

Drug Discovery and Development Course

Introduction to Drug Discovery and Development Jeremy Burrows

Supported by

Gates Foundation (LifeArc)

Learning objectives

- Understand the overview of the drug discovery and development process
- Understand importance of working on the right biology
- Understand those properties that impact the chemical quality of a compound series

Drug Discovery Philosophy

- Be curious the best question is "why?"
- You will not understand everything outside your domains of expertise ask questions!
 - Do not pretend to be an expert in areas where you are not
 - Be responsible for understanding and delivering expertise in areas where you are expert explain your thinking and interpretation of data to others
 - Ask, listen and learn from those who are experts outside your area
- Focus on the goal of delivering a candidate drug
 - Drug Discovery is not the same as doing basic science
 - Don't do something because you can do it, rather focus on answering the right questions
 - Gather data, define the issues, ruthlessly focus on solving the issues with chemistry, biology and pharmacokinetics
- Collaboration and team-work are key
 - It is not about "me" but the project and the project team
 - All need to learn the multi-disciplinary language of Drug Discovery

Drug Discovery – where to start?

Drug discovery is a misnomer

- "a wrong or inaccurate use of a name or term"
- Except for some natural products drugs are novel chemical entities that did not exist before they were made
 - Derived from imperfect starting compounds that have been extensively changed and optimized across many parameters

Drug discovery is a journey with various options

- New biology need to find a disease indication
- Defined disease need to find the best approach

It is better to start from the end and define a route to get there!

- Target Product Profile (TPP)
- TPP describes the profile of the medicine necessary to meet the goals of patients, care givers and payers

Drug Discovery Phases

Proof of Concept: Demonstration that the target/ compound series gives the desired response before studying in humans

What biological target to work on?

- Critical to work on compounds having biology relevant for disease
- If not, even the best project team delivering the best candidate drug will deliver failure over years costing USD millions
- So biological target must be validated for the disease
 - Many ways to confirm validation
 - Best to have evidence across several areas genetic, phenotypic, disease model, chemical
- Test cascade is the sequence of assays run to support optimisation
- Test cascade must also be validated and relevant for the disease
 - In vitro biochemical, cellular phenotypic and in vivo efficacy assays are robust, validated with controls and deliver data that translate to patients
- If not, even if working on the best target for the disease, the test cascade will lead the project team in the wrong direction
- Right biology and right assays!

Hit identification options

Target Based

High Throughput Screening (HTS); often large compound numbers in low volume (384 / 1536 well)

Focused Screen (biased!)

Subset of molecules based on target class / structural knowledge

Fragment Screen

- High concentration screen of small molecules biophysical methods (MWt <250)
- Crystallography often required for optimisation / confirmation of binding

Virtual Screen

In-silico docking compound library into protein model (X-ray / AlphaFold)

Structure based design

Exploit structural knowledge to design molecules

Phenotypic screen

- Seeking to see a desired response in cellular systems
- Screening many targets
- Literature work from a known ligand, could be a back-up

What happens during optimisation?

- Optimization often results in increasing Mol Wt and modulating lipophilicity (cLogP) to deliver a lead and candidate drug
- If a library is screened where the molecules have high Mol Wt then high potency compounds may be found – but they are hard to optimize
- Small Mol Wt "lead-like" molecules have a better chance of binding to a receptor than larger druglike molecules and may have weaker potency – but they are easier to optimize
- Focus on a screening library or hits that are "Lead-like" will give a greater chance of success

What makes a good hit?

- Potency and selectivity
- Drug-like properties including low Molecular Weight (MW) and low lipophilicity (LogP)
- Synthetic accessibility and versatility
- No undesirable groups
- Freedom to Operate (FTO) and Intellectual Property (IP) space

Potency

 Potency is the measure of compound activity and reflects the thermodynamics of a compound binding to a biological target

Governed by ∆G=∆H-T∆S

- ΔH enthalpy bond breaking (i.e. desolvation) and bond forming (how well the drug binds to the target)
- ΔS entropy overall impact on disorder of the system

Most, but not all, drugs in the nM range

- Weaker compounds require higher concentrations to efficiently interact with target leading to increased chances of off-target effects
- Potency impacts dose size
- Potency is NOT the only game in town!

