

Oxy-combustion Characteristics of Biomass Pellets in a Drop Tube Furnace

G. Lu, Md M. Hossain, W. Chowdhury

School of Engineering, University of Kent

Q. Gu, H. Liu

Faculty of Engineering, University of Nottingham

Outline

- Background
- Experimental set-up
- Test conditions
- Measurement
- Results and discussion
- Concluding remarks

Background

- Biomass fuels have widely been accepted as renewable energy in new and retrofitted power/thermal plants (pulverised, fluidised bed, or grate chain boilers).
- Biomass fuels, however, can vary widely in properties, composition and structure, leading to drastically different 'fuel performance', particularly under oxy-combustion conditions.
- Limited work has been undertaken for the fundamental understanding of the combustion behaviours of biomass fuel under oxy-conditions.
- A combination of high-speed imaging and image processing techniques is employed to investigate the combustion behaviours of single biomass pellets in a V-DTF (Visual Drop Tube Furnace) under both air and oxy conditions.

Experimental set-up

• **V-DTF**- an electrically heated drop tube furnace equipped with a quartz tube@50 mm inner diameter and 1400mm long, capable of maintaining gas temperature up to 1050 °C.

Experimental set-up

Key features of imaging systems

- A high-speed camera (IDS UI-3130CP Rev. 2)- acquiring videos of burning biomass pellets.
- An EMCCD camera (Andor iXonEM+ 897)- acquiring videos of spectral intensities of alkali metals (Na and K) during the biomass pellets combustion.

High-speed camera

Sensor type: CMOS, RGB

Frame rate: 575 fps@800(H)x600(V),

up to 900fps with a reduced image resolution

Resolution: 0.48 MPix

Interface: USB 3

EMCCD camera

Spectral range: UV to near IR

Multiplication factor: 1000

Cooling temp: -85°C

Dark current: <0.001 e-/pix/s

Image resolution: 512 × 512 pixels

Fuel properties and test conditions

Five typical biomass pellets

Proximate analysis (wt%, as received)

Biomass	Moisture	Ash	Volatile	Fixed	
Bioillass	Moisture	ASII	matter	carbon	
Miscanthus	4.42	3.67	75.91	16.00	
Peanut	7.73	2.78	68.50	20.99	
Straw	4.00	7.57	73.96	14.47	
T wood	6.40	1.97	72.90	18.73	
Wood	7.32	0.35	76.96	15.37	

Miscanthus

Peanut

Straw

Ultimate analysis (averaged by wt%)

Biomass	С	Н	N		
Miscanthus	45.55	6.13	0.66		
Peanut	46.69	6.42	1.38		
Straw	44.03	5.93	0.67		
T wood	49.32	6.04	0.51		
Wood	46.68	6.44	0.24		

Fuel properties and test conditions

 The pellets of tested biomass burnt under the following conditions for the pre-set temperatures of 800°C and 900°C which replicate the working temperatures of a typical biomass-fired fluidised bed boiler (fixed bed).

Condition	O ₂ (I/min)	CO ₂ (I/m)
Air (I/min)		10
O ₂ @21%	2.1	7.9
O ₂ @25%	2.5	7.5
O ₂ @30%	3.0	7.0

 The size and mass of all the pellets were measured before the tests. Their volume and density were then computed and used to normalise the results for fair comparisons.

Measurement

Phases of biomass combustion

Volatile combustion

- Size and shape of flame
- Ignition time
- Burning velocity/rate
- Temperature and its distribution
- Spectral intensity of radicals (Alkali metals such as Na and K)

Char combustion

- Burning velocity/rate
- Temperature and its distribution

Measurement

- For each test condition,
 - three samples of each biomass fuel were burnt.
 - videos of the complete combustion process of each sample were recorded.
 - temperatures (flame, surface and inner) of the burning pellet were measured concurrently using the thermocouples.
 - videos of alkali metals (Na and K) emissions were also recorded using the EMCCD camera.
- Videos were processed and the characteristic parameters of the burning pellets were computed for different combustion phases.
- The combustion behaviours of burning pellets in relation to the test conditions were then quantified.

