

An overview of first-in-human trials including analytical considerations in the design, analysis and interpretation of clinical studies

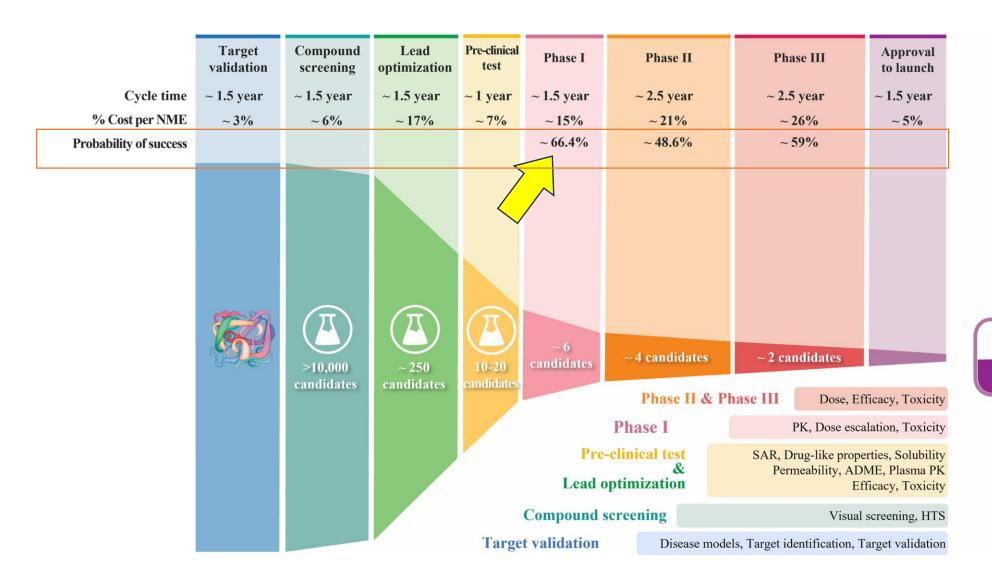
Olawale Salami MD, DTM&H (RCP), MBA

14th February 2025

Overview

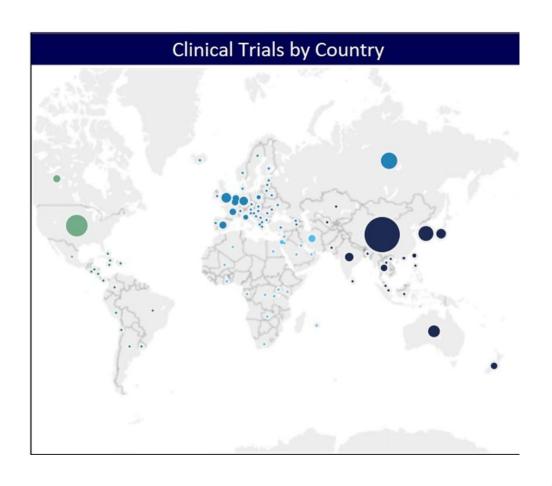
- 1. Introduction to first in human trials
- 2. Preclinical safety testing
- 3. Starting dose selection
- 4. Study design considerations in FIH trials
- 5. Biomarker assessment
- 6. Safety monitoring
- 7. Analytical considerations in FIH trials
- 8. Conclusion.

1. Introduction to First in Human Trials



First-in-Human Trials: Where Science Meets Caution

- FIH trials (Phase 1) are the first human testing of a new drug, bridging preclinical data to real-world application.
- Focus on assessing safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD), ensuring no unexpected outcomes.
- Conducted in small groups of healthy volunteers or patients, using dose escalation methods for safety.
- Rigorous monitoring with sentinel dosing and early stopping criteria to minimise risks.
- If successful, the drug advances to Phase 2; if not, it returns to the drawing board, balancing hope and caution.



On the rough road to success.....

First in human trials: Location and therapeutic areas, but where is Africa?

2. Preclinical safety testing for FIH trials

Preclinical safety testing for FIH trials

Key Guidelines and Regulatory Background:

•ICH Guidance:

- •ICH M3(R2): Core safety evaluation expectations for FIH trials.
- •ICH S6(R1): Biologics-specific requirements.
- •ICH S9: Guidelines for anticancer pharmaceuticals.

