Cycling in New South Wales

What the data tells us

Prepared for the Premier's Council for Active Living
December 2008
© Parsons Brinckerhoff Australia Pty Limited (PB) [2008].
Copyright in the drawings, information and data recorded in this document (the
information) is the property of PB. This document and the information are solely for the use
of the authorised recipient and this document may not be used, copied or reproduced in
whole or part for any purpose other than that for which it was supplied by PB. PB makes
no representation, undertakes no duty and accepts no responsibility to any third party who
may use or rely upon this document or the information.
Author: Rebecca Lehman, Doris Lee, Ian Reid, Nicholas Barker,

Reviewer:
 Approved by: Rory Garland
 Graeme Steverson

Signed:

Date:
Distribution:

Jessica Zhong, Keith Kim, Thomas Vaclavek, Rory Garland

5 December 2008, rev 223 March 2009 PDF and hard copy to NSW BikePlan Project Manager

Parsons Brinckerhoff Australia Pty Limited ABN 80078004798
Ernst \& Young Centre Level 27, 680 George Stree Sydney NSW 2000 GPO Box 5394 Sydney NSW 2001 Australia Telephone +61 292725100 Facsimile +61292725101 Email sydney@pb.com.au

NCSI Certified Quality System ISO 900 NCSI Certified En Nental Management System ISO 1400
Contents Page
How to use this report 4
Executive summary 5

1. About the data 8
2. NSW cycling baseline 17
3. Benchmarking NSW cycling 32
4. Potential 45
5. Capturing the potential 49
Appendices
Appendix A Bicycle counter data A1-A65
Appendix B Rail station bicycle parking supply and demand B1-B6
Appendix C Bicycle theft and cyclist traffic infringement data C1-C9
Appendix D Electronic Library of Collected Bicycle Information (DVD1)
Appendix E NSW BikeArcReader + ArcReader installation files (DVD2)

How to use this report

The format of this report has been designed to enable the clear extraction and presentation of complex data embedded in existing reports; to provide a commentary on raw data; and to report on the analysis and interpretation of data

While the report is self-contained two accompanying DVDs contain the detailed library of data sitting behind this overview. The NSW Cycling Geodatabase DVD contains datasets with spatial references. The DVDs should be used in conjunction with this report, to enlarge graphics and interrogate spatial datasets

About the data:

Green text boxes provide
commentary on datasets.
This includes any
information regarding:

- data collection
- data storage
- data handling / cleaning /
manipulation
methodology

Worth noting:

The orange text boxes highlight findings from the data collated by PB for this project.

Any data processed by PB is annotated in this way.

About the map:
 Key Findings:

The grey text boxes identify where a map is stored on the NSW Cycling
Geodatabase, and what data was used to develop the map

This will make it easier for maps to be updated as and when datasets change.

The blue text boxes contain PB's key findings, highlighting the most important issues
and challenges to be
addressed during work on the Premiers Council for Active living (PCAL) NSW BikePlan. Findings are overviewed in the Executive Summary and detailed in the main body of the report.

The report is "signposted" with the five section headings and colour-coded to highlight the current section of the report, as shown below:

You are here

Executive summary

This report was prepared to inform the development of a new NSW BikePlan for the Premier's Council for Active Living. The report is structured to respond to questions posed under five key headings:

What data is available on cycling in NSW?
What gaps are evident in the existing data?

Who is cycling in NSW (and where)?

How do cycling outcomes in NSW and Sydney perform against comparable locations, including other Australian states and capital cities?

What is the broad potential for increasing cycling in NSW?

What counts, surveys, audits and focus groups would help to identify ways to grow cycling in NSW, and track outcomes achieved?
What further research would complete the picture of cycling in NSW?

Executive summary

Our objective

The purpose of this project by PB was to assemble and report on available cycling data, to inform the preparation of a new NSW BikePlan. The new NSW BikePlan is being prepared by relevant NSW Government agencies on behalf of the Premier's Council for Active Living.
Based on the assembled data this report addresses various aspects of cycling use in NSW, including current levels of cycling, and reports on the condition of the data.

This information is intended to develop understanding of the factors influencing the use of cycling in NSW, and thereby to help establish the value for money of different types of investment in cycling that may be considered for inclusion in the new NSW BikePlan.
An array of bicycle stakeholders from across NSW and Australia hold elements of relevant bicycle usage data. Many stakeholders shared reports with PB and, where possible, datasets held by their agencies and organisations. In some instances, datasets required depersonalising or aggregation to protect privacy.

Our methodology

1. Request information from state and local stakeholders.
2. Telephone survey traffic, transport, or planning staff in all NSW local councils about local government area (LGA) bicycle usage data.
3. Map data which could be geocoded, by postcode, suburb or LGA.
(Data was mapped at the LGA level because this level of government is frequently the most involved in delivering investments in cycling.)
4. Conduct analysis, and complete preliminary testing of hypotheses, about cycling in NSW.
5. Report on findings.
6. Recommend a future program of counts and surveys to enrich the understanding of bicycle usage across NSW and measure progress towards cycling objectives.

Executive summary

Our findings:

About the data: What data is available on cycling in NSW?

There is no single central source, repository or clearing-house for data about cycling in NSW.
Data is collected by a variety of NSW Government agencies, local councils and cycling organisations.
Available bicycle usage data is recorded at varying levels of detail, reliability and quality.
Datasets on cycling infrastructure are updated intermittently and standard terminology is often applied inconsistently.
Richer datasets are available on commuter cycling than recreational cycling. Injury data may be both under-reported and double-counted.
Further cycling data collection and improved data management are necessary to bring NSW up to the national data standards developed by the Australian Bicycle Council and the Federal Department of Health and Aged Care.
To provide a way of managing cycling data more efficiently, PB developed the NSW Cycling Geodatabase. This already includes all the maps in this report, and many others.

The NSW Cycling Geodatabase:

As location is a unique data identifier, geographic information was selected as the organising framework for the cycling data in this report. A geodatabase is an electronic data management tool, designed to house and manage spatial information. A geodatabase is able to store, process, analyse, model, map, distribute, present and report data and information.
PB's geodatabase was designed with three objectives:
1.) to manage the volume of bicycle usage data collected
2.) to use during the analysis stage of this study
3.) to be used during planning for the NSW BikePlan and beyond.

Within the bounds of copyright and privacy laws, all raw and processed data with a spatial reference like LGA or longitude was added to the geodatabase.
Where datasets were incomplete, infrequently updated, or small in sample size, the data was added to the electronic library but not analysed in this report.

The NSW baseline: Who is cycling in NSW?

More people are choosing to cycle in denser, urban areas.
More commuter cyclists prefer to cycle for the whole trip, rather than with another mode.
More cycling accidents are clustered in urban areas.
Bicycles are most often stolen from residences.
More men cycle than women.

Benchmarking cycling: How does cycling in NSW compare to other locations?

Bicycle use across NSW and Sydney is low compared to other Australian states and capital cities.
World cities with high bicycle mode share have seen a consistent annual investment in connected bicycle infrastructure
Tested variables like topography were not found to provide a satisfactory explanation for low rates of cycling in NSW compared to Victoria.

Understanding the potential: What is the potential to increase cycling in NSW? What further work is needed to plan and track cycling in NSW?

Key findings:

Subject to appropriate privacy protections a Geographic Information System, that can be accessed through a single portal by all bicycle stakeholders, would be a very important tool for cycle planning and promotion.
To be most effective a NSW Cycling Geodatabase would need to be regularly updated to show new infrastructure and modified datasets.
If a growth target for NSW cycling is adopted to help in developing and tracking cycling "packages" then a commuter cycling indicator would provide the most reliable proxy for measuring all types of cycling.
High bicycle ownership rates in NSW reveal a significant opportunity for increased cycling.
Urban centres which attract a large proportion of short car trips also offer a significant market on which to focus programs to grow cycling.
Progress towards cycling objectives can be measured by gathering richer data than is currently available, through point-based counts, site audits, cyclist intercept surveys and non-cyclist focus groups.

Section 1: About the data

What data is available on cycling in NSW?
What gaps are evident in the existing data?

