713.62	721.95	721.91	DM4 TO DM3
8	DM5	7	162.85	0	0.52	0	0	0.4	0	40	2.66	1.06	0	1.06	18.34	2.04	30	0.2	713.24	713.57	713.65	713.98	721.91	719.74	DM5 TO DM4
9		9	140 140	0	0.52 0.52	0	0	0.4	0	33.2 28.9	3.25	1.19	0	1.19	18.34 10.12	2.11	30 24	0.2	713.57 714.35	713.85 714.63	714 714.83	714.28 715.11	719.74 718.93	718.93 719.72	DM6 TO DM5 DM7 TO DM6
11	DM8	10	140	0	0.52	0	0	0.4	0	24.7	3.55	1.41	0	1.41	10.11	2.26	24	0.2	714.63	714.91	715.14	715.42	719.72	719.72	DM8 TO DM7
12	DM9 DM10	11 12	140 140	0	0.52 0.52	0	0	0.4	0	22.3	3.74	1.49 1.57	0	1.49 1.57	7.43 7.43	3.27	18 18	0.5	715.41 716.11	716.11 716.81	715.87 716.58	716.57 717.28	719.72 721.44	721.44 721.44	DM9 TO DM8 DM10 TO DM9
	DM11	13	140	0	0.52	0	0	0.4	0	18.5	4.09	1.63	0	1.63	5.78	3.77	15	0.8	717.06	718.18	717.52	718.69	721.44	722.46	DM11 TO DM10
	DM12	14	140 234.549	0	0.52	0	0	0.4	0	17.6	4.2	1.67	0	1.67	3.86	4.26	12	1.18	718.43 720.08	720.08 722.83	718.89	720.63	722.46	723.46 726.62	DM12 TO DM11
17	DM13 DM14	15 16	76.318	0.39	0.52 0.52	0.76	0.3	0.4	10	16 15.5	4.43	1.74	0	1.74	2.32	3.89	12 12	1.18 0.42	722.83	722.83	723.49	723.4 723.81	723.46 726.62	725.62	DM13 TO DM12 DM14 TO DM13
18	DM15	17	226.46	0.14	0.14	0.76	0.1	0.1	10	10	5.22	0.54	0	0.54	4.68	1.81	12	1.73	723.16	727.07	723.83	727.38 j	727.16	731.07	DM15 TO DM14
19 20	DD2 DD3	Outfall 19	41.84 302.036	0.21	8.4 6.51	0.76	0.16	6.48 5	0 10	18.1 17	4.14 4.26	26.79 21.32	0	26.79 21.32	16.91 41.86	6.58 5.46	30 30	0.17 1.04	700.34 700.41	700.41 703.56	702.1 703.12	702.58 705.12 i	703.22 709.62	709.62 709.75	DD2 TO DD1 DD3 TO DD2
21		20	59.346	0.21	3.59	0.70	0.10	2.79	0	16.6	4.31	12	0	12	18.34	3.74	30	0.2	703.56	703.68	705.12	705.22	709.75	710.94	DE1 TO DD3
22	DE2	21	91.88	0	3.59	0	0	2.79	0	16	4.38	12.2	0	12.2	18.34	3.7	30	0.2	703.68	703.86	705.29	705.43	710.94	713.77	DE2 TO DE1
23	DE3 DE4	22	96.106 140	0	3.59 3.41	0	0	2.79	0	15.3 14.7	4.45 4.53	12.41 12	0	12.41 12	18.34 34.78	3.7 5.67	30 24	0.2 2.36	703.86 704.55	704.05 707.86	705.5 705.86	705.64 709.11 j	713.77 713.18	713.18 713.18	DE3 TO DE2 DE4 TO DE3
25	DE5	24	75.572	0	1.89	0	0	1.46	0	14.1	4.6	6.73	0	6.73	14.38	3.71	24	0.4	707.86	708.17	709.11	709.2	713.18	715.81	DE5 TO DE4
26	DE6 DE7	25 26	263.081 139.326	0	1.89	0	0	1.46	0	12.2 11.6	4.87 4.96	7.13 7.25	0	7.13 7.25	14.38 18.79	4.5 6.46	24 18	0.4 3.2	708.17 709.73	709.23 714.19	709.24 710.55	710.18 715.23	715.81 713.99	713.99 719.74	DE6 TO DE5 DE7 TO DE6
28	DE8	27	122.482	0.3	1.89	0.76	0.23	1.46	10	11.3	5.01	7.23	0	7.23	11.55	7.72	15	3.2	714.44	718.36	715.23	719.44	719.74	723.25	DE8 TO DE7
29		28	140	0.36	0.36	0.76	0.27	0.27	10	10	5.22	1.42	0	1.42	6.41	2.81	12	3.24	718.61	723.14	719.44	723.65 j	723.25	727.6	DE9 TO DE8
30 31	DK2 DK3	Outfall 30	42.8 137.5	0.54	6.86 6.86	0.78	0.42	5.3 5.3	0 10	14.3	4.58 4.64	24.29 24.62	0	24.29 24.62	48.03 48.03	6.93 7	30 30	1.37 1.37	710 710.59	710.59 712.47	711.68 712.26	712.26 j 714.16	712.88 719.78	719.78 718.59	DK2 TO DK1 DK3 TO DK2
32	DK4	31	27	0.45	6.32	0.78	0.35	4.88	10	13.7	4.66	22.73	0	22.73	18.34	4.63	30	0.2	712.47	712.53	714.97	715.03	718.59	718.59	DK4 TO DK3
33	DK5	32	84.013	0.38	5.88	0.76	0.29	4.53	10	13.4	4.7	21.32	0	21.32	18.34	4.34	30	0.2	712.53	712.7	715.08	715.3	718.59	718.2	DK5 TO DK4
34 35	DK6 DK7	33 34	120 120	0.54	5.5 3.35	0.76	0.41	4.25 2.58	10 10	12.9 12.4	4.77 4.85	20.26 12.51	0	20.26 12.51	18.34 33.55	4.13	30 24	0.2 2.2	712.7 713.44	712.94 716.08	715.35 715.91	715.64 717.35 i	718.2 718.2	718.2 721.46	DK6 TO DK5 DK7 TO DK6
36		35	120	0.34	3.08	0.76	0.26	2.37	10	11.8	4.93	11.7	0	11.7	20.23	5.67	24	0.8	716.08	717.04	717.35	718.26 j	721.46	721.46	DK8 TO DK7
37	DK9 DK10	36 37	60 120	0.27	2.74	0.76	0.21	2.12 1.91	10 10	11.5	4.97 5.03	10.52 9.6	0	10.52 9.6	15.67 7.28	5.3	24 18	0.48	717.04 717.82	717.32 718.4	718.26	718.51 720.33	721.46 723.03	723.03 722.95	DK9 TO DK8
39	DK14	38	145.5	0.47	0.94	0.78	0.37	0.73	10	10.3	5.17	3.78	0	3.78	10.72	3.87	15	2.75	718.65	722.66	720.79	723.44 j	722.95	726.79	DK14 TO DK10
40		39 Outfall	27 45.844	0.47	0.47 9.19	0.78	0.37	0.37 7.09	10	10 17	5.22 4.26	1.91 30.21	0	1.91 30.21	4.57 0	2.6 5.97	15 36	0.5 -0.2	722.66 704.73	722.79 704.64	723.44 706.51	723.46 707.02	726.79 715.3	726.79 718.63	DK15 TO DK14 DA10 TO DA15
42		41	64.23	0.31	6.33	0.76	0.23	4.89	10	16.6	4.26	21.04	0	21.04	0	3.03	36	-0.2	704.73	704.84	707.41	707.02	718.63	718.83	DA10 TO DA15
43		42	120	0.22	6.03	0.76	0.16	4.66	10	16	4.38	20.39	0	20.39	0	2.88	36	-0.4	704.39	703.91	707.5	707.62	718.83	721.14	DA9 TO DA8
