

Drug Discovery and Development Course

Hit-to-Lead Med Chem Optimization Case Studies

Greg Basarab

Supported by

Gates Foundation

Learning Objectives

- Fragment-based lead generation
- Phenotypic Screening
- Considerations around hits and ligand efficiency (LE); lead optimization of ligand lipophilicity efficiency (LLE)
- Drug repurposing/repositioning

Program

- Fragment-based Hit ID and H2L
- Phenotypic Screening Hit ID and H2L
- Drug repurposing

Fragment Screening

- Fragment Screening and Hits
 Medium throughput (100-2000 cmpds)
 Weak potency
 More MW 'headroom' for elaboration
 Generally high ligand efficiency
 Guidance from protein structure/molecular modeling
- Screening strategies
 Enzyme inhibition
 NMR methods (waterLOGSY, STD-NMR, ILOE, ¹H-¹⁵N HSQC)
 Isothermal titration calorimetry (ICT)/Microscale Thermophoresis (MST)
 X-ray crystallography

The challenge inevitably becomes maintaining drug-like properties while designing potency improvements

Fragment Screening

Rule of three: begin small ⇒ compound growth will (generally) be inevitable

Lead-like molecules for FGLD – emphasis on ligand efficiency:

- ≤ 3 H-bond donors
- ≤ 3 H-bond acceptors
- MW ≤ 300 Da
- LogP ≤ 3
- # rot bonds ≤ 3
- PSA \leq 60 Å²

Considerations of ligand growing and linking strategies

Case History: Bacterial Topoisomerases

- DNA gyrase & Topo IV are among many enzymes essential for DNA replication & cell viability
- DNA gyrase (GyrA₂B₂) supercoils DNA ahead of replication fork to relax torsional strain
- Topo IV (ParC₂E₂) relaxes and decatenates DNA beyond replication fork
- Due to high homology inhibitors of DNA gyrase and Topo IV crossover to one another

DNA Gyrase Crystallography

Fragment-based Hit Identification

- Screened 960 small molecules for binding to E. coli GyrB-24 using NMR
- Fragments of known inhibitors provided the most potent hits with \textit{K}_{d} values from 10 to 950 μM

Site 1

Two Fragments of Interest

Models: Pyrrole at Site 1 – key H-bond and water bridge to Asp81 Quinoline acid @ Site 2 – key salt bridge with Arg 144, π -stack w/ Arg84

Site 1
Pyrrole Hit $K_d = 1070 \mu M$

LE = 0.27

Site 2 Quinoline Hit

 $K_d = 5000 \mu M$ LE = 0.22

Rule of 3 compliant?

- \checkmark \leq 3 H-bond donors (1)
- ✓ ≤ 3 H-bond acceptors (2)
- \checkmark MW ≤ 300 Da (137)
- \checkmark cLogP \leq 3 (1.15)
- \checkmark # rot bonds \leq 3 (1)
- ✓ PSA \leq 60 Å² (42)

Site 1 – adenine of ATP

Site 2 – outside of ATP binding site

- Rule of 3 compliant?
- ≤ 3 H-bond donors (1)
- ≤ 3 H-bond acceptors (5)
- ✓ MW \leq 300 Da (234)
- \angle cLogP \leq 3 (0.19)
- / # rot bonds \leq 3 (2)
- \checkmark PSA \leq 60 Å² (116)

Best hit from library of pyrrole amides

ATPase IC₅₀ (μ M)

E. coli gyrase: 0.61 LE = 0.24

 $K_{\rm i} = 0.28$ 0.26

S. aureus gyrase: 1.4 0.23

MIC (μg/ml)

S. pneumoniae: >64

S. aureus >64

Microsomal Clearance (mg/min/ml)

Human: >100

GyrB:Pyrrolamide Crystal Structure

- Pyrrole binds as predicted from NMR
- Linker and heterocycle extend into the Site 2 region

Hit to Lead

Gyrase K_1 (nM):

S. aureus = 19

E. coli = 9.6

LE = 0.30

LE = 0.32

MICs (μg/ml):

S. pneumoniae = 1

M. catarrhalis = 2

H. influenzae = 4

Physical Properties

MW = 431

 $logD = 3.4 \mu M$

Solubility < 3 μ M

CI CI N N O

Gyrase K_1 (nM):

S. aureus = 18

E. coli = 4.4

LE = 0.30

LE = 0.33

MICs (μg/ml):