There is no central cycling data source, repository or clearing-house in NSW.
Data is collected by a variety of NSW Government agencies, local councils and cycling organisations.

Available bicycle usage data is recorded at varying levels of detail, reliability and quality.
Datasets showing the location and use of cycling infrastructure are intermittently updated and standard terminology is often applied inconsistently.

Richer data is available on commuter cycling than recreational cycling Injury data may be both under-reported and double-counted

Further cycling data collection and improved data management is necessary to bring NSW up to the national data standards developed in the Australian Bicycle Council "Cycling Data and Indicator Guidelines".

Cycling data can be categorised according to infrastructure, cyclist and safety

The Australian Bicycle Council "Cycling Data and Indicator Guidelines" (2000) established five categories of cycling data and three levels of detail to develop the desired "breadth and depth" of cycling data.
In NSW the inter-relatedness of the categories has resulted in a degree of overlap between many datasets, studies and reports.

For the purposes of this report, the five categories below have been amalgamated into three - infrastructure, cyclist and safety - to improve the management of data.

A centralised NSW cycling data source would benefit all stakeholders

About the data
Baseline
Benchmarking
Potential
Capturing the potential

Category Fundamental data	Infrastructure			Cyclist						Safety	
	Network	End-of-trip facilities	Infrastructure usage	Demography	Bicycle mode share	Length of trip	Trip purpose	Bicycle ownership \& sales	Bicycle theft	Injury / morbidity	Infringements
Federal level	About the data: Data for all three levels was collected from stakeholders identified by the client, and through desktop web searches, phone interviews and emails.			Australian Bureau of Statistics Journey to Work		ABS Physical Activity Survey	Australian Sport Commission ("ERaSS")			Austroads	
				Cycling Australia membership			Bicycle Victoria Ride-to-work participation			Australian Institute of Health \& Welfare	
State level	RTA Geodatabase	RailCorp Bike racks	RTA Permanent counters	Bicycle NSW Membership		Transport Data Centre Household Travel Survey			Bureau of Crime Statistics	RTA Traffic Accident Database System	Bureau of Crime Statistics
About the data: The various datasets were identified as: Primary		Ministry of Transport Locker provision	Sydney Olympic Park Permanent counters	Bicycle NSW Event participation	Sydney SW Area Health Service JTW analysis		Bicycle NSW Event participation	Bicycle Industries Australia Bicycle sales	RailCorp Lost \& found bikes	Injury Risk Mgt Research Centre Hospital entry	
		Major employers	Bicycle NSW Locker leases				Dept of Envt \& CImt Chng Ride2School participation	Cycling Promotion Fund	Insurance claims		
Secondary Supplementar		Property managers	RailCorp Station facilities audit				DECC Who cares about the environment?				
Local level	"Bikely"-style websites	Local councils		Local bicycle user groups					Local councils		
	Local councils			Cycling in New South Wales: What the data tells us							10

Infrastructure datasets are infrequently updated and standard terminology is inconsistently applied

With so many government agencies and stakeholders tracking bicycle usage in NSW, records are maintained at varying levels of detail, reliability and quality.

Cycling data is often collected simply because the relevant organisational role happens to be filled by someone with an interest in collecting this information. When the cycling advocate moves to another role, cycling datasets may be lost or no longer tracked regularly or thoroughly.

Detail

The RTA is currently working to geocode all constructed bicycle infrastructure and related assets.

About the data:

Inconsistent use of bicycle facility terminology is a challenge in NSW. Facilities may be classed by width, pavement type, length. topography, other ease of use, direction of travel and/or destination.
Infrastructure is also classified as "proposed" or "existing."

Across NSW, there is no dataset recording end-of-trip facilities, including bicycle parking.
Cycling infrastructure data held by local councils is incomplete. Councils may use varying terminology to refer to the same type of infrastructure - or different types of infrastructure are classified using the same
terminology. Of seven local councils that shared infrastructure spatial data from their Geographic Information
Systems (GIS), each recorded data using a different schema.

Reliability

A preliminary audit of RailCorp station facilities included motorcycles in its review of parked two-wheelers. This is inconsistent with national definitions of bicycles as "pedal cycles".

Quality

In the case of the RTA's permanent bicycle counters, a number of files for primary counter locations were missing. Where the bicycle count files were available, counters in high use areas have on occasion not recorded data for several weeks at a time (see Appendix A).

Location

The variety of agencies and stakeholders collecting cycling data results in multiple data storage locations. For example, data is often embedded in reports and local council bicycle infrastructure maps, with the consultant who prepared these continuing to hold the background geodata
Local councils possess varying amounts of information on bicycle infrastructure, including bicycle routes and bicycle parking. Where councils have provided bicycle infrastructure, some store this information in a GIS while others may be able to provide only a hard copy of the bicycle network and bicycle parking requirements.

Data updates

The cycling datasets collected for this study are updated at different times, at varying intervals, or not at all. With cycling data residing in more than one location, the most, refegilveavaidablavdata may be oxerleoked.

Infrastructure	
Network	End-of-trip facilities
RTA Geodatabase	RailCorp Bike racks
Bikely - style	MoT Locker provision
Local councils	

About the data:
Automatic cycle counters obtain point-based counts of bicycles oassing through a specific point on a route. They provide statistics by time of day, day of week, month and year.

Relevant data sources

The Austroads "Guide to Traffic Engineering Practice, Part 14 Bicycles" and "Australian Standard AS1742.9 - Manual of Uniform Traffic Control Devices Part 9 Bicycle Facilities"

Relevant data sources:

So-called "Web 2.0" sites track bicycle routes around the world.
Cyclists self-report and search
bike routes using a GoogleMaps or similar interface. Details may include route difficulty leve, directional information and ride profile (gradient).
Routes may be classified by type of use, such as social, commuter or training / fitness
Cyclists may also use a website to link up with other riders.

Relevant data sources:

The RTA "NSW Bicycle Guidelines" (2005) were developed to guide how bicycle network facilities should be delivered as part of the wider transport network. The guidelines are for use by road designers, engineers and planners and include on and off-road bicycle network facilities and recommendations for bicycle parking.

More comprehensive datasets are available on commuter cycling than recreational cycling

Detail

The nationwide benchmark figure on bicycle use is provided by the Census Journey to Work conducted every five years by the Australian Bureau of Statistics (ABS). The importance of this figure is due to the 100% sample size.

Reliability

ABS 2006 Census Journey to Work responses report very low use of cycling for NSW commuting trips (less than 1\%). Between census years, there is a risk in relying on this small number of bicycle trips to describe cycling for the state.
The low rates of cycling are confirmed by the NSW Transport Data Centre Sydney Household Travel Survey which, even based on three years' worth of aggregate data, captures statistically small numbers of bike trips. To improve statistical reliability, other data sources must therefore be used to corroborate tentative statements about bicycle use based on the HTS.

Quality

Both the ABS and the Australian Sports Commission conduct national surveys of participation in sport for fitness or recreation. Both surveys return information about participation rates for cycling, although the small sample size means that the data is unable to be broken down further than the state level (i.e. to LGA level).

Ease of access

Datasets are stored in a number of different types of file formats and at varying levels of data processing sophistication.
For further study:
The Australian Sports Commission ERaSS
Annual Report (2006) notes that cycling for
physical activity usually occurs on an individual,
non-organised basis.

Off-peak counts and trip intercept surveys of cyclists are required to further develop the picture of recreational cycling in NSW.

Local Bicycle User Groups

> Worth noting:
> Rates of major event participation and cycling organisation membership are sometimes used as a proxy for rates of recreational cycling.
> This correlation should be drawn with care, given ERaSS findings that most recreational cycling occurs at an ad hoc and nonorganised level.

Data quality issues for bicycle counters include reliability of data and detail

About the data:

Persistently low values at count locations may signal a low-value location or inappropriate counter technology for the count purpose. For example, automatic counters originally designed to count motor vehicles may be sensitive to hilly locations or not differentiate bicycles from other vehicles.