Goals of Preclinical Safety Testing:

- 1.Identify organ toxicity and relation to drug exposure.
- 2. Assess on-target and off-target effects.
- 3. Determine relevance to human safety.
- 4. Identify and qualify biomarkers for clinical monitoring.

Considerations in Safety Testing Strategy:

- •Therapeutic Type: Different approaches for small molecules vs. biologics.
- •Therapeutic Indication: Tailored assessments for specific disease areas (e.g., CNS, oncology).
- •FIH Trial Design: Align preclinical studies to match trial scope, treatment duration, and patient/volunteer safety needs.

Preclinical Safety Study Design

- Study Requirements by Therapeutic Type:
 - Small Molecules: Genotoxicity (ICH S2[R1]) and QT assessment for cardiac safety.
 - Biologics: Non-rodent species, focus on pharmacologic relevance.
- Core Safety Protocols:
 - Toxicology: MTD, NOAEL, and dose-ranging in animals.
 - Safety Pharmacology: Cardio (QT prolongation), CNS, respiratory systems.
 - Photosafety: Initial phototoxic potential assessment (ICH S10).
- Alternative Routes:
 - Exploratory trials (microdosing up to 14-day): Early PK, PD, biomarker data.

ICH recommended preclinical studies enabling FIH trials(1)

Study type	Small molecules	Large molecules	GLP compliance Requirement
Pharmacodynamics			No
In vitro (MOA)	X	X	
In vivo (MOA and therapeutic effect)	X	X	
Safety pharmacology (ICH S7A <u>62</u> and S7B <u>63</u>)			Yes
In vitro (concentration-effect relationship)	X	X	
In vivo (dose-response for CNS, CV, respiratory effects)	Χ	X	
Pharmacokinetics (ICH M3(R2)6)			
In vitro metabolism (across species microsomal metabolism)	Χ	NA	No
In vitro plasma protein binding	X	NA	No
Toxicokinetics from repeat dose GLP toxicity studies (ICH S3A <u>64</u>)	Х	X	Yes

Shen, J., Swift, B., Mamelok, R., Pine, S., Sinclair, J. and Attar, M. (2019), Design and Conduct Considerations for First-in-Human Trials. Clin Transl Sci, 12: 6-19. https://doi.org/10.1111/cts.12582

ICH recommended preclinical studies enabling FIH trials(2)

Study type	Small molecules	Large molecules	GLP compliance Requirement
Genotoxicity battery (ICH S2(R1)7)			Yes
In vitro Ames test	Χ	*	
In vitro and/or in vivo mammalian cell chromosomal damage evaluation	Χ	*	
Single-dose / dose range finding			No and Yes <u>c</u>
Rodent single-dose (could be MTD study)	Χ	NA	
Nonrodent single-dose (could be MTD study)	X	X	
Repeat dose toxicity (ICH M3(R2)6)			Yes
Rodent multidose	X	Optional	
Nonrodent multidose	X	X	
Other studies			No
Immunotoxicity (ICH S8 <u>65</u>)	X	X	
Photosafety (ICH S10 <u>10</u>)	Х	X	

3. Starting dose selection in FIH trials

Supported by

Starting Dose Selection for FIH Trials

• **Objective**: Define an initial dose range based on preclinical results (pharmacology, toxicology, PK data) and any relevant human data on similar mechanisms of action (MOA).

Key Considerations:

- Starting dose must balance toxicity risks with the need for pharmacologic activity.
- Dose range should include escalation steps to inform later efficacy-focused studies.
- Avoid too low starting doses or overly cautious escalation to prevent unnecessary cohorts that can increase study size and duration.

Regulatory Guidance:

- EMA: Covers preclinical to clinical transition, risks, and mitigation in FIH trials.
- FDA: Suggests using NOAEL as a benchmark for a safe starting dose based on toxicology data.

FIH Dose Selection

•No Standard Approach: Each drug candidate has unique considerations, making a single dose selection method impractical.

•Common Methods:

1.Empirical Approach (FDA):

- •Uses NOAEL with allometric scaling for a maximum safe dose.
- •Pros: Low toxicity risk. Cons: May miss active pharmacologic dose, doesn't address dose escalation.