44 45	DA7 DC1	43 44	120 129	0.2	5.81 5.61	0.76 0.78	0.15	4.49 4.34	10 10	15.3 14.6	4.46 4.55	20.03 19.75	0	20.03 19.75	0 29.83	2.83 4.51	36 36	-0.39 0.2	703.91 714.31	703.44 714.57	707.63 716.09	707.74 716.35	721.14 724.63	724.63 724.26	DA8 TO DA7 DC1 TO DA7
46	DC2	45	27	0.68	5.06	0.78	0.53	3.91	10	14.4	4.57	17.89	0	17.89	29.83	3.98	36	0.2	714.57	714.62	716.4	716.44	724.26	724.26	DC2 TO DC1
47	DC3 DC4	46 47	44.002	0.43	4.38 2.97	0.76	0	3.38	0 10	14.1	4.61 4.68	15.6	0	15.6	29.83 25.88	3.12	36	0.2	714.62	714.71 715.48	716.65 716.82	716.68	724.26	723.74	DC3 TO DC2
48	DC4 DC5	48	66.998 60	0.43	2.53	0.76	0.33	2.28 1.95	10	13.6 13.3	4.68	10.67 9.21	0	10.67 9.21	13.53	4.63	30 24	0.4	715.21 715.98	715.48	717.19	716.85 717.4	723.74 720.9	720.9 720.9	DC4 TO DC3 DC5 TO DC4
50	DC6	49	119.989	0.35	2.16	0.76	0.27	1.67	10	12.5	4.83	8.06	0	8.06	13.53	4.18	24	0.36	716.19	716.62	717.45	717.73	720.9	721.3	DC6 TO DC5
51 52		50 51	145.5 27	0.64	1.18 0.55	0.78	0.5	0.92	10 10	10.2	5.19 5.22	4.78 2.22	0	4.78 2.22	18.44 2.52	3.96	18 12	3.08 0.5	716.87 721.61	721.36 721.74	718.05 722.34	722.20 j 722.47	721.3 725.74	725.74 725.74	DC9 TO DC6 DC10 TO DC9
53	DK11	38	120	0.39	1.12	0.76	0.3	0.87	10	10.6	5.12	4.44	0	4.44	4.47	3.62	15	0.48	718.65	719.23	720.79	721.36	722.95	722.95	DK11 TO DK10
54	DK12 DK13	53	84.095	0.38	0.73	0.78	0.3	0.57	10	10.3	5.18	2.94	0	2.94	5.63	4.25	12	2.5	719.48	721.58	721.39	722.31 j	722.95	725.68	DK12 TO DK11 DK13 TO DK12
55 56	DK13 DL4	54 3	27 71.575	0.35	0.35 9.44	0.78 0.78	0.27	0.27 7.3	10 10	10 15.1	5.22 4.48	1.41 32.66	0	1.41 32.66	2.25 44.54	2.4 5.06	12 42	0.4	721.58 710.33	721.68 710.47	722.31 712.56	722.35 712.7	725.68 720.76	725.68 720.39	DK13 TO DK12 DL4 TO DL3
57	DL5	56	21.5	0	8.75	0	0	6.75	0	15	4.49	30.33	0	30.33	44.53	3.94	42	0.2	710.47	710.51	713.1	713.11	720.39	719.2	DL5 TO DL4
58 59	DL6 DL7	57 58	27 87.747	0.22	8.75 8.53	0.78	0.17	6.75 6.58	10 10	14.9 14.4	4.51 4.57	30.45 30.1	0	30.45 30.1	44.54 44.53	3.94	42 42	0.2	710.51 710.57	710.57 710.74	713.15 713.21	713.18 713.29	719.2 719.2	719.2 716.64	DL6 TO DL5 DL7 TO DL6
60	DL8	59	55.486	0.42	8.27	0.76	0.32	6.39	10	14.1	4.61	29.46	0	29.46	44.53	3.91	42	0.2	710.74	710.74	713.33	713.38	716.64	717.67	DL8 TO DL7
61	DL9	60	124.514	0.3	5.96	0.76	0.23	4.59	10	13.6	4.68	21.5	0	21.5	53.02	6.19	30	1.67	711.85	713.93	713.62	715.50 j	717.67	719.07	DL9 TO DL8
62		61 62	85.486 94.514	0.32	5.67 5.34	0.76 0.76	0.25	4.37 4.12	10 10	13.2	4.73 4.76	20.65 19.64	0	20.65 19.64	18.34 10.11	6.25	30 24	0.2	713.93 714.6	714.1 714.79	716.43 716.64	716.6 717.35	719.07 719.76	719.76 719.18	DL10 TO DL9 DL11 TO DL10
64	DL12	63	115.486	0.29	4.94	0.76	0.22	3.81	10	12.6	4.81	18.34	0	18.34	29.49	6.45	24	1.7	714.79	716.75	717.44	718.29 j	719.18	721.19	DL12 TO DL11
65 66	DL13 DL14	64 65	124.514 85.486	0.41	3.09 2.68	0.76	0.31	2.38	10 10	12.1 11.6	4.89 4.96	11.64	0	11.64 10.26	14.3 35.08	4.73	24 24	0.4 2.41	716.75 717.25	717.25 719.31	718.29 718.7	718.64 720.45 i	721.19 721.56	721.56 724.73	DL13 TO DL12 DL14 TO DL13
67	DL15	66	94.514	0.39	2.36	0.76	0.3	1.82	10	11.3	5.01	9.12	0	9.12	5.75	5.16	18	0.3	719.81	720.09	721.31	722.02	724.73	724.96	DL15 TO DL14
	DL16	67	120	0.45	1.97	0.76	0.34	1.53	10	10.8	5.08	7.75	0	7.75	5.75	4.39 3.48	18	0.3	720.09	720.45	722.08	722.74	724.96	725.07	DL16 TO DL15
70	DL18 DL19	68 69	145.5 27	0.62	1.52 0.9	0.78 0.78	0.48	1.18 0.7	10 10	10.2	5.2 5.22	6.15 3.65	0	6.15 3.65	6.64 4.08	2.97	18 15	0.4	720.45 721.28	721.03 721.39	723.04 723.56	723.53 723.65	725.07 725.39	725.39 725.39	DL18 TO DL16 DL19 TO DL18
71	DB1	41	38.975	0.16	2.85	0.76	0.12	2.2	10	16.5	4.32	9.48	0	9.48	7.47	3.02	24	0.11	704.64	704.68	707.41	707.48	718.63	720.94	DB1 TO DA10
72 73		71 72	137.501 27	0.37	2.69	0.78	0.29	2.08 1.79	10 10	15.7 15.6	4.4	9.15 7.89	0	9.15 7.89	26.76 12.43	6.5	24 18	1.4	714.53 716.95	716.45 717.33	715.33 717.82	717.53 718.42	720.94 723.17	723.17 723.17	DB2 TO DB1 DB3 TO DB2
74	DB4	73	99.489	0.38	1.94	0.76	0.16	1.49	10	15.2	4.42	6.65	0	6.65	12.43	5.09	18	1.4	717.33	717.55	718.42	719.72 j	723.17	725.18	DB4 TO DB3
75	DB5	74	84	0.31	1.45	0.76	0.24	1.11	10	14.8	4.52	5.03	0	5.03	12.43	5.72	18	1.4	719.22	720.4	719.89	721.26	725.18	725.17	DB5 TO DB4
76 77	DB6 DB7	75 76	99.512 27	0.29	1.14 0.85	0.78 0.78	0.23	0.88	10 10	14.1 13.9	4.61 4.64	4.04 3.02	0	4.04 3.02	4.7 4.69	2.99	18 18	0.2	720.4 720.6	720.65	721.47 721.69	721.67 721.72	725.17 726.77	726.77 726.77	DB6 TO DB5 DB7 TO DB6
<u> </u>	557	,,,		0.55	0.05	0.70	0.51	0.03	10	13.3	7.07	3.02		5.02	4.00		10	0.2	, 20.0	, 20.03		,	,20.,,	, 20.,,	