Sample issues with permanent counter data from the Sydney Harbour Bridge cycleway:
The starting time of the counter was inconsistent. In some files the peaks were found to occur at unusual times (e.g. 2.37 am).
The counter classified vehicles on the bicycle-only facility as Class 5, 8 and 9 vehicles (i.e. not bicycles).
There are a number of missing files in 2004, 2005 and 2006. The counters were removed in 2007 due to fence installation.

Sample issues with permanent counter data from the Iron Cove Bridge cycleway: The starting time of the counter was inconsistent. In some files the peaks were found to occur at unusual times (e.g. 2.31 am).
The reasons for obvious counter failure are unknown, e.g. where files show zero counts during several weeks over the summer.
There are a number of missing files in 2004, 2005, 2006 and 2007.
formats make comparisons across count locations difficult (see "About the data" at right).
Point-based counters have been shown to provide the richest data source on bicycle infrastructure usage. Where regular counts are taken a weekly, seasonal and annual profile of cycling can be developed and analysed.
Three types of point-based counters have been used in NSW:

- Temporary point-based observations at intersections, conducted by teams of traffic counters during the peak period (example: City of Sydney)
- Permanent point-based counts on regional or other off-road bicycle infrastructure networks, recorded hourly by traffic counter machines and pneumatic tubes (example: RTA)
- Permanent point-based counts on off-road recreational bicycle facilities, recorded hourly by inductive loops and pressure counters (example: Sydney Olympic Park).
To date, technical barriers (eg separating out bicycles from a mixed traffic stream) have meant that automatic counters have not been used to gauge on-road cycling. This results in a gap in information on cycling for key routes, like the William Street or Broadway / George Street routes accessing Sydney CBD.

Crude data management, counter failures, vandalism, maintenance gaps and inconsistent file

Cycling in New South Wales: What the data tells us

A useful 'device' for describing data on cycling injuries and fatalities is the "injury iceberg" (see right). Several factors affect injury data, resulting in the potential for both double-counting and under-reporting.
The variety of agencies and stakeholders tracking this type of data contributés to the problem. Data "cleaning", for compliance with privacy laws, creates the' potential for the same cyclist injury to be counted three times, by:

RTA Traffic Accident Database System (TADS)
This database tracks 100% of cyclist fatalities as well as/"pedal cycle" crashes resulting in at least $\$ 500$ worth of damage and the involvement of the NSW Police. Raw data was provided in three files the "crash record," the "casualty record" and the "traffic unit record."

NSW Health data collection

NSW Health collects hospital separation data which provides information on hospital stays related to injury, including cycling-related injuries. The Injury Risk Management Research Centre (IRMRC) at the University of NSW, which is funded by NSW Health, the RTA and the Motor Accidehts Authority, has access to this data collection in order to conduct detailed analyses.

Insurance claims

Insurance industry records about property claims and public liability provide another source of data about injuries and property damage incurred while cycling.

Double-counting and under-reporting the rate of injuries and fatalities, the key factors used to establish "cyclist exposure", may result in a distorted picture of cyclists' risk of injury or death.

About double-counting:
The potential for double-counting injuries across separate datasets is high.

The RTA provided individual crash records for this project.
The aggregation of supplied hospitalisation data (i.e. there was no unique crash identifier) means that accidents that reported in the RTA TADS may have been counted a second time.
Crashes resulting in at least \$500 (a trigger for RTA TADS inclusion) may also have resulted in an insurance claim, although some insurance claims may have been for property damage or loss only.

About under reporting:
The potential for under-reporting is also likely due to a number of factors.

Serious injuries that do not occur within the roadway do not necessarily trigger a Police report (required for the RTA TADS).

Totally unreported injuries may be treated by general practitioners, or by the cyclist.
Where personal injury and bicycle damage is estimated to be less than (say) $\$ 500$, cyclists may not make an
insurance claim in order to keep their premium lower.

Increased likelihood of under-reporting

4 100% of fatalities 100% of injuries reported to the NSW Police, resulting in a least \$500 worth of damage

100\% of hospitalisations

Known insurance claims by cyclist

Totally unreported injuries, treated by GPs or individuals

The extent and quality of cycling data collected by local councils varies across NSW

Local government plays an important role in implementing bicycle policy, frequently partnering with state government agencies to deliver bicycle infrastructure.
A telephone survey of all NSW local councils (152) was used to develop a picture of bicycle usage data held by councils.
About the data:
The survey transcripts, bicycle counts and local bicycle plans collected during this survey are in the attached electronic library in Appendix D.

There are numerous sources of information available for the analysis of NSW bicycle usage undertaken for this study. However, inconsistencies between datasets and an incomplete picture of local cycling infrastructure mean that direct comparisons between datasets is hard to establish for the purposes of this report.

The following summary of datasets should be taken into account when future cycling data collection and analysis activities are commissioned in NSW.

issues:

- A lack of non-organised recreational cycling data results in an incomplete picture of bicycle use for recreation and fitness.
- Irregular data collection can distort the picture of bicycle use and make it harder to complete an annual or seasonal analysis of datasets.
- Inconsistent formatting and file types prevent comparison of datasets.
- Only counting bicycle use of off-road facilities results in an incomplete picture of cycling, missing on-road cyclists.
- The level of detail collected by diverse bicycle stakeholders prevents comparison between datasets.
- The Journey to Work question in the ABS Census recorded a small number of bicycle-only commute trips in NSW in 2006
- The NSW Household Travel Survey records a small number of bicycle trips for other purposes.
- The number of bicycle lockers leased at transport interchanges and of bicycles secured to racks at stations or elsewhere seems to indicate that more people are cycling in combination with one other mode than captured in the ABS Census or the NSW HTS.

Key Findings:

- Improved cycling data management practices would bring NSW up to the national standards proposed in the Australian Bicycle Council "Cycling Data and Indicator Guidelines" (2000).
- Improved practices encompass standardising, maintaining and updating cycling datasets regularly and by uploading spatially referenced data to a publicly available NSW Cycling Geodatabase.
- The most effective bicycle infrastructure funding decisions are informed by high-quality surveying and counting of cycling outcomes. This includes before and after point counts, accident trend analysis (network) and audits of usage at end-of-trip facilities.
- Standardising end-of-trip requirements and descriptive terminology assists consistent planning.
Key findings regarding RTA bicycle counters:
- New technological developments offer increasingly reliable bike counters for RTA consideration and possible use.
- These include counters that are able to "see" cyclists in mixed traffic (e.g. inbound traffic to Sydney CBD via Broadway / George Street, or to Bondi Junction via Bronte Road).
- Frequent checking of all counters' status, and reviewing data for errors shortly after its collection, would identify failures early, help spot data gaps, and provide guidance on relocating counters if necessary (e.g. to avoid persistent vandalism).
- Tracking extraneous factors (i.e. weather and special events) would help prevent attributing days when no cycling has been recorded to counter failure.
- Mapping exact counter locations would speed up identification and maintenance, and decisions on moving temporary point-based counters.

Section 2: NSW cycling baseline

Bicycle ownership is higher than bicycle usage figures would suggest
Cycling accounts for a small proportion of NSW commute trips.
Cycling decreased in suburban Sydney while the highest growth was in inner urban areas.

In the 2006 ABS Census cycling accounted for under 0.8\% of all journeys to work across NSW

The local councils with the highest levels of cycling on the last ABS Census day in August 2006 showed over 750 people cycling to work from each LGA.

The Household Travel Survey provides some insight into the size and mode share of non-commuter travel by bicycle.
Rail stations with a more frequent and direct CBD service have a higher bicycle parking demand.

Women cycle less often then men.
3% of all road casualties across NSW involved cyclists in 2006, and there are defined geographic clusters of such casualties.
Most cycling injuries occur within the cyclist's LGA of residence.
The most common gender and age profile for a cyclist in a NSW crash is a teenage male.

Bicycle infringements peak after school hours.
Bicycles are stolen most often from homes.