2.Mechanistic Approach (EMA):

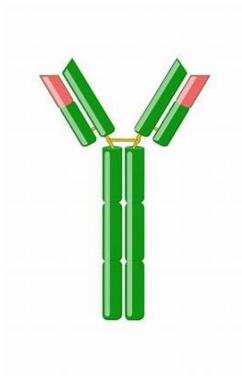
- •Utilizes detailed preclinical pharmacology data, ex vivo/in vitro studies, and modeling.
- •Focuses on **Minimal Anticipated Biological Effect Level** for more targeted, potent therapies, often at doses lower than NOAEL.

Regulatory frameworks provide a structured yet adaptable model for safe, effective FIH starting doses.

FIH Dose Selection (small molecules)

2 primary approaches to interspecies scaling of small molecules

- Allometric Scaling Modifications:
 - Rule of Exponents
 - Liver Blood Flow Correction
 - In Vitro Metabolic Clearance Correction
- ICH S9 Guidance for Anticancer Agents:
 - Starting dose based on toxicity in animals.
 - Consider highest non-severely toxic dose (HNSTD) rather than NOAEL.


Physiological-Based Pharmacokinetic (PBPK) Modeling:

Mechanistic, but data-intensive.

Allometric Scaling:

 Empirical, less data-intensive, but less accurate for compounds with high cross-species variability

FIH Dose Selection (large molecules)

- Biodistribution and Pharmacokinetics considerations
 - Polarity, Charge, Molecular Size
 - Primarily eliminated via renal excretion and proteolytic degradation to amino acids.
 - Allometric scaling methods are effective due to conserved processes across mammalian species.
- Pharmacokinetics of Monoclonal Antibodies (mAbs):
 - Predictive models rely on PK data from nonhuman primates.
 - Linear PKs: Simple allometric scaling predicts human PK within a twofold range.
 - Nonlinear PKs: Overestimation occurs at sub-targetsaturating concentrations; consider target-mediated parameters for accuracy.
- Local Delivery Considerations:
 - Similar scaling principles apply but may require PBPK approaches due to challenges in validating target site PK in humans.

4. Study design considerations in FIH trials

Sample Size and Inclusion of Placebo Subjects in FIH Trials

- **Typical FIH Design:** Blinded, placebo-controlled with 8-10 subjects per cohort (3:1 or 4:1 active:placebo) in multiple dose escalation cohorts.
- Focus: Safety Signal Detection, not Hypothesis Testing.
- **Detectable Event Rate:** Determined by total subjects, cohort size, event rate, and background rate.
- Cohort Size (N): Increasing N from 1 to 6 improves event detection, minimal gain above N=10.
- Placebo Inclusion: The rationale for inclusion of placebodosed subjects is the perceived bias in adverse event (AE) reporting.

Study Population in FIH Trials

- Healthy Subjects vs. Patients: Evaluate risk-benefit for each study.
- **Higher Risk Agents:** Patients might be considered (e.g., life-threatening diseases).
- **Healthy Subjects:** Mitigate confounding factors (comorbidities, medications).
- Sex Inclusion:
 - Traditionally: Male volunteers and non-childbearing females.
 - Modern Approach: Include females to understand sex differences in PK/safety/response.

Dose and Dose Escalation Scheme in FIH Trials

- Mitigate Risk: Sequential dosing with observation periods between subjects (sentinel dosing).
- Balance Safety and Defining Correct Dose Range: Avoid abandoning potentially useful drugs.
- Maximum Exposure Level: Predefined for FIH trials in healthy volunteers.
- EMA Guidance: Stop dose escalation at pre-defined maximum exposure (Cmax or AUC).
- Oncology Trials:
 - Single subject at low dose for initial safety and PK assessment.
 - Body size-based dosing might not be necessary.
- Dose Finding Designs:
 - Rule-based (e.g., 3+3 design) or model-based (adaptive Bayesian models).
 - Goal: Identify "Recommended Phase II Dose".

First-in-Human Study Design: SAD/MAD & Adaptive Approaches

Traditional Design:

 Separate Single Ascending Dose (SAD) and Multiple Ascending Dose (MAD) studies, with MAD lagging behind SAD.

Adaptive SAD/MAD Combo Design:

- Conducts SAD and MAD in parallel with adaptive cohorts to test new doses.
- **Benefit**: Reduces timeline by up to 12 months.
- Challenge: Requires strict safety start/stop criteria.