78 DE				0.07	0.45	0.76	0.06	0.35	10	11.6	4.97	1.71	0	1.71	4.7	1.45	18	0.2	720.65	720.93	721.73	721.78	726.77	726.78	DB8 TO DB7
	310	77 78	137.5 75	0.07	0.43	0.76	0.06	0.33	10	10	5.22	0.81	0	0.81	1.95	1.43	12	0.2	720.63	720.93	721.73	721.78	726.78	725.4	DB10 TO DB8
80 DE	B9	78	85	0.18	0.18	0.76	0.13	0.13	10	10	5.22	0.7	0	0.7	2.76	2.09	12	0.6	721.18	721.69	721.83	722.04 j	726.78	725.7	DB9 TO DB8
81 DB	311	74	45.735	0.15	0.29	0.76	0.11	0.22	10	11.5	4.99	1.08	0	1.08	2.52	3.09	12	0.5	719.47	719.7	719.93	720.16	725.18	723.54	DB11 TO DB4
82 DB	312	81	60	0.14	0.14	0.76	0.1	0.1	10	10	5.22	0.54	0	0.54	2.52	1.68	12	0.5	719.7	720	720.29	720.35	723.54	724.05	DB12 TO DB11
	110	Outfall	42.8	0	10.67	0	0	8.27	0	15.9	4.39	36.29	0	36.29	74.41	6.94	42	0.55	710	710.23	711.87	712.1	713.96	719.71	DH10 TO DH1
	H2	83	76.075	0	10.67	0	0	8.27	0	15.5	4.43	36.62	0	36.62	74.41	6.99	42	0.55	710.23	710.65	712.1	712.53	719.71	719.76	DH2 TO DH10
	H3	84	162.657	0.96	10.67	0.78	0.75	8.27	10	15	4.49	37.16	0	37.16	49.33	7.58	36	0.55	711.15	712.04	713.1	714.02	719.76	718.89	DH3 TO DH2
	H4	85 86	27 134.607	0.67	9.71 9.71	0	0	7.52	0	14.9	4.51	33.87	0	33.87	29.83	4.79 4.86	36	0.2	712.04 712.09	712.09	715.04	715.09	718.89 718.79	718.79	DH4 TO DH3 DH5 TO DH4
	H5 H6	87	113.003	0.51	9.05	0.78 0.76	0.52	7.52 7	10 10	14.4 14	4.56 4.62	34.32 32.32	0	34.32 32.32	29.82 29.83	4.86	36 36	0.2	712.09	712.36 712.59	715.35 716.08	715.71 716.34	720.56	720.56 718.88	DHS TO DH4
	J1	88	124	0.54	7.38	0.76	0.41	5.71	10	13.5	4.69	26.8	0	26.8	29.83	3.79	36	0.2	712.59	712.84	716.67	716.87	718.88	718.27	DJ1 TO DH6
	J2	89	120	0.41	5.48	0.76	0.31	4.24	10	12.8	4.79	20.29	0	20.29	29.83	2.87	36	0.2	712.84	713.08	717.09	717.2	718.27	719.17	DJ2 TO DJ1
	J3	90	120	0.14	3.97	0.76	0.1	3.07	10	12.1	4.88	14.99	0	14.99	18.34	3.05	30	0.2	713.58	713.82	717.33	717.49	719.17	720.81	DJ3 TO DJ2
	134	91	120	0.48	3.84	0.76	0.36	2.97	10	11.5	4.98	14.78	0	14.78	18.34	3.01	30	0.2	713.82	714.06	717.51	717.67	720.81	719.46	DJ4 TO DJ3
	IJ5	92	60	0.41	1.9	0.76	0.31	1.46	10	11	5.06	7.4	0	7.4	12.86	4.19	18	1.5	715.06	715.96	717.81	718.11	719.46	720.5	DJ5 TO DJ4
	IJ7	93	145.5	0.56	1.08	0.78	0.44	0.84	10	10.2	5.19	4.38	0	4.38	5	5.57	12	1.97	716.46	719.33	718.38	720.58	720.5	723.86	DJ7 TO DJ5
	J8	94	27	0.52	0.52	0.78	0.4	0.4	10	10	5.22	2.1	0	2.1	5	2.8	12	1.97	719.33	719.86	720.65	720.72	723.86	723.86	DJ8 TO DJ7
96 DE	11	28 96	150.5 27	0.71	1.23 0.52	0.78	0.56	0.96	10 10	10.2	5.19 5.22	5 2.12	0	5 2.12	4.08 2.25	4.07 2.7	15 12	0.4	718.36 719.21	718.96 719.32	719.61 720.55	720.51 720.64	723.25 723.32	723.32 723.32	DE11 TO DE8 DE12 TO DE11
	20	96 64	145.5	0.52	1.56	0.78	0.41	1.22	10	10.2	5.22	6.32	0	6.32	10.31	5.02	12	0.4	717.25	719.32	718.29	720.64 719.63 j	723.32	723.32	DL20 TO DL12
99 DL		98	27	0.78	0.78	0.78	0.61	0.61	10	10.2	5.22	3.18	0	3.18	6.06	4.35	15	0.88	717.23	719.14	719.63	719.86 i	723.14	723.14	DL21 TO DL20
100 DJ	_	90	145.5	0.55	1.1	0.78	0.43	0.86	10	10.2	5.19	4.46	0	4.46	9.01	4.31	15	1.95	714.83	717.66	717.33	718.51 j	719.17	722.49	DJ11 TO DJ2
101 DJ		100	27	0.55	0.55	0.78	0.43	0.43	10	10	5.22	2.24	0	2.24	4.97	4.37	12	1.95	717.91	718.43	718.51	719.07	722.49	722.49	DJ12 TO DJ11
102 D	C7	50	120	0.63	0.63	0.76	0.48	0.48	10	10	5.22	2.5	0	2.5	13.53	1.75	24	0.36	716.87	717.3	718.05	718.09	721.3	721.3	DC7 TO DC6
	211	47	172.09	0.75	1.41	0.78	0.58	1.1	10	10.1	5.2	5.73	0	5.73	14.3	3.86	24	0.4	715.71	716.4	716.82	717.25	723.74	721.01	DC11 TO DC3
104 DC		103	27	0.67	0.67	0.78	0.52	0.52	10	10	5.22	2.72	0	2.72	2.25	3.47	12	0.4	716.9	717.01	717.9	718.01	721.01	721.01	DC12 TO DC11
	J6	93	120	0.41	0.41	0.76	0.31	0.31	10	10	5.22	1.62	0	1.62	4.36	2.9	12	1.5	716.46	718.26	718.38	718.80 j	720.5	722.29	DJ6 TO DJ5
	119	92	137.5	0.73	1.46	0.78	0.57	1.14	10	10.3	5.18	5.91	0	5.91	19.38	1.88	24	0.73	714.56	715.57	717.81	717.9	719.46	720.27	DJ9 TO DJ4
107 DJ 108 DL		106 60	27 145.5	0.73	0.73 1.88	0.78	0.57	0.57 1.47	10	10 10.1	5.22	2.98 7.65	0	2.98 7.65	9 8.67	1.69 7.34	18 15	0.73 1.8	716.07 713.1	716.27 715.72	717.91	717.93 716.82	720.27 717.67	720.27 720.4	DJ10 TO DJ9 DL22 TO DL8
108 DL		108	27	1.14	1.14	0.78	0.89	0.89	10	10.1	5.22	4.65	0	4.65	4.48	6.37	12	1.58	715.97	716.4	716.83	717.29	720.4	720.4	DL23 TO DL22