Bicycle ownership in Sydney is higher than bicycle usage figures would suggest

Cycling accounts for a small proportion of commuter trips in NSW

Bicycle-only trips accounted for less than 0.8\% of NSW Journey to Work trips on Census day in August 2006. This meant 19,274 trips out of more than 2.4 million people who reported travelling to work.
Where bicycle-only and bicycle-plus-another mode trips were reported (22,161 trips):

- bicycle-only: 87% of bicycle trips
- bicycle plus one other mode: 11% of bicycle trips
- bicycle plus two other modes: 2% of bicycle trips

Multi-modal journeys
Of 107,486 trips where more than one mode was reported, cycling accounted for 2,887 trips. Cycling accounted for 2.7% of trips where more than one mode was reported.

Journey to work (private car trips excluded)

$$
\begin{array}{rr}
\hline \text { Total Bicycle Usage for JTW } \\
\text { Bicycle only } & 19,274 \\
\text { Bicycle + 1 other mode } & 2,444 \\
\text { Bicycle + 2 other modes } & 443 \\
\text { Total } & \mathbf{2 2 , 1 6 1}
\end{array}
$$

Worth noting:
Where a bicycle is used for the journey to work, NSW commuters use the bicycle for the whole trip, rather than in combination with another mode.

Worth noting:
More bicycle trips were reported in coastal LGAs and metropolitan Sydney.

Relevant data sources:
Australian Bureau of Statistics (ABS), 2006 Census Journey to Work, by Origin LGA.

About the data:
On Census day the highestperforming LGAs recorded over 750 bicycle trips commuting from homes in that LGA.

About these maps:

The data used to generate this map was sourced from the 2006 ABS census data. It is the number of persons per LGA who reported that their method of travel to work was One method: Bicycle.

Other than Sydney, maps show absolute cycle trips rather than a rate of usage in order to highlight what are small numerical
differences between LGAs.

The Sydney Household Travel Survey provides some insight into non-commute travel patterns

Commuting represents only a small proportion of overall trips

- The Household Travel Survey (HTS) indicates that 84% of all trips are for noncommuting purposes
Regardless of trip purpose, most trips involving cycling are less than 5 kilometres
- 50% of all trips are less than 5 kilometres
- 71% of trips involving cycling are less than 5 kilometres

Although bicycles are used for a small portion of all trips, they are used more often for work trips than non-work trips.

Cycle mode shares are much lower for non-commuting purposes than for commuting on a weekday.
On a weekend, cycle mode share is much higher for short trips. These may be trips undertaken by those who commute by bicycle during the week.

The HTS data shows that as many as 5\% of trips using bicycle also use ferry or train on part of the journey. Although sample sizes are small, indications are that the majority of these "linked" cycle trips use the train.

Western Line to Emu Plains

Worth noting:
The highest number of
lockers leased was 16
at Incleburn Station.
Inner West Line and South Line As a cautionary note, though a locker may be active use. All figures on this page should be used with caution.

About the data:
The line-by-line analysis of parking supply and audited Appendix B.

As a cautionary note, for the purposes of the RailCorp study from which this data is drawn, motorcycles and scooters were included in the audit under "bicycles"

Worth noting The highest number of observed parked bicycles was 37 bicycles at Campbelltown Station.

In 2006, 3\% of all road crash casualties in NSW involved cyclists

- In 2006 there were 45,528 road crashes in NSW, of which 1,193 involved pedalcyclists.
- Crashes involving cyclists in NSW in 2006 mainly occurred during daylight hours, followed by night-time when the natural light condition was reported as dark.
- Within the Sydney metropolitan region, crashes clustered around Sydney CBD, either as on-road or off-road crashes.
- Across NSW, of the 144 crashes that were reported occurring during daylight hours on a Tuesday:
- 59% occurred at intersections
- 41% occurred at mid-block locations
- 14% occurred on footpaths, cycleways in the road reserve or the nature strip
- 13% occurred at driveways
- 8% occurred in bus lanes.

Cycling in New South Wales: What the data tells us

Of the 5,029 male cyclists involved in crashes in the five years of recorded data:

Cyclist manoeuvres in reported accidents

- $3,443(68 \%)$ male cyclists involved crashes were proceeding in the lane (i.e. the cyclist was travelling straight on the road) (__\%) of were injured in this type of accident
- 959 (19\%) male cyclists involved in crashes were travelling along the footpath.
- 141 (3\%) male cyclists involved in crashes were travelling on the incorrect side of the road (including wrong way on one-way street). 62 (44%) of these were within a age group of 5-16.

Crash locations in reported accidents

- 1,663 (33\%) male cyclists were involved in crashes occurred at undivided roads.
- $1,410(28 \%)$ male cyclists were involved in crashes occurred at T-junctions.
- 685 (14\%) male cyclists were involved in crashes occurred on either footpath or cycleway.
- 524 (10\%) male cyclists were involved in crashes occurred at driveway.

For further study:

A number of topics stand out as warranting further research:

- Helmet use by cyclists involved in reported serious crashes
- The "safety in numbers" hypothesis (whether increase cyclist numbers correlates with better individual cyclist safety)
- Why bus lanes appear to be hot spots for 8% of NSW pedal-cycle crashes on a Tuesday, but only 12 of the recorded crashes involved a bus
- The crash exposure rate for different cyclist groups
- A national benchmark for pedal-cycle safety against which to compare NSW outcomes.

For further study:

In 2003-2007, male cyclist crashes peaks in March and spikes in October. Further research would be needed to find out if this is due to higher rates of cycling (e.g. following the end of school holidays or corresponding with the start of spring) or higher rates of inexperienced cyclists (e.g. following the start of the academic year).

NSW RTA TADS 2003-2007

Recorded bicycle infringements in NSW peak on Wednesdays in the mid-afternoon
In the absence of other strong datasets on cycling, the statewide data on cycling infringements collected by NSW Police is a rich dataset on bicycle behaviour - by the dataset's very nature, bad behaviour!
Like the RTA Traffic Accident Database System, this complete database could potentially provide information to supplement Household Travel Survey data on when people cycle - with the time and location of infringement issue being used as an indicator for when people are cycling and where.

LGA	Bicycle-only JTW trips	Infringements in 2006
Campbelltown	152	323
Coffs Harbour	293	281
Sydney	1356	177
Newcastle	1042	643
Wollongong	661	492

[^0]Bicycle theft in NSW (Bureau of Crime Statistics)
Relevant data sources:
NSW Bureau of Crime Statistics \& Research. Data purchase on behalf of the RTA. Received September 2008

Worth noting:

Over a five-year period 185 bicycles were reported stolen from transport facilities across NSW. This includes public transport interchanges,
airports, and freight depots / rai sidings. This represents a very small proportion of overall bicycle theft.

When bicycles were stolen from a public transport facility, most were taken from rail stations or rail station car parks. This may indicate poor surveillance at interchanges.

Worth noting:
Overwhelmingly most bicycles were stolen from a residence. This fits with low levels of bicycle usage and high levels of bicycle ownership: a bicycle in NSW is more likely to be at home than out on the road!

For further research:
It is possible that bicycle-owning residents believe that bicycles are safe at home and do not take appropriate precautions.
This theory would need further testing.

\square Residential

-Outdoor / Public Place
\square Carpark
-Business/Commercial
\square Education
\square Others

[^1]Others' includes categories such as vehicle, utilities, rural industry, religious, marine transport, transport interchange, licensed premise recreation, law enforcement, industrial, health and unknown.

The use of this terminology varies depending on the reporting officer.

[^2]Section 3: Benchmarking Sydney and NSW cycling to other capital cities and states

For bicycle use Sydney rates below comparable world cities. High rates of cycling in these cities seems correlated with high rates of investment in bicycle infrastructure.
The mode share of cycling in NSW is low compared to other Australian states and territories. The mode share of cycling in Sydney is low compared to other Australian capital cities.
As in NSW, when Australians use a bicycle for the journey to work, overwhelmingly their preference is to use only a bicycle rather than a bicycle in combination with other modes.

National reports on adult participation in recreational cycling are inconsistent across the different datasets.

NSW commuter cyclists are significantly more likely to be injured in a crash than commuter cyclists in other Australian states and territories.

