

Waste to Energy with BECCS for the urban environment: Opportunities and challenges for development

Dan Su*, Hannah Chalmers, Mathieu Lucquiaud, Laura Herraiz

*School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JL, UK Dan.su@ed.ac.uk

1st FERIA Conference, 6th -8th September 2021

The Jubilee Conference Centre, Jubilee Campus, University of Nottingham, UK

CONTENT

- 1. Context for Waste-to-Energy and district heating
- 2. Integration of WtE plants with CCS
- 3. Process modelling in gProcess
- 4. Key performance assessment metrics
- 5. Current Results from Process modelling
- 6. Priorities of future work plan

1. Context for Waste-to-Energy and district heating

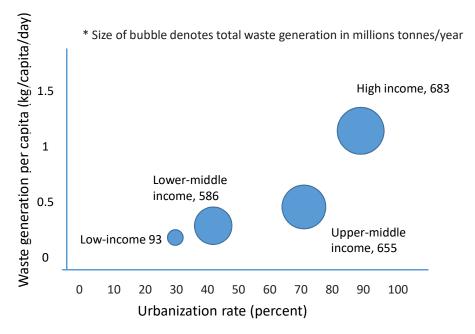


Figure 1. Waste generation and urbanization rate

• With rapid population growth and urbanization, municipal waste generation is expected to rise to 3.4 billion tonnes by 2050. [1]

[1] The World Bank, What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050, 2018;

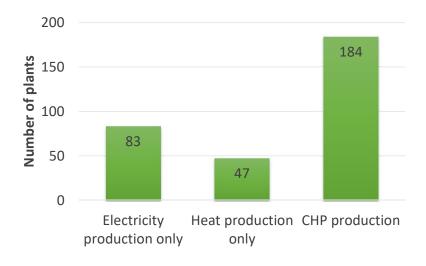


Figure 2. Type of energy recovery from WtE plants in Europe (2010)

- WtE offers an effective way to treat MSW, compares with traditional methods such as landfills;
- However, direct CO_2 emission factor for MSW with LHV of 10 MJ/kg is assumed equal to 0.9875 ton CO_2 /t of waste [2];

[2] IEAGHG, "CCS on Waste to Energy", 2020-06, December 2020;

2. Integration of WtE with CCS

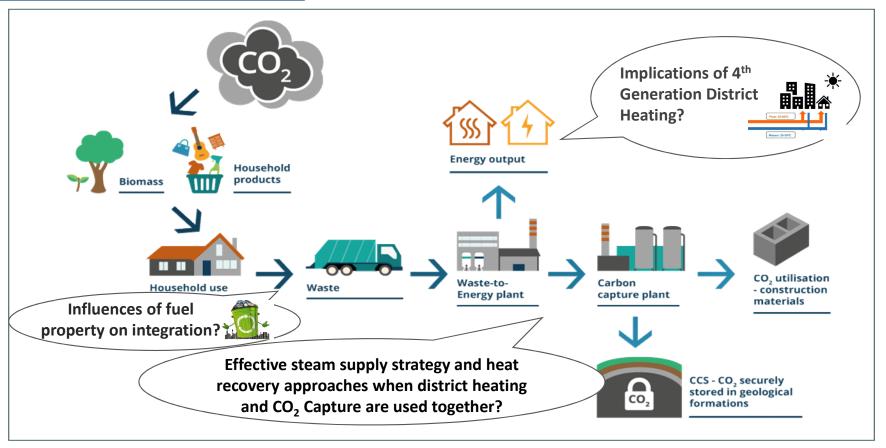
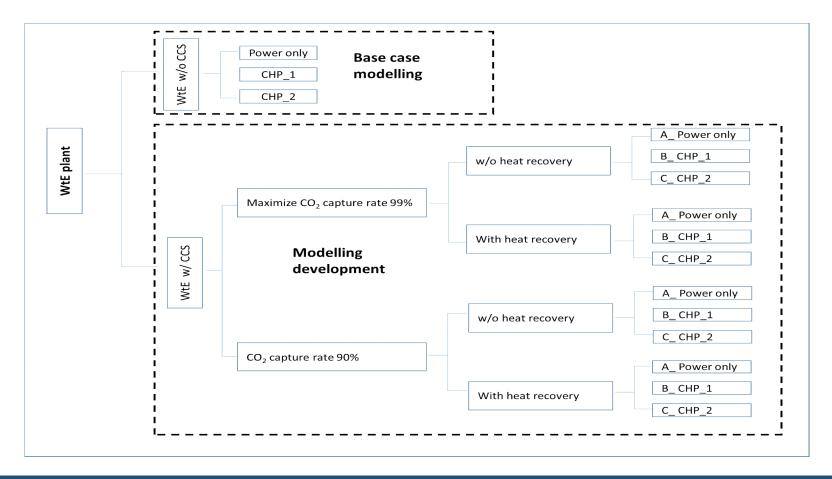