110 DK		34	145.5	0.8	1.61	0.78	0.63	1.25	10	10.1	5.2	6.51	0	6.51	11.28	4.32	18	1.15	713.7	715.37	715.91	716.42	718.2	720.19	DK16 TO DK6
	(17	110	27	0.8	0.8	0.78	0.63	0.63	10	10	5.22	3.27	0	3.27	3.83	5.24	12	1.15	715.87	716.19	716.59	716.96	720.19	720.19	DK17 TO DK16
112 DI		88	52.698	0	1.15	0	0	0.9	0	10.6	5.13	4.59	0	4.59	18.45	1.46	24	0.67	713.59	713.94	716.67	716.69	718.88	720.1	DH7 TO DH6
113 DI		112	92.888	0.56	1.15	0.78	0.44	0.9	10	10.1	5.2	4.65	0	4.65	5.27	3.79	15	0.67	714.69	715.31	716.69	717.18	720.1	719.74	DH8 TO DH7
114 DI		113	27	0.58	0.58	0.78	0.46	0.46	10	10	5.22	2.38	0	2.38	2.9	3.03	12	0.67	715.56	715.74	717.21	717.33	719.74	719.74	DH9 TO DH8
115 DJ		89	137.5	0.68	1.36	0.78	0.53	1.06	10	10.3	5.17	5.48	0	5.48	7.56	3.1	18	0.52	714.34	715.05	717.09	717.47	718.27	719.19	DJ13 TO DJ1
116 DJ	N2	115 Outfall	27 69.3	0.68	0.68 1.49	0.78 0.78	0.53	0.53 1.16	10 10	10 10.1	5.22 5.2	2.77 6.04	0	2.77 6.04	7.56 12.9	1.57 5.79	18 15	0.52 3.99	715.05 710	715.19 712.76	717.49 710.99	717.51 713.76	719.19 711.52	719.19 717.84	DJ14 TO DJ13 DN2 TO DN1
117 DI		117	27	1.14	1.14	0.78	0.27	0.89	10	10.1	5.22	4.64	0	4.64	12.92	4.75	15	4	712.76	713.84	713.76	714.71	717.84	717.84	DN2 TO DN2
119 DI		20	70.061	0.17	2.7	0.76	0.13	2.05	10	12.4	4.84	9.95	0	9.95	30.85	5.64	24	1.86	704.06	705.36	705.12	706.49	709.75	712.11	DD4 TO DD3
	D5	119	73.71	0.71	2.53	0.76	0.54	1.92	10	12.2	4.88	9.39	0	9.39	14.32	7.46	18	1.86	705.86	707.23	706.75	708.41	712.11	711.73	DD5 TO DD4
121 DI	D6	120	117.491	0.67	1.4	0.76	0.51	1.06	10	11.7	4.94	5.25	0	5.25	5.7	5.28	15	0.78	707.48	708.4	708.43	709.34	711.73	712.65	DD6 TO DD5
	D7	121	112.551	0.34	0.72	0.76	0.26	0.55	10	11.2	5.03	2.76	0	2.76	6.66	4.24	12	3.5	708.65	712.59	709.5	713.30 j	712.65	720.63	DD7 TO DD6
	D8	122	140	0.39	0.39	0.76	0.29	0.29	10	10	5.22	1.53	0	1.53	6.66	3.12	12	3.5	712.59	717.49	713.3	718.02 j	720.63	721.49	DD8 TO DD7
	A2	Outfall	41.85	0	1.53	0	0	1.19	0	14.7	4.53	5.38	0	7.05	5.89	4.9	18	0.31	700.34	700.47	701.37	701.77	702.13	709.99	DA2 TO DA1
125 DA	_	124 125	180.004 208.598	0.34	1.53	0.76	0.26	1.19 0.93	10 0	14 13.1	4.62 4.75	5.49 4.42	0	7.16 6.09	6.61 6.61	4.05 3.45	18 18	0.4	700.47 701.18	701.18 702.01	702.06 703.1	702.9 703.81	709.99 713.92	713.92 720.69	DA3 TO DA2 DA4 TO DA3
126 DA		126	129	0	0.16	0	0	0.93	0	10.5	5.13	0.66	0	0.66	2.25	2.48	18	0.4	712.03	712.54	712.4	712.92	713.92	720.69	DA4 TO DA3 DA13 TO DA4
128 DA		127	27	0.16	0.16	0.78	0.13	0.13	10	10.3	5.22	0.67	0	0.67	2.25	2.46	12	0.4	712.54	712.65	712.93	713.02	716.65	716.65	DA14 TO DA13
129 DI		120	72.926	0.27	0.43	0.76	0.2	0.32	10	11.1	5.04	1.63	0	1.63	6.8	3.3	12	3.65	707.73	710.39	708.41	710.93 j	711.73	714.02	DD9 TO DD5
130 DD	010	129	52.949	0.16	0.16	0.76	0.12	0.12	10	10	5.22	0.63	0	0.63	6.8	2.12	12	3.65	710.39	712.33	710.93	712.66 j	714.02	717.63	DD10 TO DD9
131 DE		24	122.306	0.82	1.52	0.78	0.64	1.19	10	10.1	5.2	6.17	0	6.17	6.64	4.27	18	0.4	708.36	708.85	709.51	710	713.18	713.46	DE13 TO DE4
132 DE		131	27	0.7	0.7	0.78	0.55	0.55	10	10	5.22	2.86	0	2.86	2.25	3.65	12	0.4	709.35	709.46	710.35	710.53	713.46	713.46	DE14 TO DE13
133 DE		23	70	0.18	0.18	0.76	0.14	0.14	10	10	5.22	0.71	0	0.71	2.25	2.55	12	0.4	705.55	705.83	705.94	706.22	713.18	709.83	DE15 TO DE3
134 D/		126 134	120	1.03	1.03	0.78	0.8	0.8	10 0	10 0.9	5.22	4.19	0	5.86	2.24	7.46	12 12	0.4	702.01 702.49	702.49	703.99	707.24	720.69 725.83	725.83	DAS TO DA4 DA6 TO DA5
135 D/		134	120 120	0	0	0	0	0	0	0.9	0	0	1.67	1.67 1.67	2.24	2.13	12	0.4	702.49	702.96 703.44	707.37 707.65	707.64	725.83	728.03 724.63	DAG TO DAG
137 DD		19	140	0	1.89	0	0	1.47	0	11.1	5.05	7.44	0	7.44	11.39	2.13	24	0.4	702.96	703.44	703.12	707.91	709.62	706.62	DD12 TO DD2
138 DD		137	137.5	0.7	1.89	0.78	0.54	1.47	10	10.1	5.2	7.66	0	7.66	11.39	2.47	24	0.25	701.27	701.62	703.35	703.49	706.62	706.43	DD13 TO DD12
139 DD		138	27	1.19	1.19	0.78	0.93	0.93	10	10.1	5.22	4.85	0	4.85	3.25	3.95	15	0.25	702.37	702.43	703.62	703.77	706.43	706.43	DD14 TO DD13
	F2	Outfall	58.901	0	0	0	0	0	0	0	5.22	0	6.69	6.69	21.29	3.66	36	0.1	700.16	700.22	700.97	701.28	703.58	707.17	DF2 TO DF1