Ligand Efficiency (LE) – A measure of "Fit"

Binding contribution per non-H atom

"Goodness of fit"

LE = -RTInKi HA = no. of Heavy atoms i.e. non-H atoms HA R = Gas Constant
$$(0.001987 \text{kcalK}^{-1} \text{mol}^{-1})$$
 T = Temperature in Kelvin Ki = Potency in M

LE =
$$pIC_{50}^*1.37/HA$$
 [pIC_{50} is $-Log_{10}(IC_{50})$]

Has units kilocalories per mole per non-H atom

Lipophilicity Ligand Efficiency LLE = pIC50 - LogD

Optimising a low LE hit has risks

Poor, non-optimal fit to target; Potency gained by bulk and not specific interactions

Mentimeter: Which molecule would you rather work on?

$$F_3C \longrightarrow O \longrightarrow N \longrightarrow O \longrightarrow NH_2$$

$$NH \longrightarrow NH$$

$$NH \longrightarrow NH$$

$$NH \longrightarrow NH$$

$$Ki = 100nM$$

Which molecule would you work on?

Ki = 100nM Heavy atoms = 37 LE = 0.26

Selectivity

- At Hit stage it is most critical to understand the selectivity over the most relevant off-targets
 - Cellular selectivity >10 fold over cytotoxicity in hit
 - If biological target known, selectivity to closest human targets of concern, plus targets known to cause toxicity such as hERG
 - Helps to define the scale of the challenge for Hit-to-Lead
 - Selectivity can be altered with chemistry so criteria increase with later phases
- What selectivity window is needed ultimately?
 - Depends on impact of non-selectivity!
 - Need to define what assays are used to define selectivity
 - At least 100-1000 fold selectivity typical goal for a candidate
 - hERG 30 fold margin based on IC₂₀ vs free Cmax at therapeutic dose

Lipophilicity (LogP)

- Partition coefficient is called LogP
- Measure of lipophilicity or degree to which a compound will partition into 'fatty' tissue vs water

Measure analyte in aqueous phase before and after shaking with organic solvent.

$$P = conc in org = 18 = 9$$

conc in aqu 2

$$LogP = Log_{10}P = 0.954$$

Solubility

- Why is solubility important?
 - Drugs must be in solution to be absorbed
- What solubility do I need?
 - Depends upon route of administration e.g. oral versus IV
 - Related to dose size
 - Higher potency means lower solubility tolerated
- Thermodynamic solubility measure is best, but kinetic OK for trends
 - Remember that compound that resembled brick dust? Forget it!
- A compound is more soluble as its partitioning into water increases i.e. lower logP the better
 - If a compound is ionized to an acid or base more soluble
 - LogD is distribution coefficient and corrects LogP for ionization
 - High melting point lowers solubility

Permeability

tPSA =
Topological
Surface
Area

Lipinski's Rule of 5

 Empirical rule, based on observation (marketed drugs) of physicochemical Assessment of orally bio-available drugs

Poor absorption is likely when molecule has

- >5 Hydrogen-bond donors (NH, OH)
- >10 H-bond acceptors (Heteroatoms)
- cLogP >5
- MW >500

C. Lipinski and A. Hopkins, *Nature*, **432**, 855-861, (2004)

Oral drugs need to be ADME compliant

- Absorption, Distribution, Metabolism, Elimination
- Also called DMPK Drug Metabolism, Pharmacokinetics

Synthetic accessibility and versatility

 The central engine of a drug discovery project is the Hypothesis-design-make-test cycle

- If a chemical series' synthesis is inaccessible the cycle cannot complete or is drastically slowed down
- Feasibility to modify the chemical structure at different points synthetic versatility – important to explore scope of series

Undesirable groups and toxicophores

- Includes groups known to:
 - Be reactive
 - Be unstable
 - Be Toxic
 - Give rise to toxic species on metabolism
 - Lead to rapid metabolism and excretion
 - Have caused clinical candidates to fail