Figure 3. Process flowsheet of a WtE plant integrated with CCS Original Graphic: NEWEST-CCUS, SCCS and Starbit

2. Integration of WtE with CCS

3. Process modelling in gProcess

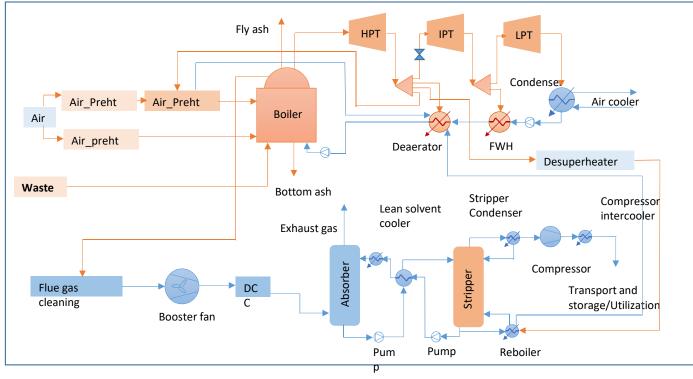


Figure 4. Example of Process flow diagram of a WtE plant integrated with Post combustion CO₂ capture _ Power only

		gProms
	Unit	modelling
LHV	kj/kg	9300
Waste throughput	t/h	19.4
Primary air into boiler	°C	135
Primary air massflow	kg/s	19.7
Primary air preheating		
(external)	MW	1.7
Secondary air into boiler	°C	50
secondary air massflow	kg/s	8.5
Secondary air preheating		
(external)	MW	0
Total air preheating from steam	1	
cycle	MW	1.7
Boiler Live steam Temperature	°C	400
Boiler Live steam pressure	bar	60
Boiler Live steam enthalpy	kj/kg	
Boiler Live steam mass flowratekg/s 18.2		
HP inlet Temperature	°C	400
HP inlet pressure	bar	600
HP inlet enthalpy	kj/kg	
FW return Temperature	°C	137
FW return Pressure	bar	80
FW return mass flowrate	kg/s	18.2
Flue gas Temperature	°C	136
Flue gas pressure	bar	1
O ₂ concentration in the flue gas		6.12%
Boier efficiency		88.0%
Total thermal input	MW	52.04
Gross power output	MW	13.6

4. Key performance assessment metrics

 Efficiency penalty $\Delta \eta_{Penalty}$

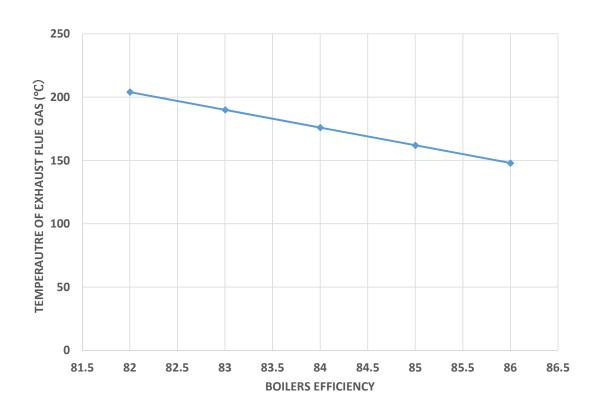
Affected by fuel composition and the heating value

