

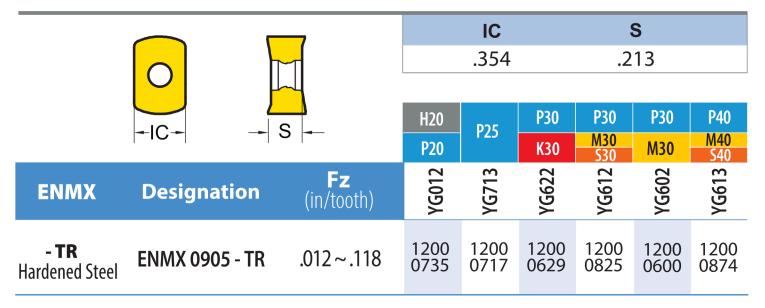
PACK ÉCONOMIQUE

Réduisez vos coûts, pas la qualité

ACHETEZ

20 PLAQUETTES ENMX09

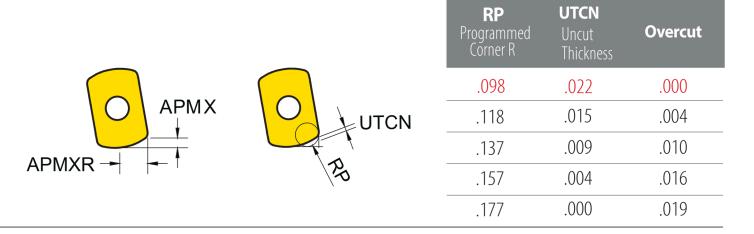
RECEVEZ


UNE FRAISE Ø2" À 5 DENTS GRATUITEMENT

PRÊTE À L'EMPLOI. CONÇUE POUR COUPER. PRIX IMBATTABLE.

SEULEMENT 200 TÊTES D'OUTILS EN PROMOTION LIVRAISON DIRECTE

ENMX 0905 - HIGH FEED NEGATIVE (4 CORNERS)



Cutting Speed						Vc (ft/min)								
ISO	VDI	VDI Sub Group YG012 Min Max			YG713 Min Max		YG622 Min Max		YG612 Min Max		YG602 Min Max		YG613 Min Max	
P	1~5	Non - Alloyed Steel	590	920	660	980	460	1310	590	920	590	1250	330	690
	6~9	Low - Alloyed Steel	490	820	560	890	390	1050	490	820	390	980	230	590
	10~11	High - Alloyed Steel	260	490	280	480	230	560	260	490	230	490	130	290
M	12~13	Ferritic & Martensitic	-	-	-	-	-	-	390	660	390	660	230	590
	14	Austenitic Stainless Steel	-	-	-	-	-	-	430	820	430	820	230	660
K	15~16	Grey Cast Iron	-	-	-	-	390	890	-	-	390	820	-	-
	17~18	Nodular Cast Iron	-	-	-	-	430	790	-	-	430	720	-	-
N	21~30	Non - Ferrous Metals (Al)	-	-	-	-	-	-	-	-	-	-	-	-
s	31~37	Superalloys & Titanium	-	-	-	-	-	-	80	450	80	150	-	-
н	38~41	Hard Materials	230	340	-	-	130	330	-	-	130	260	-	-

Unit:inch

Facing

Plunging

Ramping

Profiling

Helical Interpolation

Enlarge Hole

DCX External Cutter Diameter	APMX Maximum Depth of Cut	APMXR Maximum Radial Depth of Cut	RMPX Maximum Ramping Angle(°)	RP Programmed Corner Radius	UTCN Uncut Thickness	MIN. CUTTING DIA.	MAX. CUTTING DIA.	Pitch Helical Interpolation Pitch	Ae Enlarge Width
1.0	.059	.185	3.8°	R.098	.022	1.685	1.921	.059	.803
1.25	.059	.185	2.4°	R.098	.022	2.185	2.421	.059	1.053
1.5	.059	.185	1.7°	R.098	.022	2.685	2.921	.059	1.303
2.0	.059	.185	1.1°	R.098	.022	3.685	3.921	.059	1.803
2.5	.059	.185	0.8°	R.098	.022	4.685	4.921	.059	2.303
3.0	.059	.185	0.7°	R.098	.022	5.685	5.921	.059	2.803
4.0	.059	.185	0.4°	R.098	.022	7.685	7.921	.059	3.803
6.0	.059	.185	0.3°	R.098	.022	11.685	11.921	.059	5.803