Key Assessments in FIH Studies:

- Food and Formulation Effects: Often tested at therapeutically relevant doses in SAD arm with crossover designs for meaningful results.
- **Drug-Drug Interaction (DDI)**: Considered if candidate shows strong DDI potential (e.g., cytochrome P450 inhibition) to inform clinical relevance.

Immunogenicity:

Essential for high-risk protein therapeutics; animal studies aren't predictive, making FIH critical for gauging immune responses.

5. Safety monitoring in FIH trials

Safety Monitoring in FIH Studies – Key Challenges & Approaches

Safety Signal Detection:

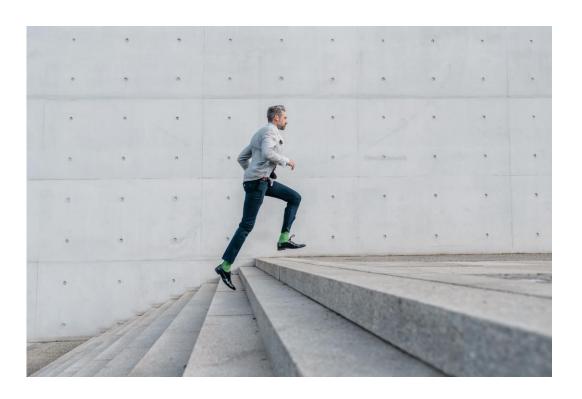
- Small sample size limits certainty in detecting safety signals.
- Determining causality is complex, especially in patient populations with high noise-to-signal ratios.

Data Collection:

- Standard assessments include physical exams, vital signs, lab tests (hematology, chemistry, urinalysis), and ECGs.
- Additional tests (e.g., ophthalmologic, psychometric) may be required based on preclinical toxicology.
- Special Focus on Cardiac Safety: Continuous ECG monitoring when preclinical data indicates risks to cardiac conduction, potentially avoiding later dedicated QT studies.

Monitoring Specific Reactions:

- Localised reactions are essential for topical drugs.
- For defined AEs of interest (e.g., hepatic issues), detailed history (e.g., alcohol intake, medications) and tests
 for confounding causes improve attribution accuracy.


Determining MTD & AE Management in FIH Studies

Maximum Tolerated Dose (MTD):

- Determined by Dose-Limiting Toxicities (DLTs) at preset severity levels.
- Trials designed with stepwise dose escalation within cohorts or individuals.
- Important to perform in the **intended patient population** to reflect disease-specific susceptibilities.

Safety Monitoring Plans:

- AE monitoring varies with predicted toxicity risk:
 - Low-risk: Sponsor-led monitoring.
 - Moderate/high-risk: Collaboration with independent experts or a data monitoring committee.
- Independent monitoring is considered for placebo-controlled or hightoxicity risk trials.
- Plan Requirements: Specifies data collection, review timelines, and criteria for dose adjustments or trial stopping based on toxicity signals.

6. Biomarker assessment in FIH trials

Biomarker Assessment in FIH Studies – Purpose & Planning

Role of Biomarkers:

- First chance to obtain biological readouts in humans, aiding drug development through target engagement and efficacy insights.
- Supports precision medicine and diagnostic use (e.g., BRCA1/2 for cancer risk).

FIH Study as a Testing Ground:

- Confirms preclinical hypotheses, paving the way for **proof of concept (POC)** and clinical diagnostics.
- Critical for oncology and other fields where biomarkers guide treatment and risk assessments.

Planning Biomarker Inclusion:

- Success relies on thorough preparation: literature review, bioanalytical method validation, clinical sampling strategy, and regulatory assessment.
- **Fit-for-Purpose Compliance**: Defines the rigor of data handling based on biomarker role (e.g., POC vs. phase III support).

Biomarker Feasibility, Methods & Compliance

Method Development:

- Simple markers (e.g., serum proteins) vs. complex samples (e.g., tissue biopsies) need **validated methods** for accuracy.
- Bioanalytical techniques vary by matrix: common assays (e.g., LC-MS) or custom methods may be needed.

Regulatory & Analytical Considerations:

- Qualification vs. Validation: Fully validated methods for phase III support; qualified assays suffice for early decisions.
- **Data Analysis Standards**: Exploratory analyses may use simple methods, while advanced stages require **regulatory-compliant standards**.

Strategic Data Analysis:

 Prospective data plan (e.g., using normalization factors for variable matrices like urine) aligns rigor with clinical development goals.

