

 RIVER UNIVERSITY 2022

RIVER UNIVERSITY

EE-RU NARVAWATMAN project results.
HARMONIZED METHOD FOR
TRANSBOUNDARY NARVA RIVER
DISCHARGE ESTIMATION

Alvina Reihan, PhD,
Coordinator of the project
Tallinn University of
Technology,
Estonian Water Association

11-15 July 2022

Water photo credit: Impression, www.kontus.ee

Co-funded by the European Union

EUTROPHICATION STATUS OF THE BALTIC SEA 2007-2011, HELCOM

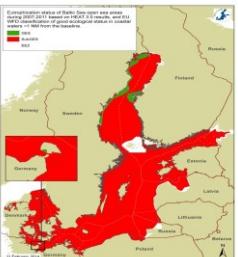


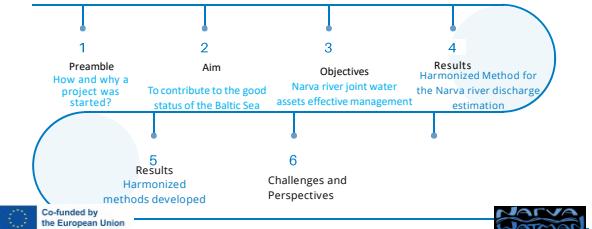
Figure 4. Eutrophication status in 2007-2011 was assessed as affected by eutrophication (red colour, status less than good; sub-GES) in all the open Baltic Sea sub-basins.

HELCOM reported that despite the mitigation measures taken to reduce nutrient inputs to the sea the good **eutrophication** status of the Baltic Sea has not been achieved. **Eutrophication - enrichment of water bodies with minerals and nutrients, particularly nitrogen and phosphorus.** Gulf of Finland is one of the areas affected by eutrophication and the Narva river (natural border between Estonia and Russia) is the channel through which nutrients reach the gulf and the sea and if we want to reduce nutrient inputs we must do this together.

How it all started?

To address these uncertainties, we need a common understanding of the problem, common data and methods, and if they exist, we will be able to find a common solution to problems or what nutrient reduction measures should be implemented.

To solve the problem a support program has been found...aimed to foster cross-border cooperation across the borders between the Republic of Estonia and the Russian Federation for 2014-2020.


Project "Water Management of the Narva River: harmonization and sustention" (NarvaWatMan)

Duration: 3 years, 15.03.2019- end 14.03.2022, postponed due COVID-19

RIVER UNIVERSITY 2022 Water Management of the Narva River: harmonization and sustention (NarvaWatMan)

Contents

RIVER UNIVERSITY 2022 Other concerns, uncertainties

- Each country uses its own methods and measured data for the Narva river runoff estimation.
- Narva river runoff estimation: Russia – Narva HPP data, Estonia – data from Narva City monitoring station, which regime is affected by the backwater effect from the sea;
- Ntot and Ptot data sets from Estonia and Russia also differ quite a lot, so the data are difficult to compare;
- Nutrient's estimation is also done by different methods that makes analyses more difficult;
- Water quality in Estonian and Russian rivers is estimated by different methods and the results are difficult to compare;
- The share of nutrient loads from Estonian and Russian in the Narva river is not clear.

RIVER UNIVERSITY 2022 Project "Water Management of the Narva River: harmonization and sustention" (NarvaWatMan)

Budget: Total 565 850 EUR (90% Programme co-financing 509 265 EUR, 10% by partners 56 585 EUR)

Project partners:

- Tallinn University of Technology (Lead Partner, Estonia)
- Federal State Budgetary Institution "State Hydrological Institute" (Partner 2, Russian Federation)
- State company "MINERAL" (Partner 3, Russian Federation).

Associated partners:

- Narva City Government, Department of Architecture and Urban Planning (Estonia)
- Administration of municipal formation «City Ivangorod Kingisepp municipal district of Leningrad Region» (Russia).

Human resources: 5 Professors, more than 20 Scientists and specialists, MSc and PhD students...