	Proposed 100-Year Hydraflow Report - The Grove, Sugar Grove																							
Line InletID	DnStrmLine No.	LineLength	DrainageArea	TotalArea	RunoffCoeff	IncrCxA	TotalCxA	InletTime	Tc	iSys	TotalRunoff	KnownQ	FlowRate	CapacityFull	VelAve	LineSize	LineSlope	InvertDn	InvertUp	HGLDn	HGLUp	Grnd/RimElev Dn	Grnd/RimElev Up	LineID
		(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1 DA10	Outfall	45.844	0	9.19	0	0	7.09	0	13.4	9.61	68.12	0	68.12	0	10	36	-0.2	704.73	704.64	707.36	708.04	715.3	718.63	DA10 TO DA15
2 DA9	1	64.23	0.31	6.33	0.76	0.23	4.89	10	13.2	9.67	47.27	0	47.27	0	6.69	36	-0.4	704.64	704.39	709.49	709.81	718.63	718.83	DA10 TO DA9
3 DA8	2	120	0.22	6.03	0.76	0.16	4.66	10	12.9	9.77	45.49	0	45.49	0	6.44	36	-0.4	704.39	703.91	709.91	710.47	718.83	721.14	DA9 TO DA8
4 DA7	3	120	0.2	5.81	0.76	0.15	4.49	10	12.6	9.87	44.36	0	44.36	0	6.28	36	-0.39	703.91	703.44	710.57	711.1	721.14	724.63	DA8 TO DA7
5 DC1	4	129	0.55	5.61	0.78	0.43	4.34	10	12.2	9.99	43.37	0	43.37	29.83	6.14	36	0.2	714.31	714.57	717.31	717.86	724.63	724.26	DC1 TO DA7
6 DC2	5	27	0.68	5.06	0.78	0.53	3.91	10	12.1	10.02	39.21	0	39.21	29.83	5.55	36	0.2	714.57	714.62	717.94	718.04	724.26	724.26	DC2 TO DC1
7 DC3	6	44.002	0	4.38	0	0	3.38	0	12	10.07	34.07	0	34.07	29.83	4.82	36	0.2	714.62	714.71	718.45	718.56	724.26	723.74	DC3 TO DC2
8 DC4	7	66.998	0.43	2.97	0.76	0.33	2.28	10	11.7	10.15	23.15	0	23.15	25.88	4.72	30	0.4	715.21	715.48	718.87	719.09	723.74	720.9	DC4 TO DC3
9 DC5	8	60	0.37	2.53	0.76	0.28	1.95	10	11.6	10.21	19.9	0	19.9	13.53	6.34	24	0.36	715.98	716.19	719.14	719.6	720.9	720.9	DC5 TO DC4
10 DC6	9	119.989	0.35	2.16	0.76	0.27	1.67	10	11.2	10.34	17.26	0	17.26	13.53	5.49	24	0.36	716.19	716.62	719.7	720.4	720.9	721.3	DC6 TO DC5
11 DC9	10	145.5	0.64	1.18	0.78	0.5	0.92	10	10.1	10.77	9.92	0	9.92	18.44	6.04	18	3.08	716.87	721.36	720.87	722.57 j	721.3	725.74	DC9 TO DC6
12 DC10	11	27	0.55	0.55	0.78	0.43	0.43	10	10	10.8	4.59	0	4.59	2.52	5.85	12	0.5	721.61	721.74	722.61	723.06	725.74	725.74	DC10 TO DC9
13 DB1	1	38.975	0.16	2.85	0.76	0.12	2.2	10	13.1	9.69	21.27	0	21.27	7.47	6.77	24	0.11	704.64	704.68	709.49	709.83	718.63	720.94	DB1 TO DA10
14 DB2	13	137.501	0.37	2.69	0.78	0.29	2.08	10	12.8	9.8	20.36	0	20.36	26.76	8.43	24	1.4	714.53	716.45	715.83	718.07	720.94	723.17	DB2 TO DB1
15 DB3	14	27	0.38	2.32	0.78	0.3	1.79	10	12.7	9.82	17.55	0	17.55	12.43	9.93	18	1.4	716.95	717.33	718.45	719.21	723.17	723.17	DB3 TO DB2
16 DB4	15	99.489	0.21	1.94	0.76	0.16	1.49	10	12.5	9.88	14.71	0	14.71	12.43	8.33	18	1.4	717.33	718.72	719.44	721.39	723.17	725.18	DB4 TO DB3
17 DB5	16	84	0.31	1.45	0.76	0.24	1.11	10	12.3	9.96	11.07	0	11.07	12.43	6.27	18	1.4	719.22	720.4	722.05	722.98	725.18	725.17	DB5 TO DB4
18 DB6	17	99.512	0.29	1.14	0.78	0.23	0.88	10	12	10.07	8.83	0	8.83	4.7	5	18	0.2	720.4	720.6	723.07	723.78	725.17	726.77	DB6 TO DB5
19 DB7	18	27	0.39	0.85	0.78	0.31	0.65	10	11.9	10.11	6.57	0	6.57	4.69	3.72	18	0.2	720.6	720.65	723.84	723.94	726.77	726.77	DB7 TO DB6
20 DB8	19	137.5	0.07	0.45	0.76	0.06	0.35	10	10.8	10.51	3.63	0	3.63	4.7	2.05	18	0.2	720.65	720.93	723.98	724.14	726.77	726.78	DB8 TO DB7
21 DB10	20	75	0.2	0.2	0.76	0.16	0.16	10	10	10.8	1.68	0	1.68	1.95	2.13	12	0.3	721.18	721.4	724.2	724.37	726.78	725.4	DB10 TO DB8
22 DB9	20	85	0.18	0.18	0.76	0.13	0.13	10	10	10.8	1.46	0	1.46	2.76	1.86	12	0.6	721.18	721.69	724.2	724.35	726.78	725.7	DB9 TO DB8
23 DB11	16	45.735	0.15	0.29	0.76	0.11	0.22	10	10.7	10.53	2.29	0	2.29	2.52	2.91	12	0.5	719.47	719.7	722.05	722.24	725.18	723.54	DB11 TO DB4
24 DB12	23	60	0.14	0.14	0.76	0.1	0.1	10	10	10.8	1.12	0	1.12	2.52	1.42	12	0.5	719.7	720	722.35	722.41	723.54	724.05	DB12 TO DB11
25 DC7	10	120	0.63	0.63	0.76	0.48	0.48	10	10	10.8	5.18	0	5.18	13.53	1.65	24	0.36	716.87	717.3	720.87	720.93	721.3	721.3	DC7 TO DC6
26 DC11	7	172.09	0.75	1.41	0.78	0.58	1.1	10	10.1	10.78	11.88	0	11.88	14.3	3.78	24	0.4	715.71	716.4	718.87	719.35	723.74	721.01	DC11 TO DC3
27 DC12	26	27	0.67	0.67	0.78	0.52	0.52	10	10	10.8	5.63	0	5.63	2.25	7.17	12	0.4	716.9	717.01	719.38	720.06	721.01	721.01	DC12 TO DC11
28 DA2	Outfall	41.85	0	1.53	0	0	1.19	0	12.4	9.92	11.79	0	13.44	5.89	7.78	18	0.31	700.34	700.47	701.7	702.43	702.13	709.99	DA2 TO DA1
29 DA3	28	180.004	0.34	1.53	0.76	0.26	1.19	10	12	10.06	11.94	0	13.59	6.61	7.69	18	0.4	700.47	701.18	703.33	706.35	709.99	713.92	DA3 TO DA2
30 DA4	29	208.598	0	1.19	0	0	0.93	0	11.5	10.24	9.54	0	11.19	6.61	6.33	18	0.4	701.18	702.01	707.09	709.46	713.92	720.69	DA4 TO DA3
31 DA13	30	129	0	0.16	0	0	0.13	0	10.3	10.7	1.37	0	1.37	2.25	3.01	12	0.4	712.03	712.54	712.59	713.11	720.69	716.65	DA13 TO DA4
32 DA14	31	27	0.16	0.16	0.78	0.13	0.13	10	10	10.8	1.39	0	1.39	2.25	2.95	12	0.4	712.54	712.65	713.13	713.22	716.65	716.65	DA14 TO DA13
33 DA5	30	120	1.03	1.03	0.78	0.8	0.8	10	10	10.8	8.67	0	10.32	2.24	13.14	12	0.4	702.01	702.49	710.09	720.17	720.69	725.83	DA5 TO DA4
34 DA6	33	120	0	0	0	0	0	0	1	0	0	0	1.65	2.24	2.1	12	0.4	702.49	702.96	720.57	720.83	725.83	728.03	DA6 TO DA5
35 ill Struct	ι 34	120	0	0	0	0	0	0	0	0	0	1.65	1.65	2.25	2.1	12	0.4	702.96	703.44	720.84	721.1	728.03	724.63	DA7 TO DA6
36 DR2	Outfall	84.5	23.42	29.17	0.42	9.84	12.25	61.2	62.2	3.93	48.13	0	48.13	48.13	6.81	36	0.52	710	710.44	713.34	713.78	711.25	715.94	DR2 TO DR1
37 DR3	36	240	5.75	5.75	0.42	2.42	2.42	60.9	60.9	3.99	9.63	0	9.63	16.39	3.07	24	0.53	710.44	711.7	714.5	714.94	715.94	715.7	DR3 TO DR2
38 DS2	Outfall	84.521	8.64	8.64	0.42	3.63	3.63	60.4	60.4	4.01	14.56	0	14.56	18.08	5.51	24	0.64	710	710.54	711.92	711.91	711.25	714.54	DS2 TO DS1

