

Learning Objectives

 To introduce the concept of machine learning and artificial neural networks.

- To understand the challenges of using full-scale mechanistic models
- To illustrate an example of how ML can help over come some of those challenges

What is machine learning?

Traditional Programming

ANSWER:									
8	7	6	5	4	3	1	9	2	
5	4	3	2	1	9	7	6	8	
2	1	9	8	7	6	4	3	5	
1	9	8	7	6	5	3	2	4	
4	3	2	1	9	8	6	5	7	
7	6	5	4	3	2	9	8	1	
3	2	1	9	8	7	5	4	6	
6	5	4	3	2	1	8	7	9	
9	8	7	6	5	4	2	1	3	

Machine Learning

Artificial Neural Networks (ANNs)

- ANNs are the most common model for machine learning.
- Have wide range of applications:
 - Image Processing: face recognition, medical image diagnosis, ... etc.
 - Prediction: sales, stock prices, treatment and disease outcomes,...
 etc.
 - Natural Language processing: sentiment analysis, text summarisation, language identification and translation, ... etc.
 - Speech recognition: text-to-speech conversion.

How do our brains learn?

How do our brains learn?

Primary auditory cortex

Roe et al, The journal of Neuroscience 1992; 12(9):3663

A biological neuron

An artificial neuron

Feed-forward neural networks

The Coagulation network model

Designing a Control System

The Coagulation network model

QSP model simplification approaches

The ML approach

Results

 Distribution of Normalised training and evaluation errors of different networks architectures

Results

 Computational cost for neural networks with different performance levels

Network	Hidden nodes	Parameters	Training time (seconds)	Simulation time (seconds)*
Α	7	73	2.8	0.018
В	11	77	6.5	0.018
С	15	97	16.3	0.027
D	25	179	51	0.022

^{*} For 10,000 pairs of input-output data

Summary

- ML-based model simplification has several advantages:
 - Automatable
 - Efficient
 - Accurate
 - Structure agnostic
 - Experimental data independent
- A limitation is being non-parametric method

References/Further Resources

- Derbalah, A., & Al-Sallami, H. (2021). Reduction of quantitative systems pharmacology models using artificial neural networks. *Journal of Pharmacokinetics and Pharmacodynamics*, 48(4), 543-560. https://doi.org/10.1007/s10928-021-09742-3
- Zhang, M., & Shen, C. (2023). Quantitative systems pharmacology in the age of artificial intelligence. *CPT: Pharmacometrics & Systems Pharmacology*, 12(2), 123-134.

https://doi.org/10.1002/psp4.13047

Questions?

Supported by

Gates Foundation (LifeArc)

