

Drug Discovery and Development Course

Principles of Compound Optimization

Greg Basarab

Supported by

Gates Foundation (LifeArc)

Learning Objectives

Make a molecule great

- Consider key parameters associated with drug-likeness
- Employ computational tools to assess compound parameters
- Measure key compound parameters

Validate compound parameters relative to project goals

Druglikeness

Similar compound properties to existing drugs

or...

Think inside the box

Compound biological attributes

Lipinski 'rule of five'

Oral drugs do not violate more than one of the following parameters:

- ≤ 5 H-bond donors
- ≤ 10 H-bond acceptors
- MW ≤ 500 Da
- LogP ≤ 5

Med Chemist @ Pfizer for 34 years

Atorvastatin (Lipitor)

3 H-bond donors

5 H-bond aceptors

MW = 558

ClogP = 4.5

Rot. bonds = 13

 $PSA = 110 \text{ Å}^2$

F = 14%

Best used in early hit identification stage to insure a viable scaffold is pursued

(c)LogD and (c)LogP

D (Distribution
$$[drug]_{octanol}$$

Coefficient) = $[drug]_{buffer (7.4 usually)}$

P (Partition
$$[drug]_{octanol}$$

Coefficient) = $\frac{}{[unionized drug]_{buffer (7.4?)}}$

Neutral species optimally permeate cellular lipid bilayers (passive diffusion)

- Expression of activity against intracellular targets
- Intestinal drug absorption
- CNS penetration

Transcellular permeability

Oral drugs transit small intestine epithelium to bloodstream & portal vein

- Cancer coli (Caco-2) cells: human epithelial colorectal adenocarcinoma cells that aggregate directionally on filter surfaces
- Madin-Darby canine kidney (MDCK) cells: derived from canine kidney tissue

Solubility

- Solubility is perhaps the most important ADME property
- Valid in vitro data relies on compound being soluble under the conditions

Comment on the data for this compound						
Solubility	< 1 µM					
IC ₅₀ (HepG2 cells)	> 200 μM					

- Poorly soluble compounds are difficult to formulate
 - Assessments of PK, PD, toxicology become problematic
- High solubility is a must for IV administration
- Thermodynamic solubility should be measured in:
 - pH 7.4 buffer (IV), 6.5 and/or 7.4 (PO)
 - Biorelevant media: FaSSIF Fasted State Simulated Intestinal Fluid
 (PO cmpds) FeSSIF Fed State Simulated Intestinal Fluid
 FaSSGF Fasted State Simulated Gastric Fluid

Solubility and Permeability Together (PO drugs)

BSC Classification – solubility 250 mg & permeability (≥90% absorption drug + metabolites) BDDCS = Biopharmaceutics Drug Disposition Classification System

Dose Number =
$$\frac{\text{Max. dose}}{250_*\text{clogP}_*\text{Sol}}$$

```
BDDCS 1 – high solubility & high permeability
Ave. Max. Dose = 113 mg

BDDCS 2 – low solubility & high permeability
Ave. Max. Dose = 204 mg

BDDCS 3 – high solubility & low permeability
Ave. Max. Dose = 276 mg

BDDCS 4 – low solubility & low permeability
Ave. Max. Dose = 392 mg
```

Max Absorbable Dose =
$$Sol \times K_a \times Sl_{WV} \times Sl_{TT}$$

Fragment based lead discovery

Rule of three: begin small because growth is (seemingly) inevitable

- ≤ 3 H-bond donors
- ≤ 3 H-bond acceptors
- MW ≤ 300 Da
- LogP ≤ 3
- # rot bonds ≤ 3
- $PSA \le 60 \text{ Å}^2$

Other correlated parameters

• ≤ 10 rotatable bonds

Topological polar surface area

• TPSA $\leq 140 \text{ Å}^2$

sp³ versus sp² (globular versus flat)

Number or aromatic rings - sp³ count - Aromatic vs heavy atoms - Aromatic Proportion