Comparing Sydney and Melbourne:
Victorian cycling data is streamlined in its presentation, easy to use and available online at no charge
One-way streets are a barrier to cyclists: Sydney CBD has a less permeable network for cyclists than Melbourne, with its relatively dense and legible grid road layout
Cycleway network connectedness and legibility are factors in Melbourne's higher cycling mode share

There is a comparable risk of cyclist injury, with hot spots in both CBDs.

Sydney's bicycle mode share rates below other world cities

Sydney falls short in comparison to other world cities with a bicycle mode share of 0.8% for the journey to work. Even cities with recent histories of car dominance such as London and Paris have a bicycle mode share twice Sydney's.
The bicycle mode share across these world cities seems to indicate that cities with a record of investment in cycle facilities reap the rewards of higher bicycle use.
In the case of the US cities, the higher length of cycleway per capita in San Francisco than in Chicago appears to be directly correlated with the stronger mode share.

Relevant reports:

Amsterdam - Pex Langenberg, Head of the Strategy \& Policy, Department of Infrastructure, Traffic and Transport, City of Amsterdam 2000 Cycling in Amsterdam - Developments and Policies
Copenhagen - City of Copenhagen 2000 City of Cyclists Bicycle Account
London - Office for National Statistics 2001 National Census Paris - Velib a Paris 2006 www.jcdecaux.com/UserFiles/File Viewed 9/10/08
San Francisco - US Census Bureau 2000 National Census
Chicago - US Census Bureau 2000 National Census
Sydney - Australian Bureau of Statistics 2001 National Census
Melbourne - Australian Bureau of Statistics 2001 National
Census
Barcelona - National Statistic Institute 2001 National Census
Madrid - National Statistic Institute 2001 National Census
Commission for Integrated Transport 2001 European Best Practice in the Delivery of Integrated Transport Report Stage 1 Benchmarking
Hugh McClintock 2002 Planning for Cycling
Transport for London 2005 Cycle Count Data on Major Thames Bridges in London
John Pucher, Ralph Buehler 2006 Why Canadians Cycle More than Americans: A Comparative Analysis of Bicycling Trends and Policies

Worth noting:

Chicago has a very low bicycle mode share. This is partially explained by low cycleway provision. There are only 4.6 km of dedicated cycle paths per 100,000 people.

Cycling in New South Wales: What the data tells us

Compared to other Australian states and territories, the rate of cycling in NSW is low.
The Northern Territory has the highest mode share, with possible explanatory factors being the weather on Census Day (August), the size of urbanised areas, the relative concentration of the territory's employment in Darwin, and average commute distance.

The ACT also has a high mode share, which may reflect a history of investment in bicycle infrastructure and/or legislation which allows cyclists to use the footpath.

Worth noting:

In using a bicycle for the Journey to Work, Australians prefer to ride all the way to work, rather than couple cycling with another mode.
Bicycle + one other mode and bicycle + two other modes account for 0.15% of all Australian Journey to Work trips on Census Day.

Relevant data sources:
Dr Paul Ratcliffe, Department of Urban Services, ACT Government, Canberra Cycling on Footpaths in the Australian Capital Territory ACT Chief Minister's Department 2004 Population Projections for Canberra Suburbs"
Australian Bureau of Statistics 2006 Community Profiles

[^3]The journey to work cycling mode share for Sydney is about half that of an interstate benchmark

Compared to other Australian state and territory capital cities, the rate of cycling in Sydney is low.

Darwin has the highest mode share, with possible explanatory factors being the compactness of the urbanised area and, therefore, shorter commute distances. The Census is taken during Darwin's relatively benign dry season climate, which may also be a factor.
Canberra also has a high mode share, which may reflect investment in bicycle infrastructure or legislation which allows cyclists to use the footpath.

Compared to the average mode share of Melbourne, Perth and Brisbane, the three next lowest performing capital cities after Sydney, rates of cycling in Australia's largest city are still low.

2001

		City size	Population	Yearly Rainfall
Worth noting: Potential explanatory factors for high or low rates of cycling Selburne	$8,806 \mathrm{~km}^{2}$	3.8 M	647 mm	
	Sydney	$12,145 \mathrm{~km}^{2}$	4.3 M	$1,215 \mathrm{~mm}$
	Brisbane	$5,905 \mathrm{~km}^{2}$	1.9 M	$1,146 \mathrm{~mm}$
	Perth	$5,386 \mathrm{~km}^{2}$	1.6 M	869 mm
	Hobart	$1,357 \mathrm{~km}^{2}$	0.2 M	620 mm
	Adelaide	$1,827 \mathrm{~km}^{2}$	1.2 M	601 mm
	Darwin	$112 \mathrm{~km}^{2}$	0.1 M	$1,715 \mathrm{~mm}$
	Canberra	$806 \mathrm{~km}^{2}$	0.3 M	633 mm

Across Australia as a whole, cyclist numbers for the Journey to Work rose between 2001 and 2006.

Factors driving this rise could include increasing fuel prices, overcrowding on public transport, community environmental awareness, traffic congestion and growing interest in personal health and fitness.

Melbourne saw the largest rise in commuter cycling, followed by Adelaide and Hobart. All three of these capitals showed rapid compound growth of over 25%.
9% growth in Sydney was the slowest of all state capitals. (The number of commuter cyclists in Darwin actually declined between 2001 and 2006, indicating the possible influence of climate.)
 Census 1991-2006

Green links showing the growth over time in Brisbane's cycleway network

National data on adult participation in recreational cycling varies for similar years and sample sizes

Victorian cycling data is streamlined in its presentation, easy to use and available free online

Cyclist injuries are more prevalent in the Central Business Districts, for both Melbourne and Sydney

Melbourne LGA

CBD topography is less friendly to cyclists in Sydney than in Melbourne

Section 4: The potential to increase cycling in NSW

The most reliably measured data on cycling in NSW is the Journey to Work, measured during the five-yearly Census by the Australian Bureau of Statistics.

The NSW Transport Data Centre have shown that commuting only represents 15% of all person trips in Sydney.
However, we could reasonably assume that there is a link between the levels of commuter and non-commuter cycling.

PB therefore suggest that Journey to Work is used as the primary indicator for NSW to reach its potential medium-term bicycle mode share.

The average Journey to Work bicycle mode share for South Australia, Queensland, Victoria and Western Australia is an aspirational, but achievable, benchmark for the purposes of this analysis.

Cycling to work in NSW could match an Australian interstate benchmark

A reasonable working benchmark for NSW bicycle mode share, as measured by Census data on the Journey to Work, is the average bicycle mode share achieved by the "middle four" states of Queensland, West Australia, South Australia and Victoria.
Key findings:
A strategy that coordinates investment in connected bicycle infrastructure, bike parking and
encouragement programs - coupled with growing community interest in clean and healthy
personal transport - would offer the best prospect of achieving this increased bicycle mode
share.
The actual growth in bicycle mode share that can be produced from each of these
interventions would be better known as a program of counts, audits, events and monitored
encouragement programs were progressively rolled out.

About the data:
As shown on page 34, this is the average of the cycling Journey to Work mode shares achieved in 2006 in
Queensland, West Australia, South Australia and Victoria.
1.49\%

Benchmark year

Improved safety
\& security
"Melbourne-style" growth would see NSW reach its cycling Journey to Work benchmark by 2016

Current short car trips to Sydney's major centres present a market to increase cycling

A total of 43,447 bicycle trips would bring NSW up to an Australian benchmark for commuting cycling.
The map below illustrates car trips to centres reported in the 2006 Household Travel Survey of the NSW Transport Data Centre are classified by trip length. The map below shows Metropolitan Strategy centres as pie charts. The size of the pie chart corresponds to the total number of car trips arriving at that centre on a weekday:

Green represents the proportion of car trips shorter than 5 km
Yellow represents the proportion of car trips between 5 and 10 km
Red represents the proportion of car trips greater than 10 km.
The car trips shown in green or orange could well represent a market for cycling growth.

About the data:
Short car trips to centres (less than 5 km) are shown in green. This represents 515,909 trips in Sydney on an average weekday.
To reach the Australian benchmark for commuter cycling, centres where more than 50% of the trips are under 5 km are prime targets for bicycle infrastructure improvements and cycling encouragement programs to target bicycle mode shift.
These include Brookvale, Bondi Junction, Penrith, Hurstville and Hornsby.