Such chemistry should be avoided or optimised out in Hit Generation

Freedom to Operate and Intellectual Property

- Important to know if a hit series has been published
- Chemical substructure searches of literature
 - Provide information on novelty and known pharmacology of series
 - if not novel information can help with synthesis, other biological activity and competition
- If the project plan is to ultimately file a patent application, then the compounds patented must be novel and inventive
 - No issue if series is novel from the outset just need to keep confidential
 - If not novel, then chemistry will need to factor this in as an additional constraint
 - Must not publish or disclose novel chemical structures and data before patent application filed

Hit-to-Lead

- Phase to drive project towards target product profile, addressing key issues along the way
- Aim is to validate chemical series as being able to deliver a compound meeting the profile by showing the series is:
 - Potent and Selective
 - Drug-like (physicochemical)
 - Drug-like (DMPK/ADME)
 - Potential for acceptable safety
- At lead stage the optimal profile does not have to exist in one compound, but each component should exist within the series
- Scope to deliver a candidate is believed to exist

DMPK

- DMPK = Drug Metabolism and Pharmacokinetics
- ADME = Absorption, Distribution, Metabolism and Elimination
- PD = Pharmacodynamics

- Pharmacokinetics is what the body does to a drug
 - Want appropriate PK in animals (for efficacy and safety studies) and then to optimise, based on predicted human PK, to a candidate drug
- Pharmacodynamics is what the drug does to the body
 - Want to predict what drug concentration/ exposure results in efficacy
 - Demonstrate efficacy at those concentrations in disease model
 - Predicted human efficacious concentration defines human dose target

DMPK: Oral Dosing

To be active, oral drugs must:

- dissolve
- survive range of pH (1.5-8)
- survive intestinal flora/ fauna
- cross membranes
- survive liver (oxidation and conjugation)
- avoid active transport to bile
- avoid excretion by kidneys
- partition into appropriate place(s)

Lead Optimisation

- This phase fine tunes properties of the series such that the entire package is present in one or more compounds
 - Optimisation of all properties, using the same or similar assays as used in Hit-to-Lead
 - Often requires synthesis and in-depth evaluation of a large number of related analogues
 - Can be expensive owing to the large number of complex studies required
 - These are usually built in at the latter stages owing to low through-put or high cost of such tests which limits numbers of compounds that can be tested
- Candidate Criteria should be clearly defined

Additional studies: QT effects & Genotoxicity

- 30% of post-marketing withdrawal of drugs has been attributed to QT prolongation
 - Majority inhibit the IKr current mediated by hERG channels
 - IKr 'rapid' delayed rectifier current that conducts potassium (K+) ions out of the muscle cells of the heart

- Ames test used to assess the mutagenic potential of chemical compounds
 - Uses well characterised bacterial strains

Additional studies: CMC (Chemistry Manufacturing and Control)

Cost of goods

Criterion will depend on dose and therapy area

Chemical stability

Check for decomposition in a range of situations to mimic the intestine

Shelf-life stability

 Compound subjected to humid conditions at elevated temperature to mimic accelerated shelf storage

Crystal form

- Salt selection (for acidic or basic drugs) or co-crystal
- Potential look at polymorphic forms to find the most stable polymorph
- Solubility and F% then measured with correct final form

Drug discovery into drug development

- A candidate drug is an experimental "drug"
- Still a lot to do before it is a drug
 - No direct evidence it is safe in animals let alone humans
 - No direct evidence it works in real patients
- Clinical trials
 - Long, expensive and littered with failure
- Main causes of clinical failures are
 - Efficacy it doesn't work! (~55%)
 - Safety unexpected toxicity (~30%)
- Safety and efficacy risk/ benefit assessed by independent stringent regulatory authority