- Electricity output penalty EOP
- Coefficient Of Performance for (steam) extraction $COP_{x}[3]$

post-combustion capture systems

strong function of the

Equivalent to the COP of a heat pump


$$\Delta \, \eta_{\rm Penalty} = \eta - \eta^{CCS} \qquad \qquad {\rm Small/no \, significant} \\ = \frac{Q_{CAP} - (QC - QCCCS) + WACCS}{Q_{IN_LHV}} \\ \approx \, \%_{\rm LHV}$$

$$EOP = \frac{\Delta \, \eta_{\text{Penalty}}}{\text{Fuel specific emissions}}$$

$$EOP = \frac{\text{Loss of generator output + Compression \& ancillary power}}{\text{CO}_2 \, \text{mass flow}}$$

 $COP_X = \frac{\text{heat supplied to a PCC plant by steam extraction}}{\text{reduction in work output from that steam cycle}}$

[3] Lucquiaud, M. and J. Gibbins (2011). "On the integration of CO2 capture with coal-fired power plants: A methodology to assess and optimise solvent-based post-combustion capture systems." Chemical Engineering Research and Design 89(9): 1553-1571.

5. Current Results from Process modelling: Model Validation

- Heat loss from flue gas, takes the largest share of the heat losses from the boiler, approximately 10% of the total heat input to the boiler
- For every 1% increase of boiler efficiency, the exhaust flue gas temperature decreases by ~14°C
- Modelling results agree well with data from public literature, contribute to the validation process of the process modelling;

Figure 5 Variation of boiler efficiency with exhaust flue gas temperature

5. Current Results from Process modelling: Impact of Fuel Composition

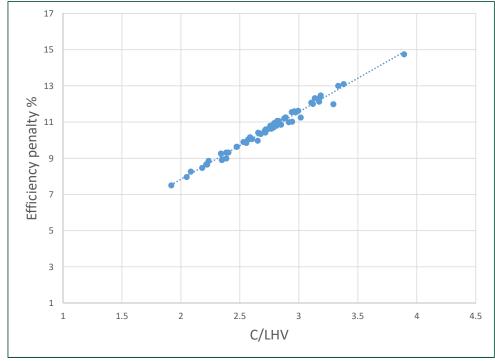


Figure 6. C/LHV vs Efficiency penalty due to CO₂ capture C is Carbon content in %, LHV is in MJ/kg, as received (99.5% CO₂ capture rate, 3.5GJ/tCO₂ solvent heat of regeneration, 60bar/400degC steam, 88% boiler efficiency)

- 59 sets of MSW quality referenced from public literature for process modelling in gProcess builder software;
- C% ranges from 11.37% to 73%;
- LHV ranges from 4 MJ/kg to 35 MJ/kg;
- Heat required for solvent regeneration is extracted from crossover pipeline between IP and LP turbines @3.5 bar, superheated condition;

$$\Delta \eta_{\text{Penalty}} = \eta - \eta^{CCS}$$

$$= \frac{Q_{CAP} - (QC - QCCCS) + WACCS}{Q_{IN_LHV}}$$

$$\approx \%_{\text{LHV}}$$
Small/no significant direct effect

5. Current Results from Process modelling: EOP

Figure 7. Overall EOP of CO₂ capture for a range of reboiler duty

- EOP of CO₂ capture is strongly affected by the reboiler duty of CO₂ capture facility;
- Site specific parameters, fuel condition also affects...
- ...but the influence is relatively small compared to the absolute value of the EOP (~10 kWh/tCO₂ for the modelled cases).

$$EOP = \frac{\Delta \, \eta_{Penalty}}{Fuel \text{ specific emissions}}$$

$$\textit{EOP} = \frac{\textit{Loss of generator output + Compression \& ancillary power}}{\textit{CO}_2 \text{ mass flow}}$$