S. pneumoniae = 0.25

M. catarrhalis = 0.5

H. influenzae = 2

Physical Properties

MW = 403

logD = 0.02

Solubility > 260 μ M

Efficacy demonstrated on PO dosing Mouse thigh model of *S. pneumonia* infection

Development Candidate

	O OH			HZ.	O OH S N N N N N N N N N N N N N N N N N N
	(1)		(2)	cı [/]	(3)
Gyr A Sau K _i (μM)	<10		<10		<10
ParE Eco K _i (μM)	240		73		54
WT Sau MIC (μg/ml)	0.32	 	0.036		0.031
MRSA MIC (μg/ml)	0.5		0.057	į	0.018
Spn MIC (μg/ml)	0.016		0.016		0.007
Solubility (μM)	ND		660		350
Rat Cl _u (ml/min/kg)	>1300		411		38
Bioavailability (%)	6.7		81		ND

Phase 1 IV PK Trial – AZD5099

Product Vision: IV & oral step-down therapy for acute bacterial skin and skin structure infections and bacterial pneumonia caused by sensitive and drug-resistant Gram-positive and fastidious Gram-negative respiratory tract pathogens

- no deaths, serious or severe adverse events, or events that called for discontinuation
- 10 (23.8%) active-treated volunteers reported at least one adverse event (diarrhea, headache, or dizziness)
- 7 (50%) placebo-treated volunteers reported at least one adverse event
- No safety concerns in clinical laboratory tests, vital signs, electrocardiograms, or physical examinations; no hypothermia or hyperthermia.

Development stopped due to:

- High exposure variability in Phase 1 SAD study
- Swollen mitochondria signal in rat & dog liver tissue (28d GLP study)
- PK/PD magnitude decrease from continued mouse efficacy experiments
- Realignment of infectious disease commercial position

Second Fragment-Based Screen

Fragment hit to lead

Α	В
<0.01	0.002
0.23	0.003
0.04	<0.06
0.06	<0.06
0.05	<0.06
>64	0.57
ND	0.5
ND	1.1
19	66
95.6	85.1
820	ND
	<0.01 0.23 0.04 0.06 0.05 >64 ND ND 19 95.6

Phenotypic screening

- Uses physiological systems, e.g. cells, tissues or whole organisms
- Surveys compounds that act simultaneously on more than one target
- Assumes no knowledge of the molecular mode-of-action relying on empiricism
- Requires reverse genomics and proteomics to determine the target

Phenotypic assays endpoints:

- 1) identify new drug candidates and their corresponding molecular mechanisms of action
- 2) understand the underlying biology that will lead to identification of translation biomarkers
- 3) identify undesired effects related to toxicity of drug candidates

SPT Early History: Pharmacia-Upjohn

Drug Likeness

- \leq 5 H-bond donors (2)
- ✓ ≤ 10 H-bond acceptors (6-9)
- \checkmark MW ≤ 500 Da (374)
- \checkmark cLogP \leq 3 (-0.59)
- ✓ # rot bonds \leq 10 (1)
- ✓ PSA \leq 133 Å² (133)

<u>Issues</u>

- Nitro group
- High serum MIC shift
- PNU-286607 ID'd via phenotypic screening against S. aureus & E. coli
- Favorable PK properties Cl_p = 12 ml/min/kg; Cl_u = 39 ml/min/kg, F = 95%
- Efficacy in mouse thigh model of *S. aureus* infection
- Activity resides in (-)-enantiomer

SPT Early History: Pharmacia-Upjohn

- Labelled metabolite incorporation implicated DNA biosynthesis
 - Lab resistant strains ⇒ mutations in DNA gyrase
- Lab resistant strains \Rightarrow single point mutations in gyrB (Asp437) near DNA cleavage site
- No cross-resistance to other DNA gyrase inhibiting antibacterials including ciprofloxacin & novobiocin

Hit to Multiple Leads

A Brief History of Time

IV/PO Gram-(+) agent		
Sau, Spn, Spy MICs (μM)	0.32, 0.45, 0.33	
Sol (μM)	80	
ppb (%free)	13	
Rat/Dog CI (ml/min/kg)	9.1/5.9	
MLA genotoxicty (μM)	6.2	
Erythrocyte IC ₅₀ (μM)	6	
In vivo efficacy	yes	

Zoliflodacin (PO <i>N.g.</i> , G+)		
Sau, Spn, Spy MICs (μM)	0.57, 0.43, 0.36	
Sol (μM)	390	
ppb (%free)	17	
Rat/Dog CI (ml/min/kg)	22/3.7	
MLA genotoxicty	N	
Erythrocyte IC _{s0} (μM)	>100	
In vivo efficacy	yes	

