

Drug Discovery and Development Course

Translation from preclinical to clinical and building an integrated product development plan

> Cristina Donini, PharmD, PhD Medicines for Malaria Venture

Supported by

Gates Foundation (LifeArc)

Learning objectives

- Understand what translational science is and its importance in drug development
- Understand the key steps in translating preclinical research to clinical trials
- Understand the challenges
- •Gain a broad understanding of what is required for drug development

Start with the end in mind

TPP, Target Product Profile

A strategic document used in drug development to outline the desired attributes of a pharmaceutical product

IPDP, Integrated Product Development Plan

The roadmap that aligns stakeholders, including research, preclinical, clinical development, regulatory, and marketing teams, on the plan to market

What a TPP can look like

Parameters	Minimum essential (for first registration)	Ideal case (potentially life-cycle management)		
Indication for use	Prevention against P. falciparum malaria	Prevention against malaria caused by any Plasmodium species or mixed infection		
Target population	≥5 years	≥3 months All populations at risk Pregnant women in all trimesters and breastfeeding women Non-immune individuals		
Dosing regimen	Once every 3 months (based on preclinical simulations)	Once every 6 months		
Formulation	Intramuscular injection; volume injected and needle size in line with current standard for vaccines; partner drugs can be injected separately	Liquid pre-filled injection device for intramuscular or subcutaneous injection; fixed dose combination of the drugs (based on latest CMC data)		
Antimalarial effects	Two blood schizonticide drugs	Same as minimum essential + at least one drug with causal prophylactic, gametocytocidal or sporontocidal activities		
Efficacy	Preventive Efficacy against malaria infections of ≥80% over 3 months (based on preclinical PK) Clearance of asymptomatic infections (based on preclinical)	Same as minimum essential Non-immune (and pediatric): preventive efficacy against symptomatic malaria infections ≥80% over 3 months Pregnancy: preventive efficacy against malaria infections in the mother of ≥75% over 6 months and ideally, adverse pregnancy outcomes comparable to standard-of-care		
Drug resistance	Partner drugs with different mechanism of resistance Active against known drug-resistant clinical isolates	Partner drugs with similar pharmacological duration of efficacy		
Safety and Tolerability	Favorable risk—benefit profile, with safety and tolerability comparable to WHO recommended preventive treatment or standard-of-care (if any)	Improved safety and tolerability versus WHO recommended preventive treatment or standard-of-care (if any)		
Drug-drug Interactions	Minimal interactions manageable with dose adjustments	No clinically significant interactions (based on SimCyp)		
Cost of treatment course	Equivalent or lower than malaria vaccine	\$1 for infants, \$2 for children, \$4 for adults		
Stability	≥2 years at ICH zone IVa/IVb conditions	≥3 years at ICH zone IVa/IVb conditions		

Why is TPP important?

- Guides Development Decisions: Helps teams prioritize research activities based on the product's ultimate goals.
- Risk Mitigation: Helps identify potential gaps or challenges early in the development process.
- Cross-Functional Alignment: Ensures consistency across research, development, and marketing strategies.
- Regulatory Alignment: Provides a structured framework for discussions with regulatory agencies, such as the FDA or EMA.

What an IPDP can look like

What does it take to get to a product?

EARLY DRUG DISCOVERY PRECLINICAL STUDIES CLINICAL DEVELOPMENT

FDA REVIEW

POST-MARKET
MONITORING

- Target Identification & Validation
- Hit Discovery
- Assay Development & Screening
- High Throughput Screening
- Hit to Lead
- Lead Optimization

- In Vivo, In Vitro & Ex Vivo Assays
- ADME
- Proof of Concept
- Drug Delivery
- Formulation
 Optimization &
 Bioavailability
- Dose Range Finding
- IND-enabling Studies
- IND Application

- Phase I Healthy Volunteer Study
- Phase II and Phase III Studies in Patient Population
- Dose Escalation, Single Ascending & Multiple Dose Studies
- Safety & Efficacy
- Pharmacokinetic Analysis
- Bioanalytical Method Development and Validation

- NDA / ANDA / BLA Application
- FDA Approval
- Drug Registration

 FDA Adverse Event Reporting System (FAERS)

Translational gap: the "valley of death"

Front. Syst. Biol., 28 April 2022 Sec. Translational Systems Biology and In Silico Trials Volume 2 - 2022 | https://doi.org/10.3389/fsysb.2022.901159

Translational gap: the "valley of death"

Bridging the gap between preclinical and clinical

Preclinical development: Demonstrate proof of concept and ensure safety before human trials. Clinical development: Assess safety, tolerability, PK, and later efficacy in Ph2 and Ph3

Preclinical development

Goal: gather data that supports the safety and potential effectiveness of the drug before testing it in humans.