About the map:

Using Household Travel Survey data for weekday car trips to Sydney's centres, the size of each centre's pie chart is based on total weekday trips.
The "slices of the pie" illustrate the proportion of trips that are less than 5 km , trips between 5 and 10 km and trips longer than 10 km .

Worth noting:

To target bicycle mode shift
At Penrith, the proportion of short car trips is higher at 47% of trips (34,946 trips under 5 km)
Short trips account for 56% of car trips to Brookvale/ Dee Why (25,351 trips under 5 km).
Though the proportion of short trips is smaller in the Sydney CBD (33% of car trips) there are 61,955 trips under 5 km

Section 5: Proposed program of counts to monitor NSW growth in cycling

Fitness \& exercise
(NSW Health, Department of the Environment \& Climate Change, Premier's Council for Active Living, Australian Sport Commission)

Permanent point-based counters

Temporary
 point-based counts

Site-based infrastructure audits

Key findings:

A telephone / web-based survey could target non-riders who are already participating in organised physical activity.
New riders can be identified among participants in cycling events and surveyed subsequently regarding their ongoing cycling.

Focus
groups \&
market
research

Infrastructure use

(Roads \& Traffic Authority, owners / operators of major recreational sites, local councils)

Key findings:

Upgraded and relocated permanent point-based counters would provide a reliable annual, seasonal, weekly and hourly profile of strategic bicycle routes (on-road and off-road).
Possible locations for upgraded counters are Anzac Bridge, Sydney Harbour Bridge and Anzac Parade. New counter locations could include William Street, Parramatta Road / Broadway / George Street corridor and Military Road.
Permanent counters at Prospect and Cabramatta locations provide data of limited value and can be removed.

Key findings:

Roving counters could be deployed across Greater Metropolitan Region centres to count cyclists at on-road and off-road routes.
Users of recreational cycle routes, such as at Prospect and Cabramatta, could be tracked seasonally as part of a roving counter program.

Key findings:

A uniform or mandatory reporting process would improve reporting by local councils and others on the provision of cycling infrastructure and usage outcomes.
Similarly, a uniform auditing process would enable local councils and others to track the provision and use of end-of-trip facilities like bicycle parking.

For further study:
To better target cycling interventions, focus groups would identify why particular areas have low levels of cycling.
Further market research, based on the outcomes of focus groups, would identify particular areas and demographics to target with specific programs.

Trip purpose

(Australian Bureau of Statistics, Department of the
Environment \& Climate Change, Department of
Planning, Premier's Council for Active Living)

Key findings:

Intercept surveys of cyclists at permanent cycling counter locations would add information on users' destination and trip purpose to raw counter data.

Key findings:

New technology allows the development of a GPS-based bicycle computer or key chain device for use by participating cyclists, to help track cycle trip-making patterns and improve decision-making.
To be most useful for planning purposes GPS data would need to be supplemented with data from a travel journal, on trip purpose, trip time and journey length.

Key findings:

Questionnaires attached to bicycles parked at specific end-of-trip locations (e.g. train stations, shopping centres, major entertainment facilities) can produce data of value to promoting cycling for purposes other than commuting.

Key findings:

Intercept surveys at existing or proposed cycling destinations (shops, businesses, sport facilities) would ascertain trip purpose and help guide planning.
Focus group consultation with non-cyclists would help in understanding the reasons for low rates of cycling participation and developing strategies in response.

A range of appropriate technologies are available to count bicycles in Sydney and NSW

Point based counts
Using a variety of technologies (see right) point-based counts track the number of bicycles passing a specific point on a route.

Point-based counters provide statistics based on time of day, day of week, month and, in some cases, direction. There are a number of technologies that can collect this information.
Subject to the location of a counter being carefully planned data collected at one point on a route can be representative of usage along the whole corridor.
Careful placement of counters is critical to building up a complete picture.

For further study:

It is likely that a range of different counting technologies will be needed to suit the various installation environments.

Key finding:

Upgrading the existing, and installing new, permanent point-based bicycle counters would deliver high-quality data on cyclist numbers using major routes

Key finding:
Developing and deploying roving bicycle counters across centres and corridors would complete the picture of changes in cycling before and after route improvements.

Inductive loop

This type of device features wires embedded into the road cycleway and connected to an adjacent unit which collects the raw information.

In general, embedded loops are highly reliable and are used widely by the RTA to monitor motor vehicles' presence as part of the SCATS system that controls traffic signals.
Loops can be used in mixed mode conditions or on off-road cycle / pedestrian routes.
Potential issues
Cyclists may unintentionally avoid passing over the loop.

When used in mixed mode environments it may be difficult to separate bicycles from other vehicles (e.g. motor vehicles which pass over or park in cycle lanes or stop in green "cycle storage areas" at traffic signals).

For further study:
Effort will be required to centralise the downloading management and analysis of data from different counting devices according to a consistent set of procedures.

Video-image processing (CCTV)

This type of device monitors numbers by processing images captured on a continuous CCTV oop. Analysis can occur either at the count site or at a remote location using transferred data.
Image processing software is used to detect the number of cyclists and their direction, speed, and position on the roadway.
Potential issues
Cost to install and maintain
Likely to offer value for money only if used in a mixed mode environment

Pressure counters

This type of device is buried and uses piezoelectric material to detect changes in surface pressure caused by bicycles.
Potential Issues
Cannot determine the difference between modes

Buried in road / cycleway so may be difficult to maintain

Infrared (active)

This type of device uses detection of a breakage in an infrared light beam to count different types of vehicles, their direction of travel and speed.

When used in mixed mode environments this type of counter can also determine which lane the vehicle is in. Some counters are suitable for roving use.

Potential issues
Cost
May not suit some locations

Infrared (passive)

These above-ground devices can count path usage by detecting the heat radiated by people. They cannot determine speed or direction of travel.

Potential issues

Such devices would not be able to identify between pedestrians and cyclists.

Bluetooth

Innovative use of Bluetooth technology to track mobile devices being carried by cyclists by identifying unique MAC addresses. E.g. mobile phones.

Potential issues
Will need a methodology to determine which Bluetooth devices are carried by cyclists.

Pneumatic tube
Currently used by the RTA, this type of device collects count data by detecting changes in pressure on the tube.
Potential issues
Retrieval of information

Vandalism

Limited ability to distinguish between different vehicle types in mixed mode conditions

About the counters:
A combination of these devices could be deployed as roving counters to measure cycling use on (say) the Parramatta Road / Broadway / George Street corridor or routes into Macquarie Park.

About the counters:

Most contemporary bicycle counting technologies allow remote retrieval of data from units using GSM or 3 G modems.
3G data management would streamline data handling and expedite data assembly.
This would come at a cost that would be determined by the amount of information transferred from each counter.

Worth noting: Tracking bicycle trips is not yet common practice in Australia or internationally.	Key findings: Tracking a volunteer cohort of cyclists, from origin to destination of all cycling trips during a set period, would yield rich data on network performance.	
"E-tag" transponders are currently used in NSW as point-based devices to trigger tolls rather than to track the entire trip.	GPS	DSRC
This technology could be used to provide real time data on traffic speeds and other variables.	A Global Positioning System logger could be fixed to the handlebars of participating bicycles to collect data on the specific routes taken by cyclists. Data would need to be uploaded to a central database for analysis. A travel journal could be used to correlate trip purpose. Potential issues	Dedicated Short Range Communications radio transmission devices are used to track a wide range of functions. DSRC has been used for competitive and social running and cycling events. Cyclists would fit their bike with a DSRC chip that could then be detected using roadside detectors positioned along routes. Potential issues
Worth noting:	Collecting information from GPS logger (effort increases with sample size)	DSRC untested in tracking cyclists along routes' full length
Information gathered in this way might for the first time make it possible to identify a "car trips saved" equivalent for bicycle kilometres travelled. Measured bicycle trips, captured via a GPS	Difficulty in correlating data to (e.g.) trip purposes Cost of GPS units Privacy issues	Reliance on cyclists being detected at each point along a route Uncertain level of accuracy

Route tracking

Tracking a cyclist's route from origin to destination would provide an even richer dataset than permanent or temporary point-based counts. Route-based information would provide information on trip distance, timing and duration. This information would be used to calibrate point-based data on infrastructure usage and anecdotal information from cyclists in focus-groups.
A wide distribution of bike computer-type GPS counters (i.e. more than 1,000 cyclists for a week or 100 cyclists over 10 weeks) would be critical to obtain a rich enough dataset to test assumptions.
There would be risk of bias arising from cyclists pre-selected for study and having a pre-existing preference for a certain type of cycling usage.

