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ORIGINAL INVESTIGATION

De novo mutations in CSNK2A1 are associated
with neurodevelopmental abnormalities and dysmorphic features
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Abstract Whole exome sequencing (WES) can be used
to efficiently identify de novo genetic variants associated
with genetically heterogeneous conditions including intel-
lectual disabilities. We have performed WES for 4102
(1847 female; 2255 male) intellectual disability/develop-
mental delay cases and we report five patients with a neu-
rodevelopmental disorder associated with developmental
delay, intellectual disability, behavioral problems, hypo-
tonia, speech problems, microcephaly, pachygyria and
dysmorphic features in whom we have identified de novo
missense and canonical splice site mutations in CSNK2A1,
the gene encoding CK2a, the catalytic subunit of protein
kinase CK2, a ubiquitous serine/threonine kinase com-
posed of two regulatory (B) and two catalytic (a and/or o)
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subunits. Somatic mutations in CSNK2A 1 have been impli-
cated in various cancers; however, this is the first study to
describe a human condition associated with germline muta-
tions in any of the CK2 subunits.

Introduction

Neurodevelopmental disorders affect 1-3 % of children and
encompass a wide range of severity and associated behav-
ior differences (Soden et al. 2014). Identifying the etiol-
ogy of neurodevelopmental disorders has been challeng-
ing given the diversity of genetic and non-genetic causes.
Whole exome sequencing (WES) is an effective tool to
diagnose patients with phenotypically similar and etiologi-
cally diverse neurodevelopmental disorders and to discover
new genetic causes. Many of these conditions arise from de
novo mutations in genes with a critical role in brain devel-
opment and/or function (Ku et al. 2013).

Protein kinase CK2 (formerly Casein kinase 2) is a ubiq-
uitous serine/threonine kinase composed of two regulatory
(B) and two catalytic (a and/or o) subunits and regulates
its substrates via phosphorylation at acidic clusters contain-
ing the consensus sequence XS/TXXE/D (Wirkner et al.
1998). CK2 is a heterotetramer composed of affa, appa’
or o’fpa’, and all three subunits are encoded by differ-
ent genes. The o subunit is encoded by CSNK2A1 (MIM
#115440) and maps to 20pl13. In addition to their roles
in the holoenzyme, all subunits have also been proposed
to have independent roles in specific tissues. In the brain,
for example, the o subunit is highly expressed, suggesting
a role in brain development and/or function (Ceglia et al.
2011). Somatic mutations in CSNK2AI have been impli-
cated in various cancers (Benveniste et al. 2015); however,
no germline mutations in any of the genes comprising CK2
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have previously been described in humans. We present five
patients with neurodevelopmental disabilities and dysmor-
phic features in whom we identified five different de novo
novel variants in CSNK2A1.

Methods

This study was approved by the Institutional Review Board
of Columbia University. Informed consent was obtained
from all participants included in the study. Genomic DNA
was extracted from whole blood from the affected chil-
dren and their parents. Exome sequencing was performed
in 4102 (1847 female; 2255 male) individuals with devel-
opmental delay/intellectual disabilities using a trio design
with exon targets isolated by capture using the Agilent
SureSelect Human All Exon V4 (50 Mb) kit or the Clinical
Research Exome (Agilent Technologies, Santa Clara, CA,
USA). The sequencing methodology and variant interpreta-
tion protocol have been previously described (Tanaka et al.
2015). All CSNK2A1 variants were confirmed by Sanger
sequencing.

Results

Exome sequencing produced an average of ~8.6 Gb of
sequence per sample. Mean coverage of captured regions
was ~98x per sample with >97 % covered with at least
10x coverage, an average of 95 % of base call quality of
Q30 or greater, and an overall average mean quality score
of >Q37. Five unrelated patients were found to have five
different novel, de novo heterozygous variants in CSNK2A 1
including one splice site variant (c.824 4 2T>C) and four
missense variants (p.R47Q, p.Y50S, p.D175G, p.K198R)
that are predicted to be deleterious by multiple prediction
algorithms including SIFT, Mutation Taster, Provean, and
CADD (Table 1). Variant read ratios were 47.5, 46.1, 53,

Table 1 Predicted pathogenicity of novel de novo CSNK2A 1 variants

47.8 and 47.2 % for p.R47Q, p.Y50S, p.D175G, p.K198R
and c¢.824 + 2T>C, respectively, which is approximately
50 % of the reads in each case and suggests there is no
somatic mosaicism. The WES data were also analyzed for
copy number variations (CNVs) and no CNVs of clinical
significance were identified.

