Scattering properties of pulverized solid fuel particles in air and oxy-fuel combustion

Ying Gu1,2, Lukas Pörtner1, Matthias Koch3, Reinhold Kneer3, *Martin Schiemann1

1Energy Plant Technology, Ruhr-University Bochum, Germany
2Zhejiang Ocean University, China
3Institute of Heat and Mass Transfer, RWTH Aachen University, Germany

The 1st FERIA Conference, Nottingham, United Kingdom, September 6th-8th 2021
Agenda

- Theory
- Experimental setup
- Results
- Summary & Outlook
Solid fuel combustion

Incident radiation
Mie-Theory

Reflection
Absorption
Refraction
Diffraction
Mie-theory

- Analytical solution of Maxwell-equations for spherical, homogeneous particle
 - Size parameter \(x = \frac{\pi D}{\lambda} \)
 - Complex index of refraction (IOR) \(m = n + ik \)
 - Calculation:
 - Scattering phase function \(\Phi \)

Mie-Theory

Incident radiation

\(D \)
Mie inversion

- Specification of a random start value m_z
- Calculating difference of Φ_{exp} und Φ_z
- Minimizing difference

\[m = m_z \]
\[x = \frac{\pi D}{\lambda} \]

\[\min_m || - \Phi_{\text{exp}} || \]
Experimental setups

- Particle needs to be contactless

Setup A
(Aachen)

Setup B
(Bochum)
Setting A (Aachen)

IR-Emitter

Levitator

\[\Delta \theta_i = \arctan \left(\frac{D_{\text{lens}}}{d} \right) \]

\[\Delta \theta_i = 30^\circ \]

- \(D_p: 300 - 2000 \, \mu m \)
- \(~4h\) operation time
Experimental setups

Setup A

Setup B
Setting B (Bochum)

Particle streak

Colombian bituminous coal

Flat flame burner

Quartz glass wall

Gas inlet

O_2/CO_2

O_2/N_2
Setting B (Bochum)

Movable plate
Setting B (Bochum)

90° off-axis parabolic mirrors, silver coated

Beam dump

90° off-axis parabolic mirrors silver coated
$\Delta \theta = 5^\circ$
Setting B (Bochum)

Forward scattering

θ = 30° - 150°

Backward scattering

Ocean optics flame fiber spectrometer (200-1000nm)

Near-infrared mini-spectrometer (900-2550nm)

FTIR
Difference between A&B

- Setting A (Aachen)
 - one single particle
 - non-reacting at room temperature

- Setting B (Bochum)
 - particle flow
 - Non-reacting and reacting particles
Difference between A&B

<table>
<thead>
<tr>
<th></th>
<th>Aachen</th>
<th>Bochum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δθ</td>
<td>30°</td>
<td>5°</td>
</tr>
<tr>
<td>N</td>
<td>9</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>0 - 22°</td>
<td>30° – 150°</td>
</tr>
<tr>
<td></td>
<td>60° – 120°</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>≈ 700μm</td>
<td>180 μm</td>
</tr>
</tbody>
</table>
Results

Phase function comparison of cold coal

- Both datasets analyzed by inverse Mie theory
- IORs:
 - $m = 1.401 + 0.146i$ (single particle)
 - $m = 1.401 + 0.143i$ (particle streak)

- Peak at 90°
- Trend to backscattering
Results

Phase function comparison of cold and burning coal

- Cold coal compared with burning coal in regions of clear char burnout
- Coal diameter of 180μm
- Exemplary chosen wavelength of 500nm
- No huge differences in shape, sightly higher backscattering from burning particles
Results

Wavelength dependent IOR of cold and burning coal

- Observed wavelength ranges:
 - 550nm to 800nm (single particle)
 - 410nm to 800nm (particle streak)
- IORs:
 - Cold single particle: Real and imaginary part constant
 - Cold particle streak: Real and imaginary part slightly decrease with increasing wavelength
 - Burning particle streak: Real and imaginary part slightly decrease with increasing wavelength, both lower than for cold coal
Outlook/Summary

■ Two experiments that measure phase function
 ● Levitator vs. particle streak

■ Mie theory doesn’t reproduce scattering measurement exactly.
 ● We assume non-sphericity is connected to this observation

■ Next steps:
 ● GMM, DLA cluster
 ● Fuel type, coal, biomass
 ● Reacting particles at different burning stages
THANK YOU!

This work has been funded by the German Research Foundation (DFG) – project number 215035359 – within SFB/Transregio 129 „Oxyflame“.