**"Water Management of the Narva River:
harmonization and sustention"
(NarvaWatMan)**

RIVER UNIVERSITY 2022

RIVER UNIVERSITY 2022

Overall objective: to contribute to the good status of the Baltic Sea.

Objectives:

- Narva river joint water assets effective management.
- Raising awareness and increasing cooperation in the field of environmental protection.
- Fulfilment by Estonia and Russia of International obligations (Estonia-Russia Joint Commission on the Protection and Sustainable Use of Transboundary Water Bodies and HELCOM) in achieving a healthy water environment in the Gulf of Finland of the Baltic Sea.

 Co-funded by the European Union

Objectives

WP-s : Four Core Activities and Communication and Visibility

Development of harmonized methods for:

- water discharge measurements and Narva river runoff estimation;
- water sampling and chemical analysis of the samples, for annual nutrients (N_{tot} and P_{tot}) load evaluation;
- joint complex index for water quality assessment;
- total nutrient load estimation and assessment Estonian and Russian contribution to it;

Raised awareness and increased cooperation in the field of environmental protection.

Objectives

RIVER UNIVERSITY 2022

RIVER UNIVERSITY 2022

Development of recommendations for:

- improving the accuracy of observations and runoff estimation;
- preparing information on nutrients load to HELCOM and Est-Rus JC;
- nutrient reduction measures aiming at fulfillment of HELCOM ceilings for the Gulf of Finland;

4 Workshops for discussion and approvement of all proposed harmonised methods and recommendations

 Co-funded by the European Union

 Co-funded by the European Union

First steps: Kick off meeting, Tallinn, 23-24 March 2019

Final Conference, March 1, 2022

RIVER UNIVERSITY 2022

RIVER UNIVERSITY 2022

Developed harmonized methods for:

- water discharge measurements and Narva river runoff estimation;
- water sampling and chemical analysis of the samples, for annual nutrients (N_{tot} and P_{tot}) load evaluation;
- joint complex index for water quality assessment;
- total nutrient load estimation and assessment Estonian and Russian contribution to it;

Recommendations for:

- improving the accuracy of observations and runoff estimation;
- preparing information on nutrients load to HELCOM and Est-Rus JC;
- nutrient reduction measures aiming at fulfillment of HELCOM ceilings for the Gulf of Finland;

 Co-funded by the European Union

Field measurements, simultaneously

Discharge measurements: 64 discharges were measured, by ADCP...

- N 1 – headrace channel of the Narva HEPS, dam bridge 240 m below the channel head;
- N 2 – Narva river, section between fortresses, 150 m above the «Druzba» bridge; Temporary level gauge, 200 m – below Narva HEPS;
- N 3 – Narva river, fishing embankment, opposite the marina of Narva, 700 m below the «Druzba» bridge. Estonian monitoring station

HARMONIZED METHOD FOR TRANSBOUNDARY NARVA RIVER DISCHARGE ESTIMATION

RIVER UNIVERSITY 2022

Initial data for the calculation

To justify the methodology, daily (average daily) and hourly data of water levels observations at the following observation points were used:

- the tail water of the Narva HEPS (Narva Hydropower Plant);
- temporary water lever recorder of "State Hydrological Institute" (in the period from 31.07.2019 to 16.06.2020);
- hydrological gauge of the Narva river – Narva city and the city of Narva-Jõesuu.

To obtain the calculated dependencies of the river water runoff estimation methodology on the Estonian side, data from measured water discharges and water levels obtained within the framework of the project in 2019-2020 (57 measured water discharges (MWD)) and water discharges measured on the Estonian monitoring station in the period 2006 - 2014 (128 MWD) were used. For each water discharge measurement, the values of water levels observed at the time of discharge measurement at the Narva HGS tail water (Narva HGS/TW) and Narva – Jõesuu gauges were clarified.

Narva river discharge estimation methodology

The discrepancy between Russian and Estonian long-term data:

- in the daily discharges vary from 346 m³/s (26/12/2009) to 861 m³/s (15/04/2010).

