
DSP Prototyping with Python
Jorge Garcia, MSc

Independent

@JGarciaMartin

info@jorgegarciamartin.com

www.linkedin.com/in/jorgegarciamartin

Contact
1. https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
2. https://insights.stackoverflow.com/survey/2018
3. http://www.anaconda.com
4. Think DSP: Digital Signal Processing in Python. Allen B. Downey. Green Tea Press (2014) http://greenteapress.com/wp/think-dsp/
5. The Audio Programming Book. V. Lazzarini. MIT Press (2011)
6. Introduction to DSP Prototyping chapter in “Game Audio Programming Volume 2”. G. Somberg, J.Garcia. CRC Press, Taylor & Francis (2018)

References

This poster introduces the prototyping process of
Digital Signal Processing (DSP) algorithms.

An initial background and general information of
the advantages and caveats in building effective
prototypes for audio applications is presented. A
variety of audio languages and frameworks are
available as useful tools that can be leveraged in
production projects, depending on the platform and
the approach of choice.

The Anaconda distribution and the Python language
are showcased for designing and implementing a
simple Butterworth low-pass filter (LPF). This filter
is shown as an example of what kind of DSP
prototypes can be achieved with a few lines of
code, and before a final C++ optimised
implementation takes place.

Abstract

Introduction

from scipy.io import wavfile
import matplotlib.pyplot as plt
import numpy as np

Obtain sample rate (fs) and data from mono file
fs, data = wavfile.read("music.wav")
Normalise 16-bit input to range -1,1
data = data / 2.0 ** 15

Configure axes and plot
plt.axes(xlabel="Time (seconds)",
ylabel="Amplitude")
t = np.linspace(0, len(data) / float(fs), len(data))
plt.plot(t, data)
plt.show()

plt.axes(xlabel="Time (seconds)",
ylabel="Frequency (Hz)")
plt.specgram(data, NFFT=512, Fs=fs,
cmap=plt.cm.gist_gray)
plt.plot()
plt.show()

Plotting basics
#	The	following	implementation	follows	the		
#	equations	from	[4]	[5]	and	[6]:

from scipy.io import wavfile
import numpy as np

fs, data = wavfile.read("music.wav”)
data = data / 2.0 ** 15
cutoff = 2000.0 # Cutoff Frequency in Hz

Second-order Butterworth filter coefficients
filterLambda = 1 / np.tan(np.pi * cutoff / fs)
a0 = 1 / (1 + 2 * filterLambda + filterLambda ** 2)
a1 = 2 * a0
a2 = a0
b1 = 2 * a0 * (1 - filterLambda ** 2)
b2 = a0 * (1 - 2 * filterLambda + filterLambda ** 2)

xn_1 = 0.0
xn_2 = 0.0
yn_1 = 0.0
yn_2 = 0.0

y = np.zeros(len(data))

for n in range (0, len(data)):
y[n] = a0*data[n] + a1 * xn_1 + a2 * xn_2

- b1 * yn_1 - b2 * yn_2
xn_2 = xn_1
xn_1 = data[n]
yn_2 = yn_1
yn_1 = y[n]

wavfile.write("filtered_output.wav", fs, y)

Low-level Butterworth LPF

Why prototype?
DSP development can be very time consuming.
Having a process to test out, experiment and reject
ideas early is convenient and can help saving time
in the development of the final product. Being able
to test out different alternatives quickly makes it
easier to find the most suitable algorithm for the
application and platform requirements.

What are the caveats?
More development time has to be invested.
Prototype code quality can usually be lower and
perform worse than production code. Learning a
prototyping language or framework takes time,
which is not directly invested in the final product.

Prototyping life cycle
1. Research available algorithms.
2. Initial prototype design and implementations.
3. Iteration and optimisation of alternatives.
4. Evaluation of the approaches (back to step 2).
5. Initial production implementation.

What are known prototyping tools/frameworks?
Matlab, Octave, Max/MSP, Pure Data...

Why use Python and Anaconda for prototyping?
Python is a high level, dynamic language that
provides an interactive interpreter. The code can be
ported easily to other languages (e.g. C/C++). The
community is welcoming and helpful. Moreover,
Python has become one of the top programming
languages in various rankings and surveys [1] [2].
The free and open source Anaconda distribution [3]
offers a range of scientific computing libraries.

Jorge has been working in the audio field for more
than a decade under different roles in broadcasting,
professional audio, music, and more recently,
games. He has participated in the programming and
engineering of video game franchises like
Spacelords, Guitar Hero, DiRT and FIFA. Additionally,
he has worked as a developer for MIDAS consoles
and Behringer in the past. His passions, interests
and skill set span from R&D to DSP, tools, and audio
engine design and development.

About the author
from scipy.signal import butter, lfilter

def butter_lowpass(cutoff, fs, order):
nyquist = 0.5 * fs
cut = cutoff / nyquist
b, a = butter(order, cut, btype='low')
return b, a

def butter_lowpass_filter(data, cutoff, fs, order):
b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y

Quick Butterworth LPF

1. Effective and quick prototypes can be achieved
with a few lines of Python code.

2. Prototyping with the Python language makes the
development process more flexible and portable
to other languages and frameworks.

3. High-level Python frameworks and distributions
like Anaconda can be leveraged for applying and
developing different DSP algorithms.

4. Some time and resources can be saved in the
early stages of development after an initial
investment in learning prototyping frameworks.

5. Prototyping leads to exploring the design
options more creatively and quickly.

Conclusions