A selection process could attempt to control for bias by using Bicycle NSW members with a wide aptitude range and point-based intercepts of cyclists using existing recreational or commuter bicycle routes.

Using the power of the Internet could enable cycling information sharing and stakeholder dialogue

Key findings:

Well-designed web-based systems allow cyclists (and planners) to share route choice information.
(1) This is a cue sheet for the Balmain to Watsons Bay Bicycle Man. You

Cumulative	Distance	Where	Notes	Direction	Elevation	
0 km	0 km	Balmain		SSE	155°	8 m
3.55 km	3.55 km	Pyrmont		SSW	202°	0 m
7.79 km	4.24 km	The Rocks		ESE	109°	28 m
9.54 km	1.75 km	St James		SE	128°	54 m
13.84 km	4.3 km	Potts Point		ESE	102°	48 m
15.8 km	1.96 km	Darling Point		W	270°	19 m
18.19 km	2.39 km	Point Piper		NE	38°	30 m
21.27 km	3.08 km	Rose Bay		SE	131°	2 m
23.2 km	1.93 km	Vaucluse		NE	35°	39 m
27.57 km	4.36 km	Watsons Bay		NNW	337°	7 m

For further study:

At present, websites like http://www.bikely.com do not have the functionality to record infrastructure type. Web 2.0 systems could include a coded patch that allows riders to cite infrastructure information (i.e. route is a shared path, dedicated cycleway or unsigned on-road route).

This would assist the RTA in capturing information on on-road routes "discovered' by cyclists - and enable the RTA to pass on tested information of this type to novice riders.

Additional web-based functions allow cyclists to report network issues using a common terminology

Web-based cartographical applications like GoogleMaps offer a powerful tool for policy-makers, planners, traffic engineers and cyclists.
A street view, as shown here, provides a common point of reference for all stakeholders.
This can provide the basis for standardising the classification system for various types of bicycle infrastructure.
A web-based street view or map also offers a shared perspective that can be referenced by different stakeholders, including when they are remote from one another, when discussing infrastructure issues.

For further research:

Investigate using Service Oriented Architecture (SOA) to manage the next generation of the NSW Cycling Geodatabase

The data collated during this project was compiled to allow specific analysis tasks. The longer-term applications of this data could stretch into numerous operational and strategic bicycle policy and planning areas beyond the scope of this project.
By employing a Service-Oriented Architecture (SOA) approach it would be possible to create flexible and extensible Geographic Information Systems (GIS) for ongoing data management. This GIS would be quickly adaptable to the future requirements of bicycle data users. Under a SOA model data user requirements could be met by dynamically chaining multiple data services from different providers.
Services provide well-defined and separate functions over the Internet, and could include Web Mapping Services (WMS) and Processing Services. Many other existing GIS software applications are able to deliver services via the Internet. Simple services can be provided with little or no customisation.

For example, those responsible for building and maintaining bicycle infrastructure (the RTA or local councils) could provide a WMS that produced a graphic image of the cycleways or bike parking for a given area or locality. This service could be used for future planning projects. Additionally, stakeholders like Bicycle User Groups and local councils that wanted to provide this information to consumers could use this service to produce web-based interactive mapping applications, route profiles for bicycle computers, and/or static cycle maps.

The point to note is that if a service is well-designed and self-contained it can be used in ways that may not have been envisaged at its inception. Delivering services through a SOA model results in a more readily extended GIS environment than through traditional GIS architecture where data is exchanged in real time as and when it is requested.

About the data:
The opportunity offered by Service Oriented Architecture (SOA) is that a "mash up" or piece of computer code would be written to retrieve the latest
organisational data as required to complete individual queries.
This would ensure that all cyclists and bicycle decision-makers had access to the most recently updated data available.

Cycling in New South Wales

What the data tells us
Appendix A: Bicycle counter data

Prepared for the Premier's Council for Active Living
December 2008

Inbound and Outbound travel of Sydney CBD (2006-2008) - Hour by hour profile

Inbound and Outbound travel of Sydney CBD (2006-2008) - Hour by hour profile continued

Inbound and Outbound travel of Sydney CBD (2006-2008) - Day by day profile

Iron Cove Bridge Cycleway (2006-2008) continued

Sydney Harbour Bridge Cycleway (2004-2006)

Sydney Harbour Bridge Cycleway (2006-2008)

Sydney Harbour Bridge Cycleway (2004-2008) continued

Anzac Parade Cycleway (2004-2008)

Prospect Reservoir Cycleway (2006-2008)

Prospect Reservoir Cycleway (2006-2008) continued

Cabramatta Cycleway (2006-2008)

Cabramatta Cycleway (2006-2008) continued

Guildford Cycleway (2006-2008) continued

Cooks River Cycleway (2006-2008)

Cooks River Cycleway (2006-2008) continued

Como Bridge Cycleway (2006-2008)

Como Bridge Cycleway (2006-2008) continued

M2 Tunnel Cycleway (2006-2008) continued

Baulkham hills Cycleway (2006-2008) continued

Captain Cook Bridge Cycleway (2006-2008) continued

Haig Ave Cycleway (2006-2008) continued

Haberfield Cycleway (2006-2008)

Haberfield Cycleway (2006-2008) continued

M7 Cycleway - Glenwood (2006-2008) continued

M7 Cycleway - Kings Park (2006-2008) continued

M7 Cycleway - Rooty Hill (2006-2008) continued

M7 Cycleway - Cecil Park (2006-2008) continued

M5 Cycleway - Kingsgrove (2006-2008) continued

M5 Cycleway - Riverwood (2006-2008) continued

Fairfield Showground Cycleway (2006-2008)

Fairfield Showground Cycleway (2006-2008) continued

Hoxton Park Road Cycleway (2006-2008) continued

Site location summary

Station No.	ROAD	DESCRIPTION	Missing period	Note
30011 ew	IRON COVE BRIDGE CYCLEWAY	IRON COVE BRIDGE	~06/11/07	
			07/03/08~19/12/06	
			10/01/07~28/03/07	
			09/05/07~11/07/07	
			20/08/07~30/04/08	
			11/06/08~	
90902ns	SHB CYCLEWAY	SOUTHERN TOLL OFFICE	~19/12/06	
			16/02/07~26/03/07	
			23/05/07~11/07/07	
			30/04/08~	
90903ns	ANZAC BRIDGE CYCLEWAY	GLEBE ISLAND BRIDGE	~19/12/06	
			30/01/07~28/03/07	
			09/05/07~11/07/07	
			20/08/07~06/11/07	
			18/12/07~21/01/08	
			07/03/08~30/04/08	
			11/06/08~	
90914ns	PROSPECT RESERVOIR CYCLEWAY	FAIRFIELD CITY FARM - ABBOTSBURY	~19/12/06	
			30/01/07~28/03/07	
			09/05/07~11/07/07	
			20/08/07~06/11/07	
			07/03/08~02/05/08	
			13/06/08~	
90904Ns	CABRAMATTA CYCLEWAY	BROOMFIELD STREET	~16/10/06	
			11/01/07~26/03/07	
			18/07/08~	
90905Ns	GUILDFORD CYCLEWAY	RAILWAY TERRACE	~16/10/06	
			10/01/07~26/03/07	
			01/06/07~15/06/07	
			13/07/07~06/08/07	
			25/09/07~01/11/07	
			20/12/07~26/02/08	
			08/07/08~	
90907Ns	ANZAC PDE CYCLEWAY	MOORE PARK - S OF LANG ROAD	$\sim 06 / 10 / 06$	
			06/11/06~24/05/07	
			07/07/08~	
90908Ns	JOHN WHITTON BRIDGE CWY	MEADOWBANK	$\frac{\sim 17 / 10 / 06}{}$	
			10/01/07~27/03/07	
			08/07/08~	
90909Ew	COOKS RIVER CYCLEWAY	MARRICKVILLE SOUTH	~06/10/06	
			8/07/2008~	
90910Ns	COMO BRIDGE CYCLEWAY	COMO	~30/10/06	
			03/01/07~14/06/07	
			16/04/08~30/04/08	
			08/07/08~	