LipE – Target and Whole Cell Activity

Note the use of LogD and not cLogP

LLE: pIC₅₀ – logD MIC-LLE: pMIC – logD

Skew analog series to higher polarity

Lipinski 'rule of five'

- ≤ 5 H-bond donors
- ≤ 10 H-bond acceptors
- MW ≤ 500 Da
- LogP ≤ 5

Others

Rot. Bonds <10

TPSA <140

	<u> </u>
MW = 487	Fraction $sp^3 = 0.52$
2 H-bond donors	LE = 0.19
8-12 H-bond acceptors	BEI = 0.014
cLogP = 0.76	SEI = 0.047
clogD = 1.6	LiPE = 6.0
Rot. Bonds = 1	PFI = 3.6
TPSA = 143	LELP = 4
Solubility = 390 μM	Dose # = 0.011 (by PK/PD)
F = 46% mouse	= 0.074
34% rat	
71-100% dog	
58% monkey	
222 h	
??? human	

Oral Treatment for N. gonorrhoeae

Vision

Oral single dose treatment of uncomplicated gonorrhea

Attributes

- Spiropyrimidinetrione (SPT): first-in-class nonquinolone topoisomerase chemotype and modeof-action
- Highly potent against Neisseria gonorrhoeae
- Addresses evolving unmet medical need
- FDA endorsed Ph2/3 study design

zoliflodacin AZD0914\ETX0914

Current Status

- Phase 1: PK, safety, tolerability in healthy volunteers, completed March 2014
- Phase 1: ADME w/ healthy volunteers, completed February 2015
- Phase 2: Uncomplicated gonorrhea in patients, completed December 2015
- Phase 3: Uncomplicated gonorrhea met endpoint (November 2023)
- NDA application in progress

Drug Repurposing/Repositioning/Modification

Investigation of existing or shelved/failed drugs for new therapeutic purposes or modification of an existing entity to better fit the new therapeutic purpose

Compound	Initial indication	Repurposing
Sildenafil	Angina	Erectile dysfunction
Gemcitabine	Antiviral	Cancer
Doxycylcline	Periodontic	Rosacea, antimicrobial
Minoxidil	Hypertension	Hair loss

Drugs get shelved drugs due to:

- Insufficient efficacy
- Commercial failure
- Re-evaluation of market potential
- Costs and difficulty of clinical trials

Compound	Primary disease	Repositioning
Acetylsalicylate	Mild analgesic	Antithrombotic
Amantadine	Influenza	Parkinson's disease
Bleomycin	Various cancers	Pleural effusion
Cycloserine	Tuberculosis	Urinary tract infections
Cyclosporin	Transplant rejection	Rheumatoid arthritis; Psoriasis
Eflornithine	Facial hirsutism	Sleeping sickness
Finasteride	Benign prostate enlargement	Male pattern baldness; Hersutism in women
Histrelin	Prostate cancer	Precocious puberty
Infliximab	Ulcerative colitis; Crohn's disease	Rheumatoid arthritis; Psoriasis
Interferon alfa	Hepatitis B and C	Various cancers
Retuximab	Various cancers	Rheumatoid arthritis
Bleomycin	Various cancers	Pleural effusion

SPTs for *Mycobacterium tuberculosis*

Entasis (AstraZeneca spinoff) provided 24 SPTs for evaluation against *M. tuberculosis* (*Mtb*)

- 10 cmpds showed MICs < 10 μM across 5 media conditions
- 5 cmpds mitigated issues associated with genotoxcity and cytotoxicity
- Optimization campaign initiated

Selective M. tuberculosis SPT

H3D-005867

H3D-006621
Efficacious in mouse
Mtb model

H3D-003387

Zoliflodacin

	<i>Mtb</i> ADC/GLU/TW IC ₅₀ (μM)	S. aureus IC ₅₀ (μM)	Mtb MIC (μM)	S. aureus MIC (μM)	<i>E. coli</i> ΜΙC (μΜ)	HepG2 IC ₅₀ (μM)
H3D-005867	2.6	ND	0.49	>125	>125	>300
H3D-006621	2	ND	1.7	0.45	31	>300
H3D-003387	18	1.7	2.0	0.24	2.0	26
Zoliflodacin	32	4.3	7	0.14	1.4	>50

If we knew what we were doing, it would not be called research, would it?

Albert Einstein

Theoretical physicist, mathematician, lecturer, patent examiner, intellectual

Supported by

Gates Foundation