- in the monthly discharges - from 2,0 % to 45-46 % (January 2003, 2016).

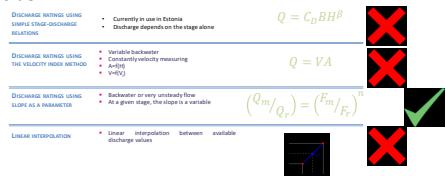
- in annual water discharges - from 2,6 % (2007) to 28,9 % (2010).

Est – discharges measured, Russia – discharges calculated by electricity production at HEPS

One of the main reasons is the Narva River "backwater" effect from the sea and daily regulation.

Data:

- observations of water levels and water discharges for period from 2003 to 2020 were used from the Estonian Narva city gauge monitoring station and the Narva-Jõesuu estuary gauge station, from the Russian side - Narva HEPS;
- observations and measurements obtained during joint Russian-Estonian experimental studies 2019-2020 on the mouth area of the Narva River lower the Narva HEPS.

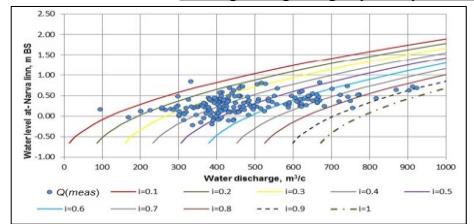

Co-funded by the European Union

RIVER UNIVERSITY 2022

Discharge estimation methodology

RIVER UNIVERSITY 2022

Various methods for discharge estimation were analysed from Estonian side:


Co-funded by the European Union

Discharge estimation methodology

RIVER UNIVERSITY 2022

The ultimate method chosen was *Discharge ratings using slope as a parameter*

Co-funded by the European Union

The main provisions of the methodology for the water flow regime in the downstream of the Narva HEPS, close to steady (stationary)

RIVER UNIVERSITY 2022

RIVER UNIVERSITY 2022

The best calculated dependence is obtained in the form of a multiple regression equation using the following predictors:

- the water level at the Narva city (Narvalinn) gauge, expressed in m of the Baltic System;
- the square of the water level according to the gauge Narva city (H_{Narva}^2);
- the slope of the water surface on the Narva River section from the tail water of the Narva HEPS to the Narva city gauge ($I_{HEPS(TW)-Narva}$), expressed in ppm (‰).

$$Q(H_{Narva linn}, I_{HEPS(TW)-Narva}) = 46,9 + 241,3905H_{Narva} + 119,22152H_{Narva}^2 + 732,105I_{HEPS(TW)-Narva linn}$$

The equation has the following approximation quality characteristics:

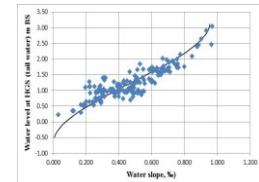
$$\bar{Q}_{av} = 0,0, \sigma_Q = 0,081.$$

Narva linn – Narva city

Unsteady flow movement

The greatest data discrepancies were observed during periods of intensive daily regulation of discharges at the Narva HEPS, up to a complete shutdown of the turbines.

In such conditions, it is necessary to take into account the effects of unsteady movement and calculations must be performed based on frequent observations of water levels and slopes of the water surface.


It has been determined that the mode of unsteady flow movement can be detected only from observations of water levels downstream of the HEPS or according to the AHC (automated hydrological complex) of SHI. According to observations at the GP Narva, it was impossible to identify the dependencies of $Q(H)$ and $I(H)$ of steady motion.

To estimate the unsteadiness of the flow, the parameter is used

$$\chi = \frac{|\Delta I|}{I_{st}},$$

$|\Delta I|$ – the modulus of the difference in the slopes of the water surface: the observed I_{st} and the slope of the steady flow I_{st} . River flow downstream of the Narva HGS should be considered to be steady if the value of the parameter χ does not exceed the value of 0.05: $\chi \leq 0.05$.