5. Current Results from Process modelling: COPx

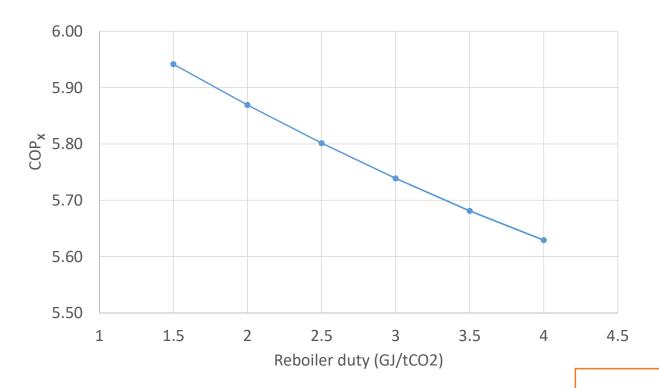
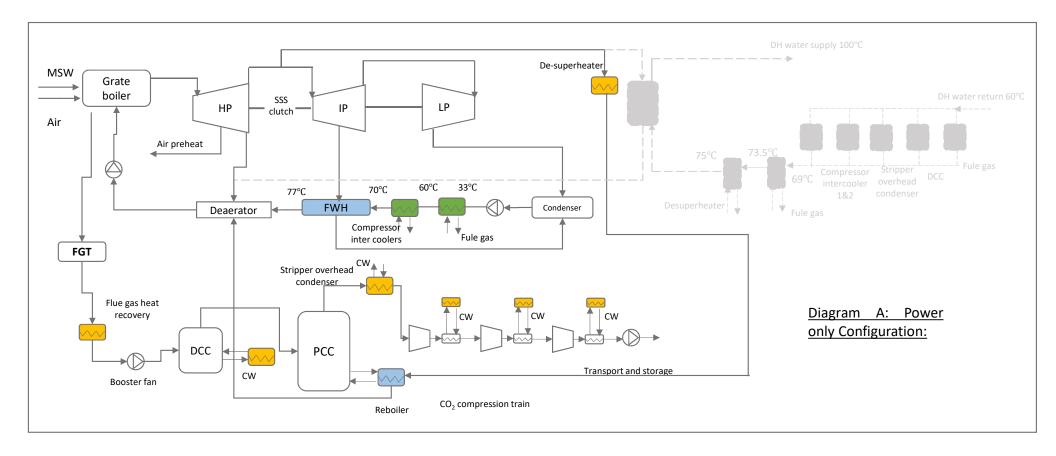
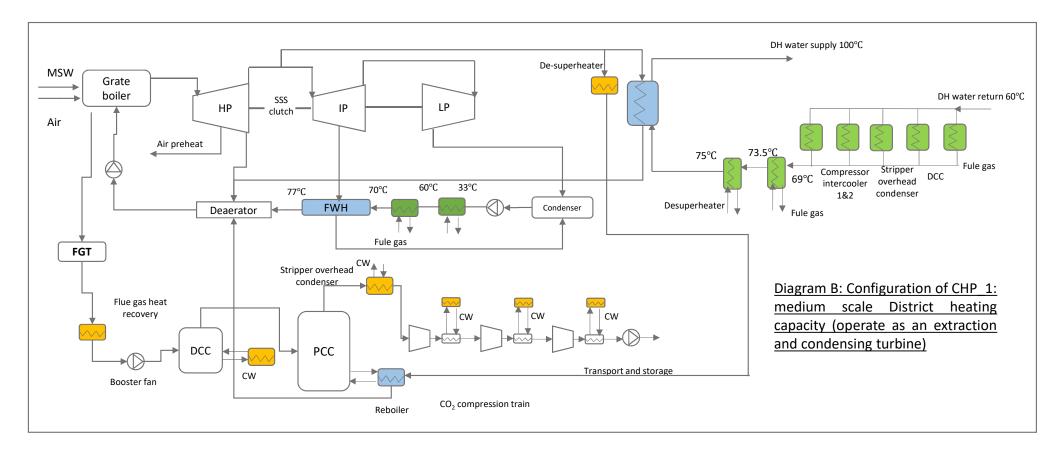
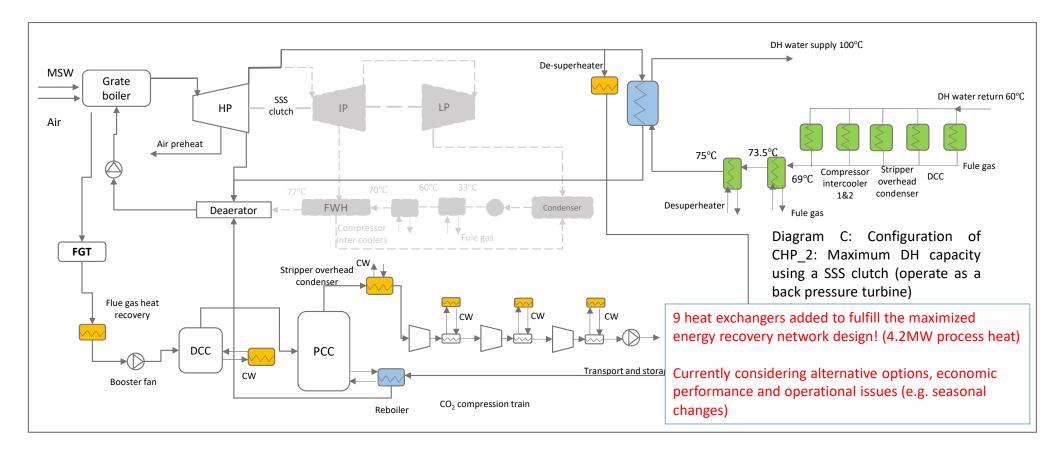