- Increased # aromatic (flat) rings \Rightarrow decreases solubility \Rightarrow associated w/ promiscuity: inc. ppb, cyp inhibition, hERG inhibition, et al.
- Heteroaromatics better than carboaromatics
- Increasing # of stereocenters ⇒ associated with positive clinical outcomes
- See 3D-Fragment Consortium (http://www.3dfrag.org/)

Cross-correlations – 700 oral drugs

Anti-Lipinski

Azithromycin

F = 38%; 250 mg

MW = 749

 $PSA = 180 \text{ Å}^2$

cLogP = 2.9

cLogD = 0.47

 $pK_a = 8.74; 9.45$

H-acceptors = 14

H-donors = 5-7

Rot. Bonds = 7

Exposed PSA = 131 Å^2

Solvent accessible H-bond acceptors = 8

Solvent accessible H-bond donors = 4

logP = 4.1

logD = 0.61

Anti-Lipinski

Digoxin - atrial fibrillation 6 H-bond donors 13 H-bond aceptors MW =
$$781$$
 ClogP = 1.4 Rot. bonds = 7 PSA = 215 Å 2 F = 70%

Risedronic acid - osteoporosis

5 H-bond donors

8 H-bond aceptors

MW = 283

PSA = 161
$$\mathring{A}^2$$

ClogP = -2.62

Rot. bonds = 3

10 mg dose

Semaglutide (Ozempic®)

Anti-diabetic (type2)/Anti-obesity medication

Dose: 0.25 mg once a week (first 4 weeks) – IM 3.0 mg daily for 30 days (PO)

$$T_{1/2} = 7 \text{ days}$$

$$F = 0.8 - 1.4\%$$

MW = 4114

Composite parameter – ligand efficiency

Ligand efficiency (LE): pIC₅₀ ÷ HAC (heavy atom count)

Others:

group efficiency (GE): $\Delta \operatorname{pIC}_{50} \div \Delta \operatorname{HAC}$ size independent ligand efficiency (SILE): $\operatorname{pIC}_{50} \div \operatorname{HAC}^{0.3}$

- Target potency increases with increasing size
- Tends to select for more lipophilic compound
- Larger LE ⇒ better the hit or lead matter

De-convolute hits from a screening library

- percentage efficiency index (PEI): [Cmpd@50% inh] ÷ MW
 - alternative to LE (better accounting for atomic weight)
- binding efficiency index (BEI): pIC₅₀ ÷ MW
 - similar to PEI w/ IC₅₀ data
- surface binding efficiency index (SEI): pIC₅₀ ÷ TPSA
 - normalize for polar atoms

Drugs dominated by non-polar atoms (MW ➤ PSA)

Lipophilicity Efficiency

Lipophilicity Efficiency (LiPE) or Ligand Lipophilicity Efficiency (LLE) (LiPE): pIC₅₀- cLogP

- Battle the proclivity to increase target potency by increasing lipophilicity
- Useful for lead optimization

Enthalpy versus Entropy

H-bond interactions, electrostatic interactions, van der Waals interactions, etc.

Primarily hydrophobic interactions – due to desolvation

Entropy

• Tied-ups, tied-backs, tie-dyed, cyclized, constrained,

Which took more energy to create???

Conformationally locked farnesyltransferase inhibitors

- Both ligands and targets sites become more ordered on association (binding) – costs associated
- Pre-organization into binding conformations can greatly improve potency – money in the bank

Propert Forecast Index (PFI)

PFI = logD + #Aromatics

Young, R. J. Nat. Rev. Drug Disc. 16(17-18), 822, 2011

- Optimal for permeability ⇒ intermediate value
- Optimal for potency ⇒ intermediate value
- Optimal for all else ⇒ go small and go polar