Culvert Analysis DO1-DO2

Culvert Analysis DQ4-DQ1

Printed 7/1/2025

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Page 2

Summary for Subcatchment 1S: Culvert Analysis DO1-DO2

Runoff = 3.03 cfs @ 15.89 hrs, Volume= 1.977 af, Depth= 6.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57"

/	Area	(ac) (CN Des	cription		
	2.	321	80 >75	% Grass c	over, Good	, HSG D
	1.	125	98 Un	connected p	pavement, l	HSG D
	3.	446	86 We	ighted Avei	rage	
	2.	321	67.	35% Pervio	us Area	
	1.	125	32.	65% Imper	vious Area	
	1.	125	100	.00% Uncc	nnected	
(r	Tc	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	<u>min)</u>				(015)	Chaet Flour
	19.7	100	0.0456	0.08		Sheet Flow,
	8.9	775	0.0260	1.45		Cultivated: Residue>20% n= 0.170 P2= 0.50" Shallow Concentrated Flow, Cultivated Straight Rows Kv= 9.0 fps
2	28.6	875	Total			

Events for Subcatchment 1S: Culvert Analysis DO1-DO2

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
002YR-024.00HR	3.34	0.97	0.562	1.96
100YR-001.00HR	4.03	12.07	0.739	2.57
100YR-002.00HR	4.97	10.86	0.987	3.44
100YR-003.00HR	5.49	9.30	1.127	3.93
100YR-006.00HR	6.43	6.92	1.384	4.82
100YR-012.00HR	7.46	4.49	1.668	5.81
100YR-018.00HR	8.06	3.75	1.834	6.39
100YR-024.00HR	8.57	3.03	1.977	6.88
100YR-048.00HR	9.28	1.72	2.175	7.58
100YR-072.00HR	9.85	1.23	2.335	8.13
100YR-120.00HR	10.66	0.80	2.546	8.87

Printed 7/1/2025

HydroCAD® 10.20-5c s/n 02344 © 2023 HydroCAD Software Solutions LLC

Page 3

Summary for Subcatchment 2S: Culvert Analysis DQ4-DQ1

Runoff = 3.49 cfs @ 15.92 hrs, Volume= 2.278 af, Depth= 6.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Huff 0-10sm 3Q scaled to 24.00 hrs 100YR-024.00HR Rainfall=8.57"

Are	a (ac)	(1)	N Desc	cription		
	2.720	8	0 >759	% Grass co	over, Good	, HSG D
	1.250	9	8 Unco	onnected p	avement, l	HSG D
	3.970	8	6 Weig	hted Aver	age	
	2.720		68.5	1% Pervio	us Area	
	1.250		31.4	9% Imperv	ious Area	
	1.250		100.	00% Unco	nnected	
To	c Leng	jth	Slope	Velocity	Capacity	Description
(min) (fe	et)	(ft/ft)	(ft/sec)	(cfs)	
19.7	7 1	00	0.0456	0.08		Sheet Flow,
						Cultivated: Residue>20% n= 0.170 P2= 0.50"
12.2	2 1,1	05	0.0281	1.51		Shallow Concentrated Flow,
						Cultivated Straight Rows Kv= 9.0 fps
31.9	1,2	05	Total			

Events for Subcatchment 2S: Culvert Analysis DQ4-DQ1

Event	Rainfall (inches)	Runoff (cfs)	Volume (acre-feet)	Depth (inches)
002YR-024.00HR	3.34	1.11	0.648	1.96
100YR-001.00HR	4.03	13.16	0.851	2.57
100YR-002.00HR	4.97	12.06	1.138	3.44
100YR-003.00HR	5.49	10.45	1.299	3.93
100YR-006.00HR	6.43	7.75	1.594	4.82
100YR-012.00HR	7.46	5.15	1.922	5.81
100YR-018.00HR	8.06	4.31	2.114	6.39
100YR-024.00HR	8.57	3.49	2.278	6.88
100YR-048.00HR	9.28	1.98	2.507	7.58
100YR-072.00HR	9.85	1.41	2.691	8.13
100YR-120.00HR	10.66	0.92	2.931	8.86

PROPOSED CULVERT DO1-DO2

Invert Elev Dn (ft)	= 711.40	Calculations	
Pipe Length (ft)	= 35.00	Qmin (cfs)	= 12.07
Slope (%)	= 0.20	Qmax (cfs)	= 12.07
Invert Elev Up (ft)	= 711.47	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 12.07
No. Barrels	= 1	Qpipe (cfs)	= 12.07
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 4.42
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.86
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 713.02
		HGL Up (ft)	= 712.72
Embankment		Hw Elev (ft)	= 713.39
Top Elevation (ft)	= 714.35	Hw/D (ft)	= 0.96
Top Width (ft)	= 15.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 50.00		