Figure 8. COPx for a range of reboiler duty


- COP_x of CO₂ capture is strongly affected by the reboiler duty of CO₂ capture facility;
- COP_x of CO₂ capture is in general higher than a 'equivalent' heat pump producing the same output temperature and recover heat at temperature equal to the steam cycle condensing temperature;

 $COP_X = \frac{\text{heat supplied to a PCC plant by steam extraction}}{\text{reduction in work output from that steam cycle}}$


5. Current Results from Process modelling: Preliminary Heat Network Analysis

5. Current Results from Process modelling: Preliminary Heat Network Analysis

5. Current Results from Process modelling: Preliminary Heat Network Analysis

5. Current Results from Process modelling

Efficiency penalty due to CO₂ capture is strongly affected by composition and the heating value of the fuel;

Electricity output penalty (EOP) and Coefficient Of Performance for (steam) extraction COPX of CO₂ capture is strongly affected by the reboiler duty of CO₂ capture facility;

A considerable amount of heat could be recovered from the integration process, thus maximising heat recovery and minimising efficiency penalty;

Direct heat recovery of process heat appreciable, but need to consider the design of heat exchanger networks to be cost-effective (e.g. more effective heat exchanger network design to minimise number of heat exchangers).

6. Priorities for future work

Build and complete post-combustion capture model in ASPEN to explore impact of higher capture rates (99%) in more detail (especially solvent energy of regeneration);

Optimize Heat Exchanger Network considering whole year operation with CO₂ capture and seasonal variation in district heating;

Consider interim solvent storage in WtE plants with variable heat to power ratio, including sizing of storage tanks and cost benefit analysis.

Acknowledgements

NEWEST-CCUS project (Project No. 299683) is funded through the ACT programme (Accelerating CCS Technologies) with financial contributions from: The Research Council of Norway (RCN), Norway; The Federal Ministry for Economic Affairs and Energy (BMWi), Germany; Netherlands Enterprise Agency (RVO), Netherlands; and the UK Department for Business, Energy & Industrial Strategy (BEIS)

Bundesministerium für Wirtschaft und Energie

THANK YOU

Q&A

5. Current Results from Process modelling: Pinch Analysis

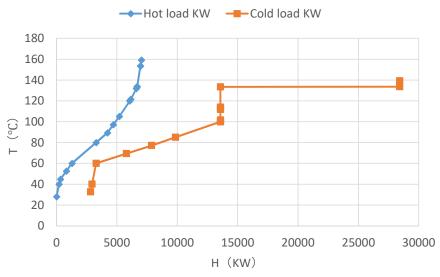


Figure 10. Composite curve of pinch analysis for the in-process heat recovery

Heat exchange between hot and cold streams within the process: 4.2MW

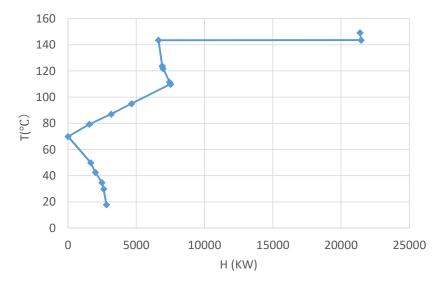


Figure 11. Grand composite curve of pinch analysis for the

in-process heat recovery

Before pinch analysis		
Hot utility KW	Cold utility KW	
25599	7046	

After pinch analysis		
Hot utility KW	Cold utility KW	
21382	2808	