Flame video

(Miscanthus,

O₂@21%,

CO₂@79%

800°C)

Volatile flame images & temp maps of Miscanthus pellets

Burning char images & temp maps of Miscanthus pellets

Temperature of a burning Miscanthus pellet under air and oxy combustion for the pre-set temperature of 800 °C

 (N_1, N_2, N_3)

Air

 Temperature of a burning Miscanthus pellet under air and oxy combustion for the pre-set temperature of 900 °C

1200

1100

1000

900

Ignition

point

Samples and burning times

(Note: only Miscanthus is included as example)

800 deg C						900 deg C								
				lotal		Time (sec)					lotal		Time (sec)	
Condition	Sample Volumn (cm3)	Density (g/cm3)	' I taken in test	Total Combusiton	Volentile Combustion	Char Combustion	Sample	Volumn (cm3)	Density (g/cm3)	taken in test	Total Combusiton	Volentile Combustion	Char Combustion	
Air	M1	1.27	0.52	242.0	240.0	38.0	202.0	M4	1.37	0.50	207.0	210.0	39.0	171.0
	M2	1.37	0.48	226.0	224.0	41.0	183.0	M5	1.45	0.55	222.0	218.0	41.0	177.0
	M3	1.45	0.52	219.0	220.0	38.0	182.0	M6	1.62	0.43	205.0	207.0	40.0	167.0
	ave	1.36	0.51	229.0	228.0	39.0	189.0	ave	1.48	0.49	211.3	211.7	40.0	171.7
02@21%	M20	1.61	0.52	289.0	265.0	38.0	227.0	M7	1.43	0.49	204.0	199.0	42.0	157.0
	M21	1.55	0.48	338.0	275.0	37.0	238.0	M8	1.50	0.52	215.0	214.0	42.0	172.0
	M22	1.46	0.53	308.0	285.0	40.0	245.0	M9	1.48	0.57	228.0	225.0	42.0	183.0
	ave	1.54	0.51	311.7	275.0	38.3	236.7	ave	1.47	0.53	215.7	212.7	42.0	170.7
02@25%	M23	1.25	0.52	199.0	200.0	38.0	162.0	M10	1.21	0.56	177.0	173.0	38.0	135.0
	M24	1.35	0.54	214.0	209.0	37.0	172.0	M11	1.47	0.51	177.0	173.0	37.0	136.0
02@23%	M25	1.28	0.52	211.0	199.0	36.0	163.0	M13	1.54	0.53	189.0	184.0	41.0	143.0
	ave	1.29	0.53	208.0	202.7	37.0	165.7	ave	1.41	0.53	181.0	176.7	38.7	138.0
O2@30%	M26	1.44	0.49	173.0	173.0	37.0	136.0	M14	1.46	0.50	147.0	145.0	36.0	109.0
	M27	1.18	0.51	168.0	160.0	37.0	123.0	M17	1.27	0.45	124.0	127.0	35.0	92.0
	M28	1.15	0.53	168.0	161.0	36.0	125.0	M19	1.26	0.52	150.0	149.0	39.0	110.0
	ave	1.26	0.51	169.7	164.7	36.7	128.0	ave	1.33	0.49	140.3	140.3	36.7	103.7

Burning rate of different biomass pellets @ 800 °C

- computed using the masses (weight) of total (i.e., pellet), volatile matter and fix carbon (according to the proximate analysis) divided by the corresponding total, volatile, and char burning times, respectively.

Burning rate of different biomass pellets @ 900 °C

- computed using the masses (weight) of total (i.e., pellet), volatile matter and fix carbon (according to the proximate analysis) divided by the corresponding total, volatile, and char burning times, respectively.

Burning rate of biomass pellets for different O₂ supplies @ 800 °C

- computed using the masses (weight) of total (i.e., pellet), volatile matter and fix carbon (according to the proximate analysis) divided by the corresponding total, volatile, and char burning times, respectively.

Burning rate of biomass pellets for different O₂ supplies @ 900 °C

- computed using the masses (weight) of total (i.e., pellet), volatile matter and fix carbon (according to the proximate analysis) divided by the corresponding total, volatile, and char burning times, respectively.

Remarks:

- An increased O₂ flow increased the burning rate of char and thus the total combustion rate of the biomass pellets.
- The pre-set furnace temperature has a little impact on the burning rate of volatile matters.
- Combustion behaviours of the biomass pellet under the $O_2@25\%$ oxy-condition show to be similar to that under the air combustion.

Concluding remarks

- Experiments were carried out on a V-DTF to study the combustion behaviours of individual biomass pellets through digital imaging and image processing techniques.
- The combustion processes of five different biomass pellets were recorded for both air and oxy conditions under the pre-set furnace temperatures of 800 °C and 900 °C.
- The different combustion phases of (total, volatile and char) of each biomass pellet were separated and the associated periods of time are determined.
- The temperatures of the burning pellets (e.g., ignition and surface) were measured and their relationship with the combustion phases were quantified.
- Results have shown a strong correlation between the burning rate of the biomass pellets and O₂ flows. In particular, the burning rate of char and thus the total combustion rate increases with the O₂ flow.
- The data processing is continuing to quantify and compare the combustion behaviours of different biomass materials (e.g., colour, and spectral intensities of free radicals) for both air and oxy conditions.

Acknowledgement

UKCCSRC is acknowledged for providing a grant in aid of this research.