Dependence of the slopes of the water surface on the water levels in the conditions of steady flow at the site downstream from the Narva HGS to the gauge Narva linn

$$I(H_{HEPS/TW}) = 0.0763 + 0.2135 H_{HEPS/TW} + 0.1286 H_{HEPS/TW}^2 - 0.0342 H_{HEPS/TW}^3$$

RIVER UNIVERSITY 2022
Dependence of water discharges on water levels of steady flow

$$Q(H_{HEPS/TW}) = 100.52 + 264.7608 H_{HEPS/TW} + 33.676 H_{HEPS/TW}^2$$

RIVER UNIVERSITY 2022
The main provisions of the methodology for the conditions of pronounced unsteadiness of the flow in the tail water of the Narva HEPS

To calculate water discharges during periods of intensive daily regulation with pronounced unsteadiness of the flow, the Jones equation was used :

$$Q_p = Q_{st} \sqrt{1 + \frac{\Delta I}{I_{st}}}$$

Q_{st} and I_{st} are water discharges and slope of the water surface of steady flow, respectively;
 $\Delta I = I - I_{st}$, I is the observed slope of the water surface.

The values of Q_{st} and I_{st} are determined from hourly observations of the water level according to dependencies on the previous slides. The values of ΔI are determined from hourly observations of water levels in the tail water of the Narva HGS and at the Narva city hydrological monitoring station.

Comparison of estimated water discharges of the Narva river below the Narva HEPS (HPP) by different methods

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011
Method									
Estimations of average annual water discharges, m³/s									
HEPS	313	469	434	271	341	424	478	440	431
Met.SHI	342	501	475	288	368	441	482	528	466
Est	391	483	459	287	350	441	495	574	514
Discrepancies in average annual water discharges, %									
Met.SHI	-8.5	-6.4	-8.6	-5.9	-7.3	-3.9	-0.8	-16.7	-7.5
Est	-19.9	-2.9	-5.4	-5.6	-2.6	-3.9	-3.4	-23.3	-16.1
Average quadratic discrepancies of average monthly water discharges, %									
Met.SHI	11.1	7.6	12.2	9.1	10.5	6.8	2.3	20.4	11.1
Est	27.0	11.2	18.3	8.5	8.2	12.3	20.7	28.9	19.3

Year	2012	2013	2014	2015	2016	2017	2018	2019	2020
Method									
HEPS									
HEPS	362	390	300	297	323	485	418	314	378
Met.SHI	394	456	328	344	349	521	445	326	387
Est	436	486	411	390	409	579	432	353	403
Discrepancies in average annual water discharges, %									
Met.SHI	-8.1	-14.5	-8.5	-13.7	-7.45	-6.07	-6.07	-3.68	-2.33
Est	-17.0	-19.8	-27.0	-23.8	-21.0	-3.24	-3.24	-11.1	-6.20
Average quadratic discrepancies of average monthly water discharges, %									
Met.SHI	12.1	17.7	9.2	17.8	8.29	9.0	9.0	8.4	5.0
Est	20.9	22.1	29.6	31.8	24.4	25.3	25.3	27.6	18.0

Recommendations...

In order to obtain the average annual discharge of the Narva River agreed between Russia and Estonia and submit it to international organizations (for example, to HELCOM), the average annual (monthly, daily) values of water discharge calculated according to the calculation formulas at the Narva HGS (HEPS) and according to the hydrometric river runoff estimation method for the Estonian gauge of the Narva river – Narva city are averaged through the arithmetic mean.

In order to improve the accuracy of water discharge measurements and calculations of the runoff of the Narva River in the future, it is necessary to implement a number of recommendations related to the graduation of the Narva HGS (HEPS), the opening of an additional level gauge on the Estonian side, etc. Detailed recommendations are presented in a separate document.