Non-clinical studies and Clinical trials in humans

- Preclinical development 12-24 months
 - GLP rodent and non-rodent and other safety studies, GMP scale-up
- Phase I 3-9 months
 - Healthy volunteers safety, PK and maximum dose (20-80 male volunteers)
- Phase IIa 6-12 months
 - Patients safety and efficacy (100-200 patients)
- Phase IIb 12-24 months
 - Patients safety and efficacy (200-500 patients)
- Phase III 2-4 years
 - Patients safety efficacy (up to 3,000 patients)
- Phase IV Post approval studies to monitor for safety

Summary

- Drug Discovery is all about finding the 'sweet spot' where all properties necessary for a drug come together
- Candidate drug and target must be consistent with the TPP
- The principles and art of drug discovery are consistent regardless of biological target or disease
 - Specific disease biology knowledge necessary
- Regulators or patients do not care whether a drug was discovered in Pharma or Academia
 - The data packages, compound/ science quality have to be the same
- Drug discovery is multi-disciplinary and highly collaborative in nature
 - Asking for help and advice is not a weakness

References

- Pharmacokinetics and metabolism in drug design D.A.Smith, H. van de Waterbeemd and D. K. Walker. Wiley-VCH, ISBN 3-527-30197-6
- The organic chemistry of drug design and drug action. R.B.Silverman. Academic Press, ISBN 978-0126437324
- Goodman and Gilman's The pharmacological basis of therapeutics. L.
 Brunton, J. Lazo, K. Parker. McGraw-Hill Medical, ISBN 978-0071422802
- Drug Discovery handbook S. C. Gad (Ed). Wiley (2005), ISBN ISBN 0-471-21384-5
- Principles of early drug discovery S. Rees at al, Br J Pharmacol. 2011 Mar; 162(6): 1239–1249
- Drug discovery process https://www.youtube.com/watch?v=DhxD6sVQEYc

Think with the end in mind: TPP

Work on the right biology

Many options to find chemistry – validation of series is key

Optimisation is not just about potency

DMPK and safety too determine whether you have a drug

Practical lessons from a lifelong quest to discover medicines

- You need a thick skin: the science will beat you with a stick every day
- Stay humble
- And yet: you are constantly exposed to magic; the science is continually mind-blowing
- Helping make drugs that save people's lives: indescribable
- Stay positive
- Keep learning, try new things, think big, take chances
- Biology is what usually gets you
- Work hard, sweat the details, avoid unforced errors
- Structure can help you—and so can cellular phenotype
- Integrate everything: technologies, disciplines, hypotheses, mindsets, literature data, you name it
- Teams make drugs. Great teams behave in predictable ways and thrive in supportive environments.
 But teams are complex—and the interpersonal stuff is at least as important as the science
- Luck is a big factor in all our successes. Did I mention that you need to stay humble?
- Good fortune in our lives enables all we accomplish—pay it forward

Abbreviations

- Target: biological molecule, usually a protein, whose function is to be modulated
- Hit: small molecule with promising activity in a primary screening assay
- Lead: molecule with suitable properties for optimization to give a drug candidate
- Candidate: molecule selected for development no further optimisation
- Asset: a molecule or project with value associated with its stage in the pipeline
- Pipeline: an organisation's ensemble of projects at various stages
- TPP: Target Product Profile description of the required drug
- KO: Genetic Knockout (usually mouse)
- FTIH: First Time in Human (aka Phase I Clinical Trial) safety assessment in healthy volunteers
- PoC: Proof of Concept (aka Phase II Clinical Trial) compound/mechanism gives desired clinical response
- NOAEL: No Observed Adverse Effect Level
- MTD: Maximum Tolerated Dose
- MW/MWt: Molecular Weight
- MED: Minimum Effective Dose
- HTS: High Throughput Screen
- SAR: Structure-Activity Relationship relationship between the compound's structure and its activity
- DMPK: Drug Metabolism & Pharmacokinetics how the drug is handled by the body
- ADMET: Absorption, Distribution, Metabolism, Elimination or Excretion, Toxicology
- PD: Pharmacodynamics the activity of the drug in an animal or patient
- DDI: Drug-Drug Interaction the effect of one drug on another, e.g. blocking or increasing metabolism
- LO: Lead Optimisation