PROPOSED CULVERT DQ4-DQ1

Invert Elev Dn (ft)	= 700.63	Calculations	
Pipe Length (ft)	= 90.00	Qmin (cfs)	= 13.16
Slope (%)	= 0.32	Qmax (cfs)	= 13.16
Invert Elev Up (ft)	= 700.92	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 13.16
No. Barrels	= 1	Qpipe (cfs)	= 13.16
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 4.74
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 6.07
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 702.28
		HGL Up (ft)	= 702.22
Embankment		Hw Elev (ft)	= 702.96
Top Elevation (ft)	= 705.50	Hw/D (ft)	= 1.02
Top Width (ft)	= 45.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 50.00		

WEST BASIN - OFR EAST BASIN - OFR

D-D

E-E

F-F

G-G

Н-Н

J-J

K-K

Subcat

Events for Subcatchment 12S: A-A

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
002YR-024.00HR	3.34	2.39	1.400	2.12
100YR-001.00HR	4.03	9.71	0.132	0.20
100YR-002.00HR	4.97	15.04	0.784	1.19
100YR-003.00HR	5.49	17.92	1.356	2.06
100YR-006.00HR	6.43	16.43	2.541	3.85
100YR-012.00HR	7.46	10.81	3.982	6.04
100YR-018.00HR	8.06	8.91	4.368	6.63
100YR-024.00HR	8.57	7.15	4.697	7.13
100YR-048.00HR	9.28	4.02	5.157	7.82
100YR-072.00HR	9.85	2.86	5.507	8.35
100YR-120.00HR	10.66	0.53	1.624	2.46

Events for Subcatchment 13S: B-B

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
002YR-024.00HR	3.34	0.47	0.274	2.12
100YR-001.00HR	4.03	1.90	0.026	0.20
100YR-002.00HR	4.97	2.95	0.154	1.19
100YR-003.00HR	5.49	3.51	0.266	2.06
100YR-006.00HR	6.43	3.22	0.498	3.85
100YR-012.00HR	7.46	2.12	0.780	6.04
100YR-018.00HR	8.06	1.75	0.856	6.63
100YR-024.00HR	8.57	1.40	0.920	7.13
100YR-048.00HR	9.28	0.79	1.010	7.82
100YR-072.00HR	9.85	0.56	1.079	8.35
100YR-120.00HR	10.66	0.10	0.318	2.46

Events for Subcatchment 16S: D-D

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
002YR-024.00HR	3.34	0.93	0.549	2.21
100YR-001.00HR	4.03	3.70	0.050	0.20
100YR-002.00HR	4.97	5.74	0.298	1.20
100YR-003.00HR	5.49	6.85	0.516	2.08
100YR-006.00HR	6.43	6.34	0.968	3.90
100YR-012.00HR	7.46	4.13	1.529	6.16
100YR-018.00HR	8.06	3.38	1.675	6.75
100YR-024.00HR	8.57	2.71	1.800	7.25
100YR-048.00HR	9.28	1.52	1.973	7.95
100YR-072.00HR	9.85	1.08	2.106	8.48
100YR-120.00HR	10.66	0.20	0.634	2.55

Events for Subcatchment 17S: E-E

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
002YR-024.00HR	3.34	0.47	0.276	2.21
100YR-001.00HR	4.03	1.86	0.025	0.20
100YR-002.00HR	4.97	2.89	0.150	1.20
100YR-003.00HR	5.49	3.45	0.260	2.08
100YR-006.00HR	6.43	3.19	0.487	3.90
100YR-012.00HR	7.46	2.08	0.770	6.16
100YR-018.00HR	8.06	1.70	0.843	6.75
100YR-024.00HR	8.57	1.37	0.906	7.25
100YR-048.00HR	9.28	0.77	0.993	7.95
100YR-072.00HR	9.85	0.54	1.060	8.48
100YR-120.00HR	10.66	0.10	0.319	2.55

Events for Subcatchment 18S: F-F

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
002YR-024.00HR	3.34	2.35	1.390	2.21
100YR-001.00HR	4.03	9.38	0.127	0.20
100YR-002.00HR	4.97	14.54	0.756	1.20
100YR-003.00HR	5.49	17.36	1.308	2.08
100YR-006.00HR	6.43	16.07	2.453	3.90
100YR-012.00HR	7.46	10.46	3.874	6.16
100YR-018.00HR	8.06	8.57	4.244	6.75
100YR-024.00HR	8.57	6.88	4.559	7.25
100YR-048.00HR	9.28	3.86	4.999	7.95
100YR-072.00HR	9.85	2.74	5.334	8.48
100YR-120.00HR	10.66	0.52	1.607	2.55

Events for Subcatchment 19S: G-G

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
002YR-024.00HR	3.34	0.96	0.569	2.21
100YR-001.00HR	4.03	3.84	0.052	0.20
100YR-002.00HR	4.97	5.95	0.309	1.20
100YR-003.00HR	5.49	7.11	0.535	2.08
100YR-006.00HR	6.43	6.58	1.004	3.90
100YR-012.00HR	7.46	4.28	1.586	6.16
100YR-018.00HR	8.06	3.51	1.737	6.75
100YR-024.00HR	8.57	2.81	1.866	7.25
100YR-048.00HR	9.28	1.58	2.046	7.95
100YR-072.00HR	9.85	1.12	2.183	8.48
100YR-120.00HR	10.66	0.21	0.658	2.55

Events for Subcatchment 22S: H-H

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
002YR-024.00HR	3.34	0.80	0.477	2.21
100YR-001.00HR	4.03	3.22	0.044	0.20
100YR-002.00HR	4.97	4.99	0.259	1.20
100YR-003.00HR	5.49	5.96	0.449	2.08
100YR-006.00HR	6.43	5.51	0.841	3.90
100YR-012.00HR	7.46	3.59	1.329	6.16
100YR-018.00HR	8.06	2.94	1.456	6.75
100YR-024.00HR	8.57	2.36	1.564	7.25
100YR-048.00HR	9.28	1.32	1.715	7.95
100YR-072.00HR	9.85	0.94	1.830	8.48
100YR-120.00HR	10.66	0.18	0.551	2.55

Events for Subcatchment 23S: J-J

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
002YR-024.00HR	3.34	6.82	4.042	2.21
100YR-001.00HR	4.03	27.27	0.370	0.20
100YR-002.00HR	4.97	42.27	2.197	1.20
100YR-003.00HR	5.49	50.47	3.801	2.08
100YR-006.00HR	6.43	46.73	7.130	3.90
100YR-012.00HR	7.46	30.40	11.263	6.16
100YR-018.00HR	8.06	24.91	12.339	6.75
100YR-024.00HR	8.57	19.99	13.255	7.25
100YR-048.00HR	9.28	11.21	14.534	7.95
100YR-072.00HR	9.85	7.97	15.509	8.48
100YR-120.00HR	10.66	1.50	4.672	2.55

Events for Subcatchment 24S: K-K

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
002YR-024.00HR	3.34	1.10	0.654	2.21
100YR-001.00HR	4.03	4.41	0.060	0.20
100YR-002.00HR	4.97	6.84	0.355	1.20
100YR-003.00HR	5.49	8.16	0.615	2.08
100YR-006.00HR	6.43	7.56	1.153	3.90
100YR-012.00HR	7.46	4.92	1.822	6.16
100YR-018.00HR	8.06	4.03	1.996	6.75
100YR-024.00HR	8.57	3.23	2.144	7.25
100YR-048.00HR	9.28	1.81	2.351	7.95
100YR-072.00HR	9.85	1.29	2.508	8.48
100YR-120.00HR	10.66	0.24	0.756	2.55