SAMPLING ON NARVA RIVER DURING THE PROJECT

- Sampling took place at two locations on the Narva River
 - ~11 km from the river delta
 - ~6 km from the river delta
- Sampling carried out

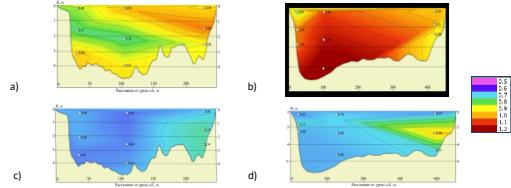
	2019	2020	2021
1	21/08/2019	Cancelled due to Covid	20/05/2021
2	16/10/2019		16/06/2021
3			24/08/2021
4			07/09/2021

- Analyzed in the laboratory: N_{Hep}^{+} , SiO_2
- Measured on-site: pH, conductivity, dissolved oxygen
- Standard methods EST: ISO standards EV5-EN ISO 6878 for phosphorus, ISO 11905 and ISO 13395 for nitrogen.

1 March 2022, Narva, Estonia, Final Conference

RIVER UNIVERSITY 2022
Co-funded by the European Union

Samples were taken with a bathometer

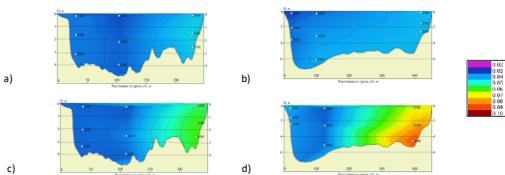


RIVER UNIVERSITY 2022

RIVER UNIVERSITY 2022

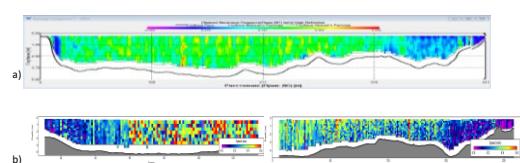
Joint method for annual riverine nutrients load evaluation

Ntotal distribution



N_{total} distribution at hydrochemical cross-sections N°4 (a and c) and N°5 (b and d) on 21.08.2019 (a and b) and 16.10.2019 (c and d)

RIVER UNIVERSITY 2022


RIVER UNIVERSITY 2022

Ptotal distribution

P_{total} distribution at hydrochemical cross-sections N°4 (a and c) and N°5 (b and d) on 21.08.2019 (a and b) and 16.10.2019 (c and d)

Discharge distribution

Discharge distribution at hydrochemical cross-section N°4 on 21.08.2019 (a) and 05.09.2021 (b)

RIVER UNIVERSITY 2022

RIVER UNIVERSITY 2022

Ntot load

Date	I	II	III	Q1	Q2	Q3	cost1	cost2	load1	load2	Sum
							cost3	cost4			
21.08.2019	0.95	0.98	0.96	95.4	101.0	13	48.1	102.5	5.3	1.3	202
16.10.2019	0.67	0.66	0.75	98.7	201.1	3.2	66.4	132.8	2.3	2.0	402
20.05.2021	0.70	0.72	0.99	106.1	207.4	6.9	106.2	306.3	6.8	40.6	602
16.06.2021	0.80	0.82	0.95	136.5	278.4	4.6	114.2	208.3	4.2	34.7	502
20.09.2021	0.78	0.81	0.66	132.1	202.5	10	105.4	205.6	2.0	26.0	402
	0.78	0.78	0.84								
				Q1	Q2	Q3					

Annual riverine nutrients load evaluation

$$\text{Ntot/Ptot load} = (N_{\text{tot, RGM}} + N_{\text{tot, BVH}})^2$$

k Edt = 0.78 k Rus = 0.22

Co-funded by the European Union

1 March 2022, Final Conference

F₁ Scope - percent of parameters that exceed (or are below e.g. Q1) the standards or limit valuesF₂ Frequency - percentage of individual tests that exceed the standards or limitsF₃ Amplitude - represents the amount by which failed test values do not meet their guidelines