Other composite parameters

- ligand efficiency dependent lipophilicity (LELP): clogP ÷ LE
 - accounts for price of LE paid in clogP
- polar surface area density (PSAD): MW ÷ PSA
 - normalize for PSA going up as molecule size increases
- dose number (Do): Max. Dose ÷ (250 x cLogP x Solubility)
 - Lower solubility can follow low dose drug
- ligand efficiency scale (LE_Scale):

$$0.072+7.5/(HA)+25.7/(HA^2)-361.5/(HA^3)$$

- normalize for small molecules versus larger molecules
- ligand lipophilicity index (LLE_{AT}):

$$LLE_{AT} = 0.11 - ln(10) \cdot RT(log P - plC_{50}) \div HAC$$

- subtract out lipophilicity component for ΔG of binding

Too many (often conflicting) optimizations

Simultaneous optimization (or mitigation):

- Target activity
- Cell Permeability
- Solubility
- Clearance (biliary, metabolic, renal, etc.)
- Reactive metabolites
- Distribution
- Plasma protein binding
- Plasma stability
- Absorption/bioavailability (oral)
- Off-target activity
- Ion channel binding
- Genotoxicity
- Hepatotoxicity
- Mitochondrial toxicity
- Drug-drug interaction (Cyp inhibition, transporter inhibition)
- Cost-of-goods/synthetic feasibility
- > etc.

All drugs must make some compromises

Multi-Parameter Optimization (MPO)

$$AUC = \frac{Dose*F}{Cl}$$

$$CI = \frac{0.693 * V_d}{t_{1/2}}$$

$$\frac{\mathsf{Ideal}}{\mathsf{Cmpd}} \propto \frac{\mathsf{fAUC}}{\mathsf{MEC}}$$

MPO

	Target pot. (IC ₅₀)	PfNF54 IC ₅₀	<i>PfK1</i> IC ₅₀	Solu- bility	μ-some Cl _{int} (Mo)	μ-some Cl _{int} (Hu)	hERG	HepG2	Caco-2 (A⇒B)	Caco-2 (efflux)	TPSA	LogD
Hi-Low	Low	Low	Low	High	Low	Low	High	High	High	Low	Low	~2
Weight	2	10	8	10	7	4	3	6	5	5	3	3
Α												
В												
С												
D												
E												
F												
G												
Н												
I												
J												

MPO

	Target pot. (IC ₅₀)	<i>Pf</i> NF54	<i>PfK1</i> IC ₅₀	Solu- bility	μ-some Cl _{int} (Mo)	μ-some Cl _{int} (Hu)	hERG	HepG2	Caco-2 (A⇒B)	Caco-2 (efflux)	TPSA	LogD
Hi-Low	Low	Low	Low	High	Low	Low	High	High	High	Low	Low	~2
Weight	2	10	8	10	7	4	3	6	5	5	3	3
L												
W												
M												
Υ												
Α												
В												
F												
Х												
N												
D												

MPO Excercise

Rank order these 4 compounds from best to worse. The aim is to put into an in vivo mouse efficacy model towards selecting a development candidate

	Target (IC ₅₀ , nM)	<i>Pf</i> NF54 (IC ₅₀ , nM)	FaSSIF Solu- bility (µM)	Plasma Cl _{int} (Mo, ml/min/ kg)	Bioavail ability (Mo, %)	Plasma Protein Binding (Mo, %)	hERG (IC ₅₀ , μM)	HepG2 (IC ₅₀ , nM)
Hi-Low	Low	Low	High	Low	High	Low	High	High
Weight	???	???	???	???	???	???	???	???
Α	24	32	36	2.6	76	93	100	270
В	8	25	36	3.2	62	86	10	120
С	23	5	3750	13	66	90	10	13
D	1	5	255	19	66	82	30	100

Parting thought: Rules only make sense if they are broken. Breaking the rule is one way of observing it.

Sir Thomas More

English lawyer, judge, social philosopher, author, statesman, amateur theologian, and noted Renaissance humanist

Supported by

Gates Foundation