Worksheet for A-A Channel

Project Description		
Friction Method	Manning	
Solve For	Formula Normal Donth	
Solve Fol	Normal Depth	
Input Data		
Roughness Coefficient	0.050	
Channel Slope	8.500 %	
Left Side Slope	25.000 %	
Right Side Slope	13.000 %	
Bottom Width	12.00 ft	
Discharge	17.92 cfs	
Results		
Normal Depth	0.34 ft	
Flow Area	4.7 ft ²	
Wetted Perimeter	16.0 ft	
Hydraulic Radius	0.29 ft	
Top Width	15.92 ft	
Critical Depth	0.38 ft	
Critical Slope	5.291 %	
Velocity	3.82 ft/s	
Velocity Head	0.23 ft	
Specific Energy	0.56 ft	
Froude Number	1.243	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.34 ft	
Critical Depth	0.38 ft	
Channel Slope	8.500 %	
Critical Slope	5.291 %	
Citical Slope	0.271 /0	

Worksheet for B-B Channel

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.050	
Channel Slope	2.000 %	
Left Side Slope	8.360 %	
Right Side Slope	11.140 %	
Discharge	3.51 cfs	
Results		
Normal Depth	0.46 ft	
Flow Area	2.2 ft ²	
Wetted Perimeter	9.7 ft	
Hydraulic Radius	0.23 ft	
Top Width	9.66 ft	
Critical Depth	0.37 ft	
Critical Slope	6.431 %	
Velocity	1.58 ft/s	
Velocity Head	0.04 ft	
Specific Energy	0.50 ft	
Froude Number	0.578	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	0.46 ft	
Critical Depth	0.37 ft	
Channel Slope	2.000 %	
Critical Slope	6.431 %	

Worksheet for D-D Channel

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.050	
Channel Slope	2.000 %	
Left Side Slope	3.000 %	
Right Side Slope	20.000 %	
Discharge	6.85 cfs	
Results		
Normal Depth	0.47 ft	
Flow Area	4.3 ft ²	
Wetted Perimeter	18.2 ft	
Hydraulic Radius	0.24 ft	
Top Width	18.10 ft	
Critical Depth	0.38 ft	
Critical Slope	6.360 %	
Velocity	1.60 ft/s	
Velocity Head	0.04 ft	
Specific Energy	0.51 ft	
Froude Number	0.581	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	0.47 ft	
Critical Depth	0.38 ft	
Channel Slope	2.000 %	
Critical Slope	6.360 %	

Worksheet for E-E Channel

Project Description		
Friction Method	Manning	
Solve For	Formula Normal Depth	
JOING LOI	ποιτιαι σεμιι	
Input Data		
Roughness Coefficient	0.050	
Channel Slope	1.000 %	
Left Side Slope	16.000 %	
Right Side Slope	12.000 %	
Bottom Width	10.00 ft	
Discharge	3.45 cfs	
Results		
Normal Depth	0.26 ft	
Flow Area	3.1 ft ²	
Wetted Perimeter	13.9 ft	
Hydraulic Radius	0.23 ft	
Top Width	13.83 ft	
Critical Depth	0.15 ft	
Critical Slope	7.104 %	
Velocity	1.10 ft/s	
Velocity Head	0.02 ft	
Specific Energy	0.28 ft	
Froude Number	0.408	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	0.26 ft	
Critical Depth	0.15 ft	
Channel Slope	1.000 %	
Critical Slope	7.104 %	

Worksheet for F-F Channel

Project Description		
	Manning	
Friction Method	Formula	
Solve For	Normal Depth	_
Input Data		
Roughness Coefficient	0.050	
Channel Slope	2.000 %	
Left Side Slope	10.360 %	
Right Side Slope	9.620 %	
Discharge	17.36 cfs	
Results		
Normal Depth	0.85 ft	
Flow Area	7.3 ft ²	
Wetted Perimeter	17.2 ft	
Hydraulic Radius	0.42 ft	
Top Width	17.12 ft	
Critical Depth	0.71 ft	
Critical Slope	5.168 %	
Velocity	2.38 ft/s	
Velocity Head	0.09 ft	
Specific Energy	0.94 ft	
Froude Number	0.641	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	0.85 ft	
Critical Depth	0.71 ft	
Channel Slope	2.000 %	
Critical Slope	5.168 %	

Worksheet for G-G Channel

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.050	
Channel Slope	2.000 %	
Left Side Slope	3.000 %	
Right Side Slope	3.000 %	
Discharge	7.11 cfs	
Results		
Normal Depth	0.39 ft	
Flow Area	5.0 ft ²	
Wetted Perimeter	25.9 ft	
Hydraulic Radius	0.19 ft	
Top Width	25.93 ft	
Critical Depth	0.31 ft	
Critical Slope	6.791 %	
Velocity	1.41 ft/s	
Velocity Head	0.03 ft	
Specific Energy	0.42 ft	
Froude Number	0.564	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	0.39 ft	
Critical Depth	0.31 ft	
Channel Slope	2.000 %	
Critical Slope	6.791 %	

Worksheet for H-H Channel

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.050	
Channel Slope	2.000 %	
Left Side Slope	4.000 %	
Right Side Slope	5.000 %	
Discharge	5.96 cfs	
Results		
Normal Depth	0.42 ft	
Flow Area	4.0 ft ²	
Wetted Perimeter	19.0 ft	
Hydraulic Radius	0.21 ft	
Top Width	18.98 ft	
Critical Depth	0.34 ft	
Critical Slope	6.603 %	
Velocity	1.49 ft/s	
Velocity Head	0.03 ft	
Specific Energy	0.46 ft	
Froude Number	0.571	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	0.42 ft	
Critical Depth	0.34 ft	
Channel Slope	2.000 %	
Critical Slope	6.603 %	

Worksheet for J-J Channel

Project Description		
Friction Method	Manning Formula	
Solve For	Bottom Width	
Input Data		
Roughness Coefficient	0.050	
Channel Slope	2.000 %	
Normal Depth	0.34 ft	
Left Side Slope	5.000 %	
Right Side Slope	5.000 %	
Discharge	50.47 cfs	
Results		
Bottom Width	69.94 ft	
Flow Area	26.1 ft ²	
Wetted Perimeter	83.6 ft	
Hydraulic Radius	0.31 ft	
Top Width	83.54 ft	
Critical Depth	0.25 ft	
Critical Slope	5.933 %	
Velocity	1.93 ft/s	
Velocity Head	0.06 ft	
Specific Energy	0.40 ft	
Froude Number	0.610	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	(N/A) ft/s	
Upstream Velocity	(N/A) ft/s	
Normal Depth	0.34 ft	
Critical Depth	0.25 ft	
Channel Slope	2.000 %	
Critical Slope	5.933 %	

Worksheet for K-K Channel

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.050	
Channel Slope	2.000 %	
Left Side Slope	8.000 %	
Right Side Slope	9.000 %	
Discharge	8.16 cfs	
Results		
Normal Depth	0.61 ft	
Flow Area	4.3 ft ²	
Wetted Perimeter	14.3 ft	
Hydraulic Radius	0.30 ft	
Top Width	14.29 ft	
Critical Depth	0.49 ft	
Critical Slope	5.830 %	
Velocity	1.89 ft/s	
Velocity Head	0.06 ft	
Specific Energy	0.66 ft	
Froude Number	0.605	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	0.61 ft	
Critical Depth	0.49 ft	
Channel Slope	2.000 %	
Critical Slope	5.830 %	