Key Studies:

- Pharmacokinetics (PK) and pharmacodynamics (PD)
- Toxicology studies (acute, sub-chronic, chronic)
- In vitro and in vivo models

Go/No-Go Decision Criteria: therapeutic window, toxicity thresholds, meet TPP

Building the bridge

 Animal model to assess the pharmacodynamics (PD)

 Dose response in animal to assess pharmacokinetics (PK)

Building the bridge

- GLP toxicity studies to assess the safety profile of the molecule
- Studies in rodents and non rodents
- Regulatory guidelines to be followed (ICH M3 (R2), FDA/EMA)
- Important considerations when designing a GLP tox package before FIH:
 - What is your intended indication? Disease?
 Treatment? Prevention?
 - What is the intended clinical duration? Acute (single dose), sub.chronic, chronic
 - What is the route of Administration (Match the intended clinical administration route oral, IV, im, sc, etc.)

Safety Endpoints

- Toxicokinetics: Assess systemic exposure and bioavailability.
- Clinical Observations: Behavioral changes (CNS), body weight, and clinical signs.
- Hematology and Clinical Chemistry: Assess organ functions.
- Histopathology: Evaluate tissue changes post-mortem.
- Safety Pharmacology: Address cardiovascular, respiratory, and CNS risks if not covered in tox studies.
- Developmental toxicity: assess potential use in pregnancy
- Carcinogenicity studies for chronic indications

Translation: predicting the human

Safety margins calculation

Go/No go criteria to entry into humans

THINK ABOUT YOUR TPP

Go/No go criteria to entry into humans

- Is the predicted human efficacious dose in line with TPP?
- Are the safety margins acceptable?
- What is the tox profile? Target organs, monitorable, reversible

Other considerations which won't affect entry into human but should be assess:

- Drug sustance (ease of production, cost of goods, stability, etc..)
- Drug product (powder in bottle, tablet, child friendly formulation, stability, cost of goods, etc...)

FiH: First in Human

IPDP update

What does a PK curve in human look like?

First stress test on translation is First in HumanTrial (FiH)

- Safety in human is the primary objective (was preclinical toxicity predictive of human safety?
- Pharmacokinetic needs to be confirmed

Cohort	Dose (mg)	Predicted Cmax	C _{max} (µg/ml)	Predicted AUC	AUC _{0-inf} (μg.h/ml)	C _{max} Margin	AUC _{0-inf} Margin
A1 (fasted)	5		0.021		1.60	345	94.9
A2 (fasted)	20		0.085		6.41	86.2	23.7
A3 (fasted)	60		0.254		19.22	28.7	7.91
A4 (fasted)	120		0.508		38.44	14.4	3.95
A5 (fasted)	220		0.932		70.46	7.83	2.16
A6 (fasted)	340		1.440		108.9	5.07	1.40
A7 (fasted)	500		2.118		159.8	3.45	0.95
A8 (fed)	TBD		-		-	-	-

Go/No go criteria to next clinical phase

- Is the PK in line with predicted PK? Think if you need to change formulation, and go back to your TPP?
- Is safety and tolerability acceptable? Think about your indication, go back to your TPP

POC: Proof of Concept (either challenge model or patient exploratory)

Human Proof of Concept (PoC)

Refers to an early-stage clinical study designed to **determine** whether a drug or therapeutic intervention demonstrates **initial evidence** of biological activity and **clinical efficacy** in humans. The goal is to confirm that the drug has the potential to achieve its intended effect in the target patient population or healthy volunteers.

Key Objectives:

- Efficacy: Evaluate whether the drug shows meaningful biological or therapeutic activity.
- Safety: Assess the drug's safety and tolerability in a limited population.
- Pharmacokinetics (PK) and Pharmacodynamics (PD): Understand how the drug behaves in the body and its mechanism of action.
- Dose Optimization: Identify dose ranges for further clinical development.

Volunteer Infection Studies (VIS)

Efficacy is the primary objective *And safety*

Using pharmacometric modelling: Combining PK and PD

Combining PK and PD from human studies recalculate human efficacious dose to meet TPP

Go/No go criteria to next clinical phase

- Is the efficacy in line with the one expected from preclinical data? Do you meet the TPP criteria?
- What is the Probability of Success (PoS) of reach your efficacy goal in the next clinical phase? (PKPD modeling)
- Is safety and tolerability acceptable in your patient population? Think about your indication, go back to your TPP

Patient confirmatory study (Ph2b/Ph3 – bigger sample size)

Key take-aways

Translational science is key in drug development

- Guides the selection of drug candidates with a higher probability of clinical success.
- Uses predictive models to screen compounds for safety, efficacy, and pharmacokinetics.
- Enables early decision-making on dose selection and trial design.
- Helps in identifying early signals of efficacy or toxicity to guide adaptive clinical trials.
- Reduces late-stage attrition by identifying potential safety or efficacy concerns before Phase 3 trials.
- Informs go/no-go decisions early in the development process.

THANK YOU

Supported by

Gates Foundation