The missense variants are located in highly conserved
functional domains (Fig. 1). None of these variants were
observed in 1000 Genomes (Abecasis et al. 2012), in the
NHLBI GO Exome Sequencing Project (Exome Variant
Server, http://evs.gs.washington.edu/EVS), in EXAC (exac.
broadinstitute.org) or in our own local database of 24,578
exomes. There are loss-of-function mutations in CSNK2A 1
in the EXAC and COSMIC (Forbes et al. 2015) databases.

All five patients with the novel, de novo variants in
CSNK2A1 are female and range in age from 2 to 13 years
old (Table 2). Prenatal histories were largely unremarkable
except for polyhydramnios in one patient. Laryngomalacia
in one patient and umbilical hernia in another were noted
at birth. Features common to the majority of the probands
include developmental delay (5/5), intellectual disability
(4/5), behavioral problems (4/5), hypotonia (4/5), speech
problems (4/5), gastrointestinal problems (4/5), dysmorphic
facial features (4/5) (Fig. 2), microcephaly (3/5), pachygyria
observed on brain MRI (3/5) (Fig. 3), musculoskeletal (3/5)
and immunologic (3/5) problems (Table 2). Three of the
patients have variable dysmorphic features including thin
hair, low set and folded ears, arched eyebrows, mild syn-
ophrys, ptosis, epicanthal folds, hypertelorism, broad nasal
bridge, upturned nose, high palate, thin upper lip, protrud-
ing tongue, clinodactyly, and brachydactyly. All patients
have behavioral problems such as tantrums, volatile mood,
clapping, hand-flapping, and ADHD features. Two patients
also have sleep problems. Four patients had gastrointesti-
nal symptoms including dysphagia with gastroesophageal
reflux disease (GERD), constipation and feeding prob-
lems requiring gastrostomy tube placement. Three patients
have musculo-skeletal problems manifesting as scoliosis

Variant Chr20 coordinates Polyphen-2 SIFT Mutation Taster PROVEAN CADD
(GRCh38) Phred
¢.824 + 2T>C 488676 N/A N/A Disease causing N/A 29.7
(0.70825)
¢.593A>G:p.K198R 492282 Possibly damaging Damaging (0.001) Disease causing Deleterious (—2.91) 26.6
(0.5446) (0.70825)

c.524A>G:p.D175G 492351 Benign (0.37943)

c.149A>C:pY50S 505191 Damaging (0.999)

c.140G>A:p.R47Q 505182 Possibly damaging

(0.56788)

Damaging (0.027) Disease causing
Damaging (0.001) Disease causing

Damaging (0.001) Disease causing

Deleterious (—6.83) 29.8
(0.70825)

Deleterious (—8.34) 27.1
(0.999)

Deleterious (—3.61) 34
(0.70825)
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Fig. 1 a 3D structure of CSNK2A1, b domains, and ¢ sequence align-
ment. a 3D structure of human CK2-alpha protein was retrieved
from RCSB Protein Data Bank (PDB) (http://www.rcsb.org) con-
structed by PV Protein Viewer from PDB ID 3WOW (doi:10.2210/
pdb3wow/pdb). Purple strikes represent mutation sites. b Domains of
CSNK2A1 and locations of de novo variants. ¢ Sequence alignment

of ATP/GTP binding loop (tile red), basic cluster (orange), active site
(light green), activation segment (green). Basic amino acids into the
p + 1 loop were underlined. De novo amino acids are shown in bold
red text. Abbreviations for species: chimpanzee (Pantr, Pan troglo-
dytes), zebrafish (Danre, Danio rerio), fruit fly (Drome, Drosophila
melanogaster) (color figure online)
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Fig. 2 Facial characteristics of
Patient 3 at 3 months (leff) and
4 years (right) of age. Facial
features are notable for broad
nasal bridge, short upturned
nose, and epicanthal folds

Fig. 3 Brain MRI of patient 1 at 32 months of age. a Sagittal and b axial images showing pachygyria and microcephaly

and joint laxity. Three patients have immunologic findings
of hypogammaglobulinemia and mild IgA or IgG defi-
ciency. Two patients have ataxia. Only one patient has daily
atonic seizures with abnormal EEG showing generalized
symptomatic epilepsy. Uncommon findings include pal-
mar erythema, cutis marmorata, dry skin, labial adhesions,
intermittent esotropia, heat intolerance, easy fatigability,
inguinal hernia and carnitine deficiency and may or may not
be related to the CSNK2A I mutations (Table 2).

Discussion
Patients from five independent families with overlapping

neurodevelopmental disorders and dysmorphic features
were found to have likely damaging de novo splice site or

missense variants in highly conserved regions of CSNK2A1.
To our knowledge, this is the first report implicating ger-
mline variants in CSNK2A7 in a human genetic condition.