$$WQI = \frac{F_1 + F_2 + F_3}{3}$$

Limit values for WQI

RIVER UNIVERSITY 2022

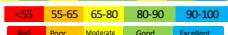
Nr	Parameter	Limit values		
		type A dark	type B light	Narva river
1	pH	6.5-8.5	6.5-8.5	6.5-8.5
2	O ₂ % Winter (dec-apr)	60	70	70
	Warm time (may – nov)	70	80	80
3	Conductivity; $\mu\text{s}/\text{cm}$	620	420	350
4	BOD ₅ ; mgO/l	2,3	2,3	2,0
5	CO ₂ ; mgO/l	61	29	34
	CO ₂ ; mgO/l	40	19	22
6	N _{NO3} ; mgN/l	1,6	1,6	1,0
7	NH ₄ ⁺ ; mgN/l	0,2	0,2	0,1
8	NO ₂ ⁻ ; mgN/l	1,0	1,0	0,3
9	P _{PO4} ; mgP/l	0,06	0,07	0,05
10	PO ₄ ³⁻ ; mgP/l	0,04	0,02	0,02

Co-funded by the European Union

1 March 2021, Final Conference

Long term results (8-17 years)

RIVER UNIVERSITY 2022

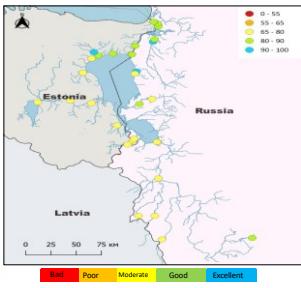

Russian rivers

River	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Utrjora	Утряка	Погр. Нег. ПВХ								67,7	65,7	67,2	64,3	61,9	70,6	65,7	65,7
Vetlukay	Ветлуга	Белая	Белая	Белая	Белая	Белая	Белая	Белая	Белая	68,9	54,1	68,9	70,8	65,4	69,4	61,0	61,0
Volga	Волга	ПМК	ПМК	ПМК	ПМК	ПМК	ПМК	ПМК	ПМК	61,9	70,6	65,9	66,1	65,0	67,4	67,4	67,4
Idovka	Идовка	ПМК	ПМК	ПМК	ПМК	ПМК	ПМК	ПМК	ПМК	61,2	70,6	63,6	61,8	61,0	67,5	71,3	71,3
Zhizhka	Жизжка	ПМК	ПМК	ПМК	ПМК	ПМК	ПМК	ПМК	ПМК	61,0	64,5	63,7	68,6	60,1	65,6	65,0	65,0
Plissa	Плисса	Ср. ПМК	Ср. ПМК	Ср. ПМК	Ср. ПМК	Ср. ПМК	Ср. ПМК	Ср. ПМК	Ср. ПМК	70,8	60,8	60,1	74,1	63,3	68,5	69,7	69,7
Narva	Нарва	ПМК	ПМК	ПМК	ПМК	ПМК	ПМК	ПМК	ПМК	70,8	60,8	60,1	74,1	63,3	68,5	69,7	69,7
Narva	Нарва	Из. ПМК	Из. ПМК	Из. ПМК	Из. ПМК	Из. ПМК	Из. ПМК	Из. ПМК	Из. ПМК	74,7	67,2	62,1	80,6	87,6	86,4	90,1	90,1

Estonian rivers

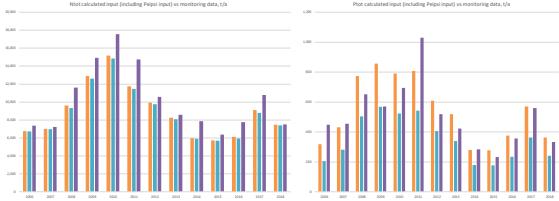
River	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Narva, Narva	71,3	72,8	71,0	71,0	71,7	71,2	73,3	81,7	76,6	85,4	83,9	91,9	89,5	86,5	82,2	85,1	85,2
Narva, Vaskna	81,8	84,3	73,6	83,4	74,7	71,9	73,3	83,5	76,6	83,6	90,3	91,1	93,4	83,4	88,2	89,3	89,3
Emajõgi, Kavastu	50,4	62,5	65,6	62,6	63,1	62,8	64,3	63,6	67,3	62,7	67,8	69,1	66,1	59,9	68,4	70,7	66,9
Ajha	64,1	72,3	71,4	64,6	75,4	66,9	66,7	72,0	67,0	67,5	70,0	67,0	68,2	64,0	71,6	64,3	68,1
Alajõgi	78,1	76,9	87,8	74,6	82,5	73,1	82,5	85,4	77,8	83,7	90,4	88,2	87,8	77,2	89,2	89,4	81,8