Risk Mitigation Strategies in FIH Clinical Trials

- Preclinical considerations
- Understanding drug absorption, metabolism, and excretion to predict human exposure.
- Identify potential organ-specific toxicities and define the No-Observed-Adverse-Effect Level (NOAEL) in relevant animal models.
- Immunogenicity and Off-Target Effects Evaluating the potential for immune reactions, receptor cross-reactivity, and unexpected biological effects.
- Species Selection for Translation
- 2. Safe Dose Selection and Escalation Strategies
 - Starting Dose Determination
 - Dose Escalation and Stopping Criteria:
 - Adaptive design with predefined dose increments.
 - Sentinels (small cohorts) dosed sequentially before expanding to larger groups.
 - Early stopping criteria for toxicity or unexpected adverse events

Business Confidential

Risk Mitigation Strategies in FIH Clinical Trials

Clinical Site Preparedness

- Trials conducted in controlled hospital settings with rapid access to intensive care.
- Trained personnel to manage severe adverse reactions, including cytokine storms

Participant Selection

- Healthy volunteers or patients carefully screened for predisposing conditions.
- Exclusion of individuals with high-risk genetic or immunologic profiles.

Real-Time Safety Monitoring

- Intensive monitoring in the first 24–48 hours post-dose.
- Biomarker-driven safety assessments for early detection of toxicity.
- Implementation of Data and Safety Monitoring Boards (DSMBs) for ongoing risk evaluation.

Ethical and Regulatory Safeguards

- Adherence to ICH E6 (GCP), ICH M3 (Nonclinical Safety Studies), and ICH S6 (Biologics)guidelines.
- Informed Consent
- Transparent risk communication to participants, detailing known and unknown risks.
- Option for withdrawal at any stage without penalty.

Statistical Considerations in Phase 1 Studies

Dose Escalation Strategy

Model-based designs (e.g., Bayesian adaptive designs) for optimal dose selection.

Stochastic Models: Account for variability in drug response across populations.

Sample Size Calculation

Small sample sizes (10-100 participants), but precision is critical for safety profiles.

Power Analysis

Ensuring sensitivity for detecting potential adverse effects at low doses.

Analysis of PK/PD Data

Non-compartmental analysis for estimating drug half-life, clearance, and volume of distribution.

Statistical models

For dose-response relationships, with focus on linear vs. nonlinear kinetics.

Interpretation Challenges and Pitfalls in Phase 1 Studies

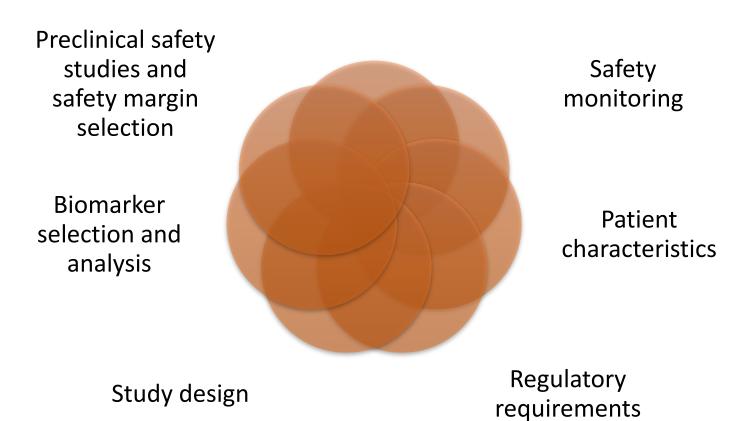
Safety data interpretation

- Adverse Events (AEs): Identifying causal links between drug and observed AEs.
- Thresholds for Toxicity: Distinguishing between side effects and pharmacologically relevant toxicity.

Pharmacokinetic Variability

- Understanding inter-individual variability in drug absorption, distribution, metabolism, and excretion (ADME).
- Impact of genetic polymorphisms on drug metabolism (CYP450, UGT, etc.).

Generalisation to Larger Populations


- Translating findings from healthy volunteers to patient populations.
- Considerations for underlying diseases or drug interactions in later-phase trials.

Ethical Considerations:

- Balancing scientific goals with participant safety.
- Regulatory oversight and informed consent processes.

Conclusion: Keep these in mind for your first in human trials

Thank you for listening

Stay in touch via linkedIn

Olawale Salami | LinkedIn