Protein kinase CK2 is ubiquitously expressed and is
involved in many biological processes including cell prolif-
eration, cell survival, transcriptional regulation, and embry-
onic development (St-Denis and Litchfield 2009). Overex-
pression of CK2 and somatic mutations in either subunit
have been found to be related with various cancers by regu-
lating downstream cancer-associated genes such as JAK/
STAT, NF-kB, PI3K/AKT (Zheng et al. 2013).

The o and o subunits (encoded by CSNK2AI and
CSNK2A2, respectively), are the catalytic domains of CK2.
Although there seems to be no difference in the catalytic
activities of a and o/, CK2a is expressed nearly ubiq-
uitously at high levels, especially in the brain, starting
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in early embryonic development (Ceglia et al. 2011). In
studies with conditional knock-outs of CK2a, mice with
homozygous deficiencies of CK2a (CK20~/~) were embry-
onic lethal with severe embryonic abnormalities, espe-
cially in the heart and neural tube (Dominguez et al. 2011;
Landesman-Bollag et al. 2011; Lou et al. 2008; Seldin et al.
2008). Among the heterozygotes, 13 % of the embryos
were noted to have failure of neural tube closure (Seldin
et al. 2008) and <2 branchial arches (Lou et al. 2008).

The four novel, de novo missense variants we identified,
p-R47Q, p.YS50S, p.D175G, and p.K198R, all reside in the
glycine-rich ATP binding loop or activation site (Fig. 1).
These regions are highly conserved across species (Fig. 1).
Moreover, these residues are involved in the regulation and
activation of CK2a and CK2.

p-R47Q and p.Y50S are located in a highly mobile
G*RGKYS>! ATP binding loop in CK2a. This loop shifts
between stretched and collapsed conformations according
to the activation state of CK2a and has an important role in
the three conformations of the fully active, partially active,
and inactive states of CK2 (Niefind and Issinger 2010).

The activation site of CK2a extends from amino acids
Aspl75 to Glu201 and contains many basic amino acid
residues important in binding the acidic residues in the
vicinity of Ser/Thr residues that are substrates of phospho-
rylation. The highly conserved D'*WG'”” and G'*’PE*"!
residues are responsible for the formation of CK2a activa-
tion loop (Baier et al. 2015). Asp175 also has a canonical
Mg**/Mn>* binding role during utilization of ATP/GTP as
a phosphate donor (Lolli et al. 2012; Niefind and Issinger
2010). Substitution of this aspartic acid with a glycine
affects the charge and could disrupt Mg?*/Mn** binding.

The basic amino acids in the “p + 1 loop” of the acti-
vation site (R191, R195, and K198) are responsible for the
recognition of acidic residues at positions —1, +1, 43, +5
relative to Ser/Thr phosphorylation sites in the substrate,
and experimentally, substitution of these residues with ala-
nine resulted in decreased phosphorylation capacity of
CK2a (Sarno et al. 1996, 1997). Although the p.K198R
variant does not alter charge of the amino acid, it may pro-
duce conformational differences that could disrupt the acti-
vation site. Mutations in CK2« may alter phosphorylation of
important substrates of the Wnt and Notch signaling path-
ways which are important in neurodevelopmental processes.

Crystallography studies have revealed new holoenzyme
complexes of CK2 including trimer of tetramers and fila-
ments of tetramers (Lolli et al. 2012, 2014; Niefind et al.
2001). In addition to the possible aforementioned effects
of Aspl75 and Lys198 on the individual CK2a activity,
these amino acid substitutions could also have roles in the
higher-order structures of CK2 tetramers.

In addition to the four de novo missense variants, we
observed one de novo variants in the canonical splice donor

@ Springer

site of intron 10, c.824 4 2T>C, that is predicted to dis-
rupt proper splicing. The splice site variant suggests that
loss of function could be the mechanism of action for the
CSNK2A1 variants we report, but there are predicted loss-
of-function alleles in ExAC suggesting other possible
molecular mechanisms. Functional studies and a larger
allelic series will be needed to elucidate the genetic mecha-
nism of the mutations.

Because all of our patients are female and they show
some degree of phenotypic variability we searched for
additional variants on the X chromosome and other loci
throughout the genome, and did not identify any other vari-
ants contributing to the phenotype. Thus, we believe the
phenotypic variability in females is most likely due to ran-
dom X inactivation.

In conclusion, we describe the first human condition
associated with germline mutations in any of the CK2 sub-
units, with a clinical phenotype of neurodevelopmental dis-
abilities and dysmorphic features. We hypothesize that the
mutations alter CK2 function and phosphorylation of CK2
targets, leading to deleterious effects on brain development
and function.
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