Co-funded by the European Union



65-69 55-65 65-80 80-90 90-100

Water Quality Index (WQI) map, 2019


RIVER UNIVERSITY 2022

Co-funded by the European Union

Proposals for developing a joint methodology determining the share of contributions from Estonian and Russian territory in the total nutrient load coming with river Narva to the Gulf of Finland

Activities and results, 2019-2022

- Field measurements
- Developed harmonized methods
 - Recommendations
- Environmental awareness and cooperation events

Four eco-marathons: 2 summer and 2 winter...thematic: eco-art, eco-sport, eco-lab, competition teaching excellence

Narva Joaoru house, Information panel <https://narvalm.visitnarva.ee>

Shares of nutrient load from different sources, Est and Rus, %

Nitrogen	Russian contribution, %	Estonian contribution, %
Total input to the sea according to the Russian method	73	27
Total input to the sea according to the Estonian method	77	23
Point sources loads	20	80
Natural background loads according to the Russian method	88	12
Natural background loads according to the Estonian method	89	11
Natural areas	91	9
Agricultural loads according to the Russian method	66	34
Agriculture loads according to the Estonian method	76	24
Agricultural areas	70	30
Urban (artificial areas)	43	57

Co-funded by the European Union

Research outputs

RIVER UNIVERSITY 2022

Three Master's theses, defended at Tallinn University of Technology (2020, 2021);

Four PhD students;

Organization of special sessions on the Baltic Sea Day Forum (St-Peterburg) with presentations of the project results (2019, 2021);

Presentation of the project results at the meetings of **HELCOM** and **Estonia-Russia Joint Commission** on the Protection and Sustainable Use of Transboundary Water Bodies;

Two research papers have been already published, two are in the pipeline...

 Co-funded by the European Union

Research outputs

RIVER UNIVERSITY 2022

Workshops: 4 with participation of more than 40 experts totally from both countries;

Four developed methods on: runoff estimation, nutrients distribution by the depths and widths, water quality index assessment, estimation of nutrients input from different sources ...

Three documents with recommendations...

The water quality of the Narva river is GOOD!

At the source and mouth of the river! In the future – focus on the Lake Peipsi catchment area...

 Co-funded by the European Union

Conclusions and perspectives

RIVER UNIVERSITY 2022

Challenges

Data availability in the Narva river catchment area from Estonia and Russia:

- not enough monitoring sites, agreed from the both sides,
- not enough measured data, especially extremes,
- non homogeneous data,
- field measurements were impossible in time, crossing the river was stopped (COVID restriction)
- different observation periods,
- different measured chemical parameters, different units,
- not enough statistical, especially chemical, data,
- different approaches for estimation river runoff and pollution loads from different sources,

 Co-funded by the European Union

„Perspectives“

RIVER UNIVERSITY 2022

- To analyse existing monitoring sites for their representativeness; to agree on a new location for the hydrological and hydrochemical monitoring sites on the Narva River as proposed in the Recommendations;
- To develop a common database for hydrological, chemical and biological data from the whole Narva river (and Lake Peipsi) catchment area; common GIS; to carry out experimental measurements to investigate the pollution loads from different land types...
- To grant special status to the Narva river, Narva reservoir and Lake Peipsi to enable the water border to be crossed for scientific and monitoring purposes

 Co-funded by the European Union

THANK YOU

CONTACT PERSON
Alvina Reihan
alvina.reihan@taltech.ee

MORE INFORMATION HERE: www.narvawatman.com

The content of this document is the sole responsibility of CO and under no circumstances be regarded as reflecting the position of the Union.