Site location summary continued

Station No.	ROAD	DESCRIPTION	Missing period	Note
90911Ns	M2 TUNNEL CYCLEWAY	NTH EPPING - BROWNS WATER HOLE	~06/11/06	
			07/01/07~28/03/07	
			20/12/07~	
90912Ns	BAULKHAM HILLS CYCLEWAY	BAULKHAM HILLS - CREASTWOOD RESERVE	~17/10/06	
			16/02/07~10/04/07	
			11/07/08~	
90913Ns	CAPTAIN COOK BRIDGE CWY	TAREN POINT - SOUTHERN APPROACH TO BRIDGE	~05/04/07	
			29/10/07~31/10/07	
			08/07/08~	
90930Ns	HAIG AVE CYCLEWAY	HAWTHORNE CANAL - WEST SIDE PATHWAY	~10/10/06	
			10/01/07~13/06/07	
			08/07/08~	
90931ns	HABERFIELD CYCLEWAY	RICHARD MURDEN RESERVE	~26/09/08	
			18/10/06~07/06/07	
			08/07/08~	
90915ew	M7 CYCLEWAY	GLENWOOD - (FAIRMOUNT CIRCUIT)	~20/10/06	
			10/07/08~	
90916ew	M7 CYCLEWAY	KINGS PARK - (SUNNYHOLT ROAD)	~20/10/06	
			10/07/08~	
90917ns	M7 CYCLEWAY	ROOTY HILL - (STATION STREET)	~20/10/06	
			27/02/07~28/03/07	
			10/07/08~	
90918ns	M7 CYCLEWAY	CECIL PARK - (ELIZABETH DRIVE)	~16/10/06	
			27/11/06~	
90919ns	M7 CYCLEWAY	PRESTONS - (KURRAJONG ROAD)		No data available
90906		main road - not dedicated cycleway		No data available
90920ew	M5 CYCLEWAY	KINGSGROVE - W OF KORELLA STREET	~21/02/07	
			23/08/07~01/11/07	
			11/07/08~	
90921 ew	M5 CYCLEWAY	RIVERWOOD - E OF BONDS ROAD	~21/02/07	
			19/05/07~13/07/07	
			25/02/08~22/04/08	
			11/07/08~	
90922ew	FAIRFIELD SHOWGROUND CYCLEWAY	PRAIRIEWOOD - W OF SMITHFIELD ROAD	~21/02/07	
			18/12/07~23/04/08	
			11/07/08~	
90923ew	HOXTON PARK ROAD CYCLEWAY	CARTWRIGHT - E OF JOADJA ROAD	~21/02/07	
			10/07/08~	

```
Worth noting:
On the next slides, four sample days and four sample months have been chosen for the comparison of Cycling counts between John Whitton Bridge
and Sydney Olympic Park (SOP).
-Sample days (Mon, Wed, Sat and Sun)
-Sample Months (April (School holidays), May, Oct and Feb)
-They are the representatives of 'Typical Use' (ie. Weekday use and Weekend use)
Purpose of comparison
-Test pattern of cycling (ie. Does people use other forms of transport rather than bicycle to reach to SOP for cycling)
```


About the data

-Three locations - Corner of Hill and Bennelong Road, Ferry entrance and Nelson Park
-Sydney Olympic Park Authority (SOPA) tracks daily weather (ie. maximum temperature and rainfall amount) and possible counter errors (ie. Indications being used for all possible counter errors).
-Weather is a factor of non-riding or low cycling volume.
-Weekday cycling volume increases during school holidays.

John Whitton Bridge (2006-2008) Cycleway

School Holidays 06/04/07-22/04/07 (Hour by hour profile)

April, 2007 includes School holidays (hour by hour profile)

May, 2007 (Hour by hour profile)

Oct, 2007 (Hour by hour profile)

Feb, 2008 (Hour by hour profile)

Peak inbound traffic to Sydney CBD

$\frac{2006-2008}{\text { Location }}$	Direction	7 -day peak hour				Weekday peak hour				Weekend peak hour AM and PM					
			AM Count (Avg)		PM Count (Avg		AM Count (Avg		PM Count (Avg)			Peak weekday		Peak weekend	
Iron Cove Bridge	West	7	12	16,17	24	6	12	17	29	9	18	Wed	194	Sun	204
Anzac Bridge	West	7	14	17	79	7	12	17	82	9,15,16	10	Wed	424	Sun	155
Sydney Harbour Bridge	North	7	48	17	73	7	59	17	92	8	24	Tue	591	Sun	282
Anzac Parade	South	7,8	15	17	27	7,8	18	17	35	16	10	Wed	289	Sat	133

Cycling in New South Wales

What the data tells us
Appendix B: Rail station bicycle parking supply and demand

Prepared for the Premier's Council for Active Living
December 2008

Northern Line

Inner West Line_South Line

Bankstown Line

The highest rate
of observed
bikes was 15
bicycles at
Lidcombe
Station

Western Line to Emu Plains

Inner West Line_South Line

Cycling in New South Wales

What the data tells us
Appendix C: Bicycle theft and cyclist traffic infringement data

Prepared for the Premier's Council for Active Living
December 2008

Bicycle theft


```
About the data
1. Most thefts occurred in residential or outdoor / public areas
2. 'Others' includes categories such as vehicle, utilities, rural industry, religious,
        marine transport, transport, licensed premise, recreation, law enforcement,
        industrial, health and unknown
3. Most theft occurred from residences (64% of all reported theft in 2006)
4. There were no significant changes in theft by premises in NSW during 2003 and
    2007
```

Bicycle theft

About the data

Findings in residential category

1. Most theft occurred in dwelling (31% in 2006) and non-dwelling (66% in 2006) categories
2. 60% of total theft in non-dwelling category has occurred at garage, which is detached or attached, and drive way

Bicycle theft

Possible factors in theft share trends
Increase
More police reports or insurance claims have been made
People may leave their bicycles in unsecure places
Bicycle demand may have increased but the supply of bicycles remained unchanged
In a less populous LGA, the rate of theft may higher per person
Bicycle sales increased in the area which may lead more chance of theft in general (Actual bicycles available for use has increased)

Possible factors in theft share trends
Decrease
Fewer police reports or insurance claims have been made
People may not report theft to the police
Insurance claim cost may exceed the cost of bicycle
Actual number of cyclists may have decreased (less chance of theft) Public security (surveillance) may have improved in the area
In a more populous LGA, the rate of theft may lower per person

Bicycle theft

Bicycle theft

Bicycle theft

Bicycle theft is a crime opportunity

About the data and charts

PB tested 'theft share' by LGA by comparing them to the population in each LGA

37 LGA regions were tested in two categories; Sydney region and Regional NSW

Findings in overall

- In 2006, the population of city areas(54.9\% of Australian population) accounted for 58.6% of total theft in NSW
- Urban areas in regional NSW have more 'theft share' than those in Sydney region
- Dramatic increase and decrease occurred in some cities and also disproportionately high theft record for some cities which may have other factors rather than population factor (Further studies may required)
- In NSW, the trend of theft in general was in downturn during 2003 and 2007

[^0]: For further study:
 Infringement type and demographic characteristics were not supplied, to protect privacy information. This prevents further rider analysis.
 Currently only broad trends can be identified within the infringements data. Though several potential explanatory variables are identified, these cannot be determined with accuracy, until the dataset is disaggregated to reveal (at a minimum) NSW-wide or LGA-wide infringements by type.

[^1]: About the data:

[^2]: Cycling in New South Wales: What the data tells us

[^3]: Cycling in New South Wales: